Concentration of a random variable around its mean

RA-MIRI QT Curs 2020-2021

Expectation does not suffice

The expected value of a random variable is a nice single number to tag the random variable, but it leaves out most of the important properties of the r.v.

Consider r.v X with $X(\Omega)=\{-2,-1,0,1,2\}$ with $\operatorname{Pr}[X=-2]=\frac{1}{8}, \operatorname{Pr}[X=-1]=\frac{1}{4}, \operatorname{Pr}[X=0]=\frac{1}{4}$, $\operatorname{Pr}[X=1]=\frac{1}{4}, \operatorname{Pr}[X=2]=\frac{1}{8}$.
and consider r.v. Y with $Y\left(\Omega^{\prime}\right)=\{-2,2\}$ and PMF:
$\operatorname{Pr}[Y=-2]=\frac{1}{2}, \operatorname{Pr}[Y=2]=\frac{1}{2}$.
Note that $\mathbf{E}[X]=0=\mathbf{E}[Y]$, but p_{X} is totally different from p_{Y}.

Deviation of a r.v. from its mean

- Consider the deterministic Quicksort algorithm on n-size inputs. Let $T(n)$ be a r.v. counting the number of steps of Quicksort on a specific input with size n
- Its worst case complexity is $O\left(n^{2}\right)$, but its average complexity is $O(n \lg n)$.
- It does not give information about the behavior of the algorithm on a particular input.
- Given an algorithm, for any input x of size $|x|=n$, how close is $T(x)$ to $\mathbf{E}[T(n)]$.

Deviation of a r.v. and Concentration

- For ex.: If $\mathbf{E}[T(n)]=10$, then 10 is an average running time on "most inputs" to the algorithm. We want to assure, that for most inputs, $T(n)$ is concentrated around 10.
- That is, to make sure that the probability of having instances for which $|\mathbf{E}[T(n)]-T(n)|$ is large, is very small.
- Intuitively, it seems clear from the definition of $\mathbf{E}[]$, if for the above running time, we get an instance e for which $T(e)=10^{9}$, and $\mathbf{E}[T(n)]=10$, the probability of selecting that specific e is going to be quite small, so that its contribution to the average, $10^{9} \operatorname{Pr}\left[T(n)=10^{9}\right]$, is small.

Markov's inequality

Lemma If $X \geq 0$ is a r.v, for any constant $a>0$,

$$
\operatorname{Pr}[X \geq a] \leq \frac{\mathbf{E}[X]}{a}
$$

Proof Given the r.v. $X \geq 0$ define the indicator r.v.

$$
Y= \begin{cases}1 & \text { if } X \geq \text { a true } \\ 0 & \text { otherwise }\end{cases}
$$

Notice if $Y=1$ then $Y \leq X / a$, and if $Y=0$ also $Y \leq X / a$, so
$\mathbf{E}[Y]=\operatorname{Pr}[Y=1]=\operatorname{Pr}[X \geq a]$ and
$\mathbf{E}[Y]=\operatorname{Pr}[Y=1] \leq \mathbf{E}\left[\frac{X}{a}\right]=\frac{\mathbf{E}[X]}{a}$.
Alternative expression for Markov: Taking $a=b \mathbf{E}[X]$
Corollary If $X \geq 0$ is a r.v, for any constant $b>0$,

$$
\operatorname{Pr}[X \geq b \mathrm{E}[X]] \leq \frac{1}{b}
$$

Markov could be too weak

Consider the randomized hiring algorithm. We computed that the expected number of pre-selected students is $\mathbf{E}[X]=\lg n$. We also know there are instances for which $X=n$.

We would like to show that the probability of selecting a "bad instance" is very small.

Using Markov, for any constant $b, \operatorname{Pr}[X \geq b \lg n] \leq 1 / b$. (for ex. $b=100$)

The problem with Markov is that it does not bound away the probability of bad cases as a function of the input size.

With High Probability

In the randomized algorithms, we aim to obtain results that hold with high probability: the probability that the complexity of the algorithm for any input is "near" the expected value, i.e., it tends to 1 as the size n grows.

An event that occurs with high probability (whp) is one that happens with probability $\geq 1-\frac{1}{f(n)}$, so that it goes to 1 as $n \rightarrow \infty$.

