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Why we need more concentration bounds?

I Remember that given a random variable, we are trying to
determine how concentrate it is, i.e. that the probability of
hitting a random instance which deviates far from the
expectation µ, is small.

I We aim to have random variables (events) which are
concentrated around its mean with high probability.

I We saw that if X ≥ 0 Markov can give an indication that
there are values very far away from its mean, but in general is
to weak for proving strong concentration results.

I Chebyshev’s inequality can give stronger results for
concentration of X around µ, but we must compute Var [X ],
which could be difficult.



Chernoff Bounds

Sergei Bernstein (1924), Wassily Hoeffding (1964),
Herman Chernoff (1952)

The Chernoff bound can be used when the random variable X is
the sum of several independent Poisson trials, where each Xi can
has probability of success pi . The particular case where all pi are
equal is the Bernouilli trials.

Theorem (Ch-1) Let {Xi}ni=0 be independent Poisson trials, with
Pr [Xi = 1] = pi . Then, if X =

∑n
i=1 Xi , and µ = E [X ], we have

1. Pr [X ≤ (1− δ)µ] ≤
(

e−δ

(1−δ)(1−δ)

)µ
, for δ ∈ (0, 1).

2. Pr [X ≥ (1 + δ)µ] ≤
(

eδ

(1+δ)(1+δ)

)µ
for any δ > 0.



Weak Chernoff’s bound, but easy to use
Corollary (Ch-2) Let {Xi}ni=0 be independent Poisson trials, with
Pr [Xi = 1] = pi . Then if X =

∑n
i=1 Xi , and µ = E [X ], we have

1. Pr [X ≤ (1− δ)µ] ≤ e−µδ
2/2, for δ ∈ (0, 1).

2. Pr [X ≥ (1 + δ)µ] ≤ e−µδ
2/3, for δ ∈ (0, 1].

An immediate corollary to the previous result:

Corollary (Ch-3) Let {Xi}ni=0 be independent Poisson trials, with
Pr [Xi = 1] = pi . Then if X =

∑n
i=1 Xi , µ = E [X ] and δ ∈ (0, 1),

we have
Pr [|X − µ| ≥ δµ] ≤ 2e−µδ

2/3.

Sketch Proof of (3) using (2):

Pr [|X − µ| ≥ δµ] = Pr [X < (1− δ)µ] + Pr [X ≥ (1 + δ)µ]

≤ e−µδ
2/2 + e−µδ

2/3 ≤ 2e−µδ
2/3



Proof of Ch-2.1 using Ch-1.1

From (Ch-2.1) We must prove that, for δ ∈ (0, 1), we have(
e−δ

(1−δ)(1−δ)

)µ
≤ e−µδ

2/2 =
(
e−δ

2/2
)µ

.

Let f (δ) = ln
(

e−δ

(1−δ)(1−δ)

)
− ln

(
e−δ

2/2
)

f (δ) = −δ − (1− δ) ln(1− δ) + δ2/2 ≤ 0.

Differenciating f (δ):

f ′(δ) = ln(1− δ) + δ

f ′′(δ) =
−1

1− δ
+ 1 ≤ 0

⇒ f ”(δ) < 0 in (0, 1) and as f ′(0) = 0, then f ′(δ) ≤ 0 in [0, 1),
i.e. f (δ) is non-increasing in [0, 1).

As f (0) = 0⇒ f (δ) ≤ 0 for δ ∈ (0, 1).



Proof of Ch-2.2 using Ch-1.2

From (Ch-2.2) We must prove that for δ ∈ (0, 1), we have(
eδ

(1+δ)(1+δ)

)µ
≤ e−δ

2/3.

Taking logs: f (δ) = δ − (1 + δ) ln(1 + δ) + δ2/3 ≤ 0.
Differentiating 2 times f (δ), and using the same argument as
above, we see f (δ) ≤ 0 in (0, 1].



An easy application

Back to an old example: We flip n-times a fair coin, we wish an
upper bound on the probability of having at least 3n

4 heads.
Recall Let X ∈ B(n, 1/2), then, µ = n/2,Var [X ] = n/4.

We want to bound Pr
[
X ≥ 3n

4

]
.

I Markov: Pr
[
X ≥ 3n

4

]
≤ µ

3n/4 = 2/3.

I Chebyshev’s: Pr
[
X ≥ 3n

4

]
≤ Pr

[
|X − n

2 | ≥
n
4

]
≤ Var[X ]

(n/4)2 = 4
n .

I Chernoff: We want Pr
[
X ≥ 3n

4

]
. Using Ch-2.2,

Pr
[
X ≥ 3n

4

]
= Pr

[
X ≥ (1 + δ)n2

]
⇒ (1 + δ) 3

2 ⇒ δ = 1
2

∴ Pr
[
X ≥ 3n

4

]
≤ e−µδ

2/3 = e−
n
24 .