The parameter n is usually the size of the inputs, or the size of the combinatorial structure,

Variance

Given a r.v. X, its variance measures the spread of its distribution.
Given X, with $\mu=\mathbf{E}[X]$, the variance of X is:

$$
\operatorname{Var}[X]=\mathbf{E}\left[(X-\mu)^{2}\right]
$$

Usually it is more easy to use the expression:
$\operatorname{Var}[X]=\mathbf{E}\left[X^{2}\right]-\mathbf{E}[X]^{2}$
Proof

$$
\begin{aligned}
\operatorname{Var}[X] & =\mathbf{E}\left[(X-\mu)^{2}\right]=\mathbf{E}\left[X^{2}-2 \mu \mathbf{E}[X]+\mu^{2}\right] \\
& =\mathbf{E}\left[X^{2}\right]-2 \mu \underbrace{\mathbf{E}[X]}_{\mu}+\mu^{2}=\mathbf{E}\left[X^{2}\right]-\mu^{2}
\end{aligned}
$$

Further properties of the Variance

- $\operatorname{Var}[X] \geq 0$ as by Jensen's inequality, for any r.v X, $\mathbf{E}\left[X^{2}\right] \geq \mathbf{E}[X]^{2}$.
- $\operatorname{Var}[X]=0$ iff $X=$ constant. Proof (\Leftarrow) If $X=c$ then $\mathbf{E}[X]=c \Rightarrow \operatorname{Var}[X]=0$. (\Rightarrow) If $\operatorname{Var}[X]=0 \Rightarrow \mathbf{E}\left[X^{2}\right]=\mathbf{E}[X]^{2} \Rightarrow \mathbf{E}[X]=c$.
- $\operatorname{Var}[c X]=c^{2} \operatorname{Var}[X]$.

Proof
$\operatorname{Var}[c X]=\mathbf{E}\left[(c X)^{2}\right]-\mathbf{E}[c X]^{2}=c^{2} \mathbf{E}\left[X^{2}\right]-(c \mathbf{E}[X])^{2}$

Computing Var $[X]$

Given a r.v. X on Ω, such that $X(\Omega)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, we first compute $\mu=\mathbf{E}[X]=\sum_{i=1}^{n} x_{i} \operatorname{Pr}\left[X=x_{i}\right]$. Then, use one of the following methods:

1. Use $\operatorname{Var}[X]=\mathbf{E}\left[(X-\mu)^{2}\right]$: For each x_{i} compute $\left(x_{i}-\mu\right)^{2}$, and then $\operatorname{Var}[X]=\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} \operatorname{Pr}\left[X=x_{i}\right]$
2. Use $\operatorname{Var}[X]=\mathbf{E}\left[X^{2}\right]-\mathbf{E}[X]^{2}$: For each x_{i} compute x_{i}^{2}, then $\mathbf{E}\left[X^{2}\right]=\sum_{i=1}^{n} x_{i}^{2} \operatorname{Pr}\left[X=x_{i}\right]$.

From now on, we use the probability mass function of X, $p_{X}: \Omega \rightarrow[0,1]$, defined as $p_{X}(\omega)=\operatorname{Pr}[X=\omega]$.

Computing Var $[X]$: Examples

EX.: Consider r.v. X with $X(\Omega)=\{1,3,5\}$ and PMF:
$p_{X}(1)=\frac{1}{4}, p_{X}(3)=\frac{1}{4}, P_{X}(5)=\frac{1}{2}$. Then $\mu=7 / 2$.

1. $\operatorname{Var}[X]=\frac{1}{4}\left(3-\frac{7}{2}\right)^{2}+\frac{1}{4}\left(5-\frac{7}{2}\right)^{2}+\frac{1}{2}\left(1-\frac{7}{2}\right)^{2}=\frac{11}{4}$
2. $X^{2}(\Omega)=\{1,9,25\}$, so $\mathbf{E}\left[X^{2}\right]=\frac{1}{4}+\frac{9}{4}+\frac{25}{2}=15$ $\operatorname{Var}[X]=15-\left(\frac{7}{2}\right)^{2}=\frac{11}{4}$

Consider r.v. Y with $X(\Omega)=\{-2,2\}$ and PMF:
$p_{Y}(-2)=\frac{1}{2}, p_{Y}(2)=\frac{1}{2}$.
Therefore, the values $(X-\mu)^{2}$ are $(-2-0)^{2}$ and $(2-0)^{2}$
$\Rightarrow \operatorname{Var}[X]=\frac{1}{2} 4+\frac{1}{2} 4=4$
Notice in this case $\operatorname{Var}[X]=\mathbf{E}\left[X^{2}\right]=4$
You win $100 €$ with probability $=1 / 10$, otherwise you win $0 €$. Let X be a r.v. counting your earnings. What is $\operatorname{Var}[X]$? $\mu=100 / 10=10$. Therefore, $\mathbf{E}\left[X^{2}\right]=\frac{1}{10}\left(100^{2}\right)=1000$, and as $\mu^{2}=100$, so $\operatorname{Var}[X]=900$.

Var [] is not necessarily linear

Let X_{1}, \ldots, X_{n} be independent r.v., then

$$
\operatorname{Var}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]
$$

We prove the particular case that if X and Y are independent $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]$

$$
\begin{aligned}
\operatorname{Var}[X+Y] & =\mathbf{E}\left[(X+Y)^{2}\right]-(\mathbf{E}[X+Y])^{2} \\
& =\mathbf{E}\left[X^{2}\right]+\mathbf{E}\left[Y^{2}\right]+2 \mathbf{E}[X Y]-(\mathbf{E}[X])^{2}-(\mathbf{E}[Y])^{2}-2 \mathbf{E}[X] \mathbf{E}[Y] \\
& =\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}+\mathbf{E}\left[Y^{2}\right]-(\mathbf{E}[Y])^{2}+2 \underbrace{(\mathbf{E}[X Y]-\mathbf{E}[X] \mathbf{E}[Y])}_{\mathbf{E}[X Y]=\mathbf{E}[X] \mathbf{E}[Y]}
\end{aligned}
$$

Variance of some basic distributions

1. If $X \in B(p, n)$ then $\operatorname{Var}[X]=p q n$, where $q=(1-p)$.
2. If $X \in P(\lambda)$ then $\operatorname{Var}[X]=\lambda$.
3. If $X \in G(p)$ then $\operatorname{Var}[X]=\frac{q}{p^{2}}$.

Proof

(1.-) Let $X=\sum_{i=1}^{n} X_{i}$, where X_{i} is an indicator r.v s.t. $X_{i}=1$ with probability p
Then, $\operatorname{Var}\left[X_{i}\right]=\mathbf{E}\left[X_{i}^{2}\right]-\mathbf{E}[X]^{2}=\left(p \cdot 1^{2}+q \cdot 0-p^{2}=p(1-p)\right.$, as all X_{i} are independent, $\operatorname{Var}[X]=\sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]=n p(1-p)$.

Proof of 2

$$
\begin{aligned}
& \begin{aligned}
\operatorname{Var}[X]= & \mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}=\mathbf{E}[(X)(X-1)+X]-(\mathbf{E}[X])^{2} \\
= & \mathbf{E}[(X)(X-1)]+\mathbf{E}[X]-(\mathbf{E}[X])^{2}=\mathbf{E}[(X)(X-1)]+\lambda-\lambda^{2} \\
\mathbf{E}[(X)(X-1)] & =\sum_{x=0}^{\infty}(x)(x-1) \frac{e^{-\lambda} \lambda^{x}}{x!} \\
& =\sum_{x=2}^{\infty}(x)(x-1) \frac{e^{-\lambda} \lambda^{x}}{x!} \text { terms } x=0 \text { and } x=1 \text { are } 0 \\
& \sum_{x=2}^{\infty} \frac{e^{-\lambda} \lambda^{x}}{(x-2)!}=\lambda^{2} e^{-\lambda} \sum_{x=2}^{\infty} \frac{\lambda^{x-2}}{(x-2)!} \\
& =\lambda^{2} e^{-\lambda}\left(\frac{\lambda^{0}}{0!}+\frac{\lambda^{1}}{1!}+\frac{\lambda^{2}}{2!}+\ldots\right) \\
& =\lambda^{2} e^{-\lambda} e^{\lambda}=\lambda^{2} .
\end{aligned}
\end{aligned}
$$

Proof of 3

If $X \in G(p)$ want to compute $\operatorname{Var}[X]=\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}=\mathbf{E}\left[X^{2}\right]-\frac{1}{p^{2}}$. Need to compute $\mathbf{E}\left[X^{2}\right]$.