If n = 100, Cheb. = 0.04, Chernoff = 0.0155
If n = 106, Cheb. = 4× 10−6, Chernoff = 2.492× 10−18095



Another example

Toss n times a fair coin, what is the probability of deviating from
n/2 heads?
Let X = # heads, then µ = n/2 and Var [X ] = n/4.

1. Markov: Pr [X ≥ n/2] ≤ n/2
n/2 = 1. So Pr [X ≤ n/2] ≥ 0. No

Information

2. Chebyshev: Between n/4 and 3n/4 heads:
Pr
[
|X − n

2 | ≥
n
4

]
≤ 4

n

3. Chernoff: Using the last bound

Pr
[
|X − n

2 | ≥
1
2

√
6n ln n

]
≤ 2e−

1
3
n
2

6 ln n
n = 2

n

Even Pr
[
|X − n

2 | ≥
n
4

]
≤ 2e−

1
3
n
2

1
4 ≤ 2e−

n
24



Proof of Chernoff-1: Upper tail

Note if for a r.v. X , and a > 0 and for any t > 0 we have

(etX ≥ eta)⇔ (X ≥ a)

Therefore Pr [X ≥ a] = Pr
[
etX ≥ eta

]
≤︸︷︷︸

Markov

E[etX ]
eta .

Pr [X ≥ (1 + δ)µ] = Pr
[
etX ≥ et(1+δ)µ

]
≤︸︷︷︸

Markov

E[etX ]
et(1+δ)µ (*)

E
[
etX
]

= E
[
et(

∑n
i=1 Xi )

]
= E

[∏n
i=1 e

tXi
]

=︸︷︷︸
Ind.Xi

∏n
i=1 E

[
etXi

]
.

E
[
etXi

]
= pie

t + (1− pi )e
0 = pi (e

t − 1) + 1 < epi (e
t−1).

∴
∏n

i=1 E
[
etXi

]
<
∏n

i=1 e
pi (e

t−1) = e
∑n

i=1 pi (e
t−1) =︸︷︷︸

et=Θ(1)

eµ(et−1).

From (*): Pr [X ≥ (1 + δ)µ] < eµ(et−1)

et(1+δ)µ = eµ(et−1−t−δt)



Proof of Chernoff-1: Upper tail

We got Pr [X ≥ (1 + δ)µ] < eµ(et−1−t−δt).
To get a tight bound we have to choose t s.t. it minimizes the
above expression.

i.e. we have to derivate wrt t: d(et−1−t−δt)
dt = 0⇒ t = ln(δ + 1)

Substituting in the above equation:

Pr [X ≥ (1 + δ)µ] < eµ((δ+1)−1−ln(δ+1)−δ ln(δ+1))

=

(
eδ+1−1

e(δ+1) ln(δ+1)

)µ
=

(
eδ

(δ + 1)δ+1

)µ
. 2



Proof of Chernoff-2: Lower tail

As before, we write inequality as inequality in exponents, multiplied by a t > 0,

which we minimized to get the sharp bound.

As before we use Markov, but the inequality would be reversed:

Pr [X < (1− δ)µ] = Pr
[
e−tX > e−t(1−δ)µ

]
≤ E[e−tX ]

e−t(1−δ)µ .

As X =
∑

Xi , where {Xi} are independent, then e−tX =
∏n

i=1 e
−tXi ,

⇒ E
[
e−tX

]
= E

[∏n
i=1 e

−tXi
]

=
∏n

i=1 E
[
e−tXi

]
.

But E
[
e−tXi

]
= pie

−t + (1− pi )e
0 = pie

−t + (1− pi ) =

1− pi (1− e−t) ≤︸︷︷︸
e−t≥1−t

e−pi (1−e−t) ≤ epi (e
−t−1)

⇒
∏n

i=1 E
[
e−tXi

]
<
∏n

i=1 e
pi (e

−t−1) = e
∑

i pi (e
−t−1) = e(µ(e−t−1))

So Pr [X < (1− δ)µ] < e(µ(e−t−1))

e−t(1−δ)µ = eµ(e−t+t−tδ−1).



Proof of Chernoff-2: Lower tail

We have to minimize wrt t: Pr [X < (1− δ)µ] < eµ(e−t+t−tδ−1).
dµ(e−t+t−tδ−1)

dt = 0⇒ t = ln 1
1−δ .