$$
\begin{aligned}
\mathbf{E}\left[X^{2}\right] & =\sum_{k=1}^{\infty} k^{2} \operatorname{Pr}[X=k] \\
& =\sum_{k=1}^{\infty} k^{2} p(1-p)^{k-1}=p \underbrace{\sum_{k=1}^{\infty} k^{2}(1-p)^{k-1}}_{*}
\end{aligned}
$$

Recall Taylor: $\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k}$. Differentiating $\frac{1}{(1-x)^{2}}=\sum_{k=1}^{\infty} k x^{k-1}$.
Multiplying by x and differentiating $\frac{1-x}{(1-x)^{3}}=\sum_{k=1}^{\infty} k^{2} x^{k-1}$
Making $x=1-p$ then $\frac{2-p}{p^{3}}=\sum_{k=1}^{\infty} k^{2}(1-p)^{k-1}$.
By ($*$) $\mathbf{E}\left[X^{2}\right]=\frac{2-p}{p^{2}}$
Therefore: $\operatorname{Var}[X]=\frac{2-p}{p^{2}}-\frac{1}{p^{2}}=\frac{1-p}{p^{2}}$

A more natural measure of spread: Standard Deviation

Why we did not define $\operatorname{Var}[X]=\mathbf{E}[|X-\mu|]$?
To be sure we are averaging only non-negative values.
But as we defined the variance, we are using squared units!
Recall the example X a r.v. counting the wins, when you win $100 €$ with probability $=1 / 10$, otherwise you win $0 €$. We got $\operatorname{Var}[X]=900 \epsilon^{2}$.
To convert the numbers back to re-scale, we take the square root.
The Standard Deviation of a r.v. X is defined as

$$
\sigma[X]=\sqrt{\operatorname{Var}[X]}
$$

In the previous example, to convert the spread from $€^{2}$ to $€$, $\sigma[X]=\sqrt{900}=30 €$.

Chebyshev's Inequality

Pafnuty Chebyshev (XIXc)

If you can compute the $\operatorname{Var}[]$ then you can compute σ and get better bounds for concentration of any r.v. (positive or negative).

Theorem Let X be a r.v. with expectation μ and standard deviation $\sigma>0$, then for any $a>0$

$$
\operatorname{Pr}[|X-\mu| \geq a \sigma] \leq \frac{1}{a^{2}}
$$

Note that $|X-\mu| \geq a \sigma \Leftrightarrow(X \geq a \sigma+\mu) \cup(X \geq \mu-a \sigma)$.
Proof As the r.v. $|X-\mu| \geq 0$, we can apply Markov to it:

$$
\begin{aligned}
\operatorname{Pr}[|X-\mu| \geq a \sigma] & =\operatorname{Pr}\left[(X-\mu)^{2} \geq a^{2} \sigma^{2}\right] \quad \text { (by Markov) } \\
& \leq \frac{\mathbf{E}\left[(X-\mu)^{2}\right]}{a^{2} \sigma^{2}}=\frac{\operatorname{Var}[X]}{a^{2} \operatorname{Var}[X]}=\frac{1}{a^{2}}
\end{aligned}
$$

More on Chebyshev's Inequality

We had: $\operatorname{Pr}[|X-\mu| \geq a \sigma] \leq \frac{1}{a^{2}}$.
Alternative equivalent statement:

$$
\forall b>0, \operatorname{Pr}[|X-\mu| \geq b] \leq \frac{\operatorname{Var}[X]}{b^{2}}
$$

Proof As before: $\operatorname{Pr}\left[(X-\mu)^{2} \geq b^{2}\right] \leq \frac{\mathrm{E}\left[(X-\mu)^{2}\right]}{b^{2}}$.

Chebyshev's Inequality: Picture

An easy application

Let flip n-times a fair coin, give an upper bound on the probability of having at least $\frac{3 n}{4}$ heads.
Let $X \in B(n, 1 / 2)$, then, $\mu=n / 2, \operatorname{Var}[X]=n / 4$.
We want to bound $\operatorname{Pr}\left[X \geq \frac{3 n}{4}\right]$.