Substituting back into the above equation,

Pr [X < (1− δ)µ] < eµ((−e ln(1/(1−δ)))+(1−δ) ln(1/(1−δ))−1)

= eµ((1−δ)+(1−δ)(ln(1)−ln(1−δ))−1)

= eµ((1−δ)−1+1/((1−δ)1−δ) =

(
e−δ

(1− δ)1−δ

)µ
2



Powerful Technique: Chernoff + Union-Bound

Assume we have an event A = ∪ni=1Ai , where the {Ai}ni=1 are
NOT independent, and we want to prove that the probability that
A has a bad instance → 0 (it is tiny).
The technique consists in:

1. Use Chernoff to prove that for each Ai the probability of a
bad instance is very small, for each Ai of the n ones, i.e. we
compute that Pr [Ai is bad] is very small,

2. use Union-Bound to prove
Pr [A is bad] = Pr [∪ni=1Ai is bad] ≤

∑n
i=1 Pr [Ai is bad] is

very small.

Notice, that means that we need Pr [Ai is bad] = ω(1/n), so the
sum does not affect Pr [A is bad].



Load balancing problem

Suppose we have k servers and n jobs, n >> k . Assume n jobs
stream sequentially but very quickly, we have to assign each job to
a server, where each job take a while to process. We are interested
in to keep similar load in each servers. We want to have an
algorithm that on the fly distribute the jobs into the servers, to
balance the load between them, as much as we can.



Random algorithm for load balancing

We want to see ”how close” our the load balance achieved by our
algorithm is to the perfect load balance = n/k ,
i.e. prove that w.h.p., the maximum load of all the servers is near
n/k

Randomized Algorithm: Assign independently each job to a
random server, with probability = 1/k .



Load balancing: correctness

For (1 ≤ i ≤ k) let Xi be a r.v. counting the number of jobs
handled by server i . (notice they are not indicator r.v.)

For each Xi ∈ B(n, 1
k ) ⇒ E [Xi ] = n

k clear?

But (X1, . . . ,Xk) are not independent, as

Pr [(X1 = n) ∩ · · · ∩ (Xk = n)]︸ ︷︷ ︸
=0

6= (Pr [X1 = n] · · ·Pr [Xk = n]︸ ︷︷ ︸
=( 1

k
)kn

.

Let M be a r.v. counting the maximum load among all the k
servers. M = max{X1, . . . ,Xk}

We want to show Pr
[
M ≥ n

k + γ
]

very small, for a not too large γ.



Correctness-2

For any 1 ≤ i ≤ k define the bad event Bi as Bi ≡ Xi ≥ n
k + γ,

Define the event B = ∪ki=1Bi , i.e B is the event M ≥ n
k + γ.

We aim to show that Pr [B] ≤ 1
k2 , ⇒ Pr

[
B̄
]
> 1− 1

k2 .

Notice that for all 1 ≤ i ≤ k we have the same value of Pr [Bi ].
therefore, let Pr [Bi ] = Pr

[
Xi ≥ n

k + γ
]

= β.

To get Pr [B] ≤ 1
k2 , using Union Bound:

Pr [B] ≤
∑k

i=1 Pr [Bi ] = kβ, which we need = 1
k2 , ⇒ we need

Pr [B1] = β ≤ 1
k3 .

W.o.l.g let us compute Pr [B1].



Showing that Pr [B1] ≤ 1/k3

As X1 ∈ B(n, 1
k ), then X1 =

∑n
j=1 Ij , where Ij is i.r.v. that is 1 if

job j goes to server 1. So Pr [lj = 1] = 1
k .

⇒ E [X1] = µ =
∑n

i=1
1
k = n

k .

We use Ch-2.2 to bound Pr [B1] = Pr [X1 ≥ µ+ γ].

Pr
[
X1 ≥ (1 + δ)( nk )

]
= Pr

X1 ≥

 n
k +

δn

k︸︷︷︸
γ


 ≤ e−

δ2µ
3

We need to take values of δ and γ, to make everything work.



Choosing values of δ and γ so everything works

We know n >> k , we want δ < 1 and Pr [B1] ≤ 1/k3, then we can
make

1

k3
= e−

µδ2

3 .

Taking ln in both sides: µδ2 = 9 ln k ⇒ δ = 3
√

ln k
√
k/n.

As γ = δn
k ⇒ γ = 3

√
ln k
√
n/k .

Therefore, Pr [B1] = Pr

[
X1 ≥ µ+ 3

√
n ln k
k

]
≤ 1

k3 ,

and Pr [B] ≤ 1
k2 . 2



The final result

We have proved that the simple randomized algorithm to allocate
n jobs to k servers, with n ≥ 9k ln k , we get that the algorithm
produces a load balancing, where the probability of having a bad
event, is ≤ 1/k3, i.e. a bad event is that the loads in one server
deviates more that 3

√
ln k
√
n/k from the expected load n/k,.

Therefore. w.h.p. the randomized algorithm will keep the load
concentrated around n/k.



Consequences

In practice, how good is that bound ?

Pretty good! If n = 106 and k = 103, n/k = 103 and γ = 250.
So the result ⇒ w.h.p. , the maximum load is ≤ 1250.

There are better algorithms to the load distribution’s problem, but
they use more advanced probability techniques, as the power of
two choices.



Chernoff: More Sampling

(See also section 4.2.3 in MU book)

We want to poll a sample of size n from a large population of N
individuals, about the if they like or they do not like, a given
product (answer yes/no).

We want to estimate the real fraction p (0 < p < 1) of the
population N, that likes the product, i.e. p = #yes votes/N.

For that, we sample u.a.r. n persons, i.e. with replacement, and
want to know how large n should be so the sampling yields an
estimation p̃ = #yes answers/n of the likeness of the product,
which is ”accurate” and has a high ”confidence”.



Sampling: Accuracy and confidence

I Accuracy: It is difficult to pinpoint exactly the value of p, so
we consider a δ > 0 (the accuracy), and define an interval
[p̃ − δ, p̃ + δ], such that Pr [p ∈ [p̃ − δ, p̃ + δ]] is very high.

I Confidence: choosing γ as small as possible so that
Pr [p ∈ [p̃ − δ, p̃ + δ]] ≥ 1− γ, where 1− γ is the confidence.

Notice we have to tune the values of n, δ and γ as to optimize the
accuracy δ with as high as possible confidence 1− γ.

In a poll, we want to be able to say things like:
This poll is 3% accurate, 19 times out of 20.
Which mean that with confidence 1− γ = 19/20 = 95%, the
outcome on the whole population N is ±3% of our obtained
prediction p̃, i.e. the accuracy is δ = 0.03.



Sampling

Let n be the selected number of people that we poll. Define a set
of independent r.v. {Xi}ni=1, where each Xi = 1 if the i-th person
would vote for the product, otherwise Xi = 0.

Let X =
∑n

i=1 Xi , then X ∈ B(n, p̃) and X count the number of
people that likes the product

Define our ”guess” p̃ as X = p̃n.

We want to compute how large do we have to make n to have a
good ”accuracy” δ with high ”confidence” 1− γ.



Sampling Theorem

Sampling Theorem: Suppose we use independent, uniformly
random samples (with replacement) to compute an estimate p̃, for
p. If the number of samples we use is n, satisfies n ≥ 3

δ2 ln 2
γ , then

we can assert that:

Pr [p ∈ [p̃ − δ, p̃ + δ]] ≥ 1− γ.

Proof: Given a particular sampling of n people, we find that
exactly X = np̃ people like the product, we have to find values of δ
and γ s.t.:

Pr [p ∈ [p̃ − δ, p̃ + δ]] = Pr [np ∈ [n(p̃ − δ), n(p̃ + δ)]] ≥ 1− γ.



Proof of the sampling theorem

If p 6∈ [p̃ − δ, p̃ + δ] is because either,

I p < p̃ − δ ⇒ X = np̃ > n(p + δ) = µ(1 + δ/p), or

I p > p̃ + δ ⇒ X = np̃ < n(p − δ) = µ(1− δ/p).

Using the Corollary to Ch-2, we get

Pr [p 6∈ [p̃ − δ, p̃ + δ]] = Pr [X < np (1− δ/p)] + Pr [X > np (1 + δ/p)]

< e−nδ
2/2p + e−nδ

2/3p

As p ≤ 1 we get

Pr [p ∈ [p̃ − δ, p̃ + δ]] = 1−Pr [p 6∈ [p̃ − δ, p̃ + δ]] ≥ 1− 2e−nδ
2/3.

But if we want confidence 1− γ, then we need γ ≥ 2e−
nδ2

3

⇒ 2
γ ≤ e

nδ2

3 ⇒ 2
γ ≤

nδ2

3 ⇒ n ≥ 3
δ2 ln 2

γ 2



Sampling Theorem: Some comments

In the previous example, δ = 3% and confidence 95% i.e.
γ = 1/20, then we need n ≥ d 3

0.022 ln 2
1/20e = 12297 people giving

valid answers.

I Notice in the Sampling Theorem, the number of samples n
does not depend on the size N of the total population. (i.e.
the number of samples you need to get a certain accuracy and
a certain confidence only depends on that accuracy and
confidence).

I Computing a high accuracy could be costly in the number n
of samples, because of the 1/δ2 term. We should design the
sampling to tune between accuracy and a realistic sampling of
people.

I Getting really high confidence is cheap: because of the ln, it
hardly costs anything to get a very small δ.