- Markov: $\operatorname{Pr}\left[X \geq \frac{3 n}{4}\right] \leq \frac{\mu}{3 n / 4}=2 / 3$.
- Chebyshev's: We need the value of a s.t.

$$
\begin{aligned}
& \operatorname{Pr}\left[X \geq \frac{3 n}{4}\right] \leq \operatorname{Pr}\left[\left|X-\frac{n}{2}\right| \geq a\right] \Rightarrow a=\frac{3 n}{4}-\frac{n}{2}=\frac{n}{4} . \\
& \operatorname{Pr}\left[X \geq \frac{3 n}{4}\right] \leq \operatorname{Pr}\left[\left|X-\frac{n}{2}\right| \geq \frac{n}{4}\right] \leq \frac{\operatorname{Var}[X]}{(n / 4)^{2}}=\frac{4}{n} .
\end{aligned}
$$

Sampling

- Given a large population $\Sigma,|\Sigma|=n$, we wish to estimate the proportion p of elements in Σ, with a given property.
- Sampling: Take a random sample S with size $m \ll n$ and observe p^{-}in S.
- Sometimes, if n is large, the obvious estimator $m \times p^{-}$is sufficiently good, i.e. it is sharply concentrated.
- Many times getting the random sample S is non-trivial.

Finding the median of n elements

From MU 3.4

- Recall that, given a set S with n distinct elements, the median of S is the $\lceil n / 2\rceil$ larger element in S.
- We can use Quickselect to find the median with expected time $O(n)$. Even there is a linear time deterministic algorithm, which in practice for large instance works worst than Quick-select.
- We present another randomized algorithm to find the median m in S, which is based in sampling.
- The purpose of this algorithm is to introduce the technique of filtering large data by sampling small amount of the data.

Finding the median of n elements: A Filtering Data algorithm

INPUT: An unordered set $S=\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$, with $n=2 k+1$ elements.
OUTPUT: The median, which is the $k+1$ largest element in S.
For any element y define the $\operatorname{rank}(y)=|\{x \in S \mid x \leq y\}|$.
The idea of the filtering Algorithm is to sample with replacement a "small" subset of C elements from S, so we can order C in $O(n)$ time (linear with respect to the size of S).
Then the algorithm find the median of the elements in C and either return it as the median in S or return failure

We will prove that whp the algorithm finds the median m of S, in linear time.

Outline of the algorithm

1. Let \tilde{S} be the ordered set S (we do not know \tilde{S}). Let m be its median.
2. Find elements $d, u \in S$ s.t. $d<m<u$ and distance between d and u in \tilde{S} is $<n / \lg n$.
3. To find d and u sample with replacement S to get a multi-set R, with $|R|=O\left(\left\lceil n^{3 / 4}\right\rceil\right)$. Notice $\left\lceil n^{3 / 4}\right\rceil<n / \lg n$. Find $u, d \in R$ s.t. m will be close to median in R).
4. Filter-out the elements $x \in S$, which are $<d$ or $>u$ to form a set $C=\{x \in S \mid d \leq x \leq u\}$.
5. Sort elements in C in $O(n)$, and find its median. This will be the algorithm's output
6. Prove that w.h.p. the algorithm succeeds.

Outline of the algorithm

Things that can be wrong:
C too large,
$m \notin C$,
$m \in C$ but no the median in C.

Randomized Median algorithm

1. Sample $\left\lceil n^{3 / 4}\right\rceil$ elements from S, u.a.r., independently, and with replacement.
2. Sort R in $O(n)$
3. Set $d=\left\lfloor\left(\frac{n^{3 / 4}}{2}-\sqrt{n}\right)\right\rfloor$-smallest element in R
4. Set $d=\left\lfloor\left(\frac{n^{3 / 4}}{2}+\sqrt{n}\right)\right\rfloor$-greatest element in R
5. Compute $C=\{x \in S \mid d \leq x \leq u\}, I_{d}=|\{x \in S \mid x<d\}|$ and $I_{u}=|\{x \in S \mid x>u\}|(\operatorname{cost}=\Theta(n))$.
6. If $I_{d}>\frac{n}{2}$ or $I_{u}<\frac{n}{2}$ OUTPUT FAIL $(m \notin C)$
7. If $|C| \leq 4 n^{3 / 4}$, sort C, otherwise OUTPUT FAIL.
8. OUTPUT the $\left(\left\lfloor\frac{n}{2}\right\rfloor-I_{d}+1\right)$-smallest element in sorted C, that should be m.

Complexity and correctness of the Randomized Median

 algorithmTheorem: The Randomized Median algorithm terminates in $O(n)$ steps. If the algorithm does not output FAIL, then it outputs the median m of S.
Proof: As asymptotically $n^{3 / 4} \lg \left(n^{3 / 4}\right) \leq n$, using Mergesort on R takes $O\left(\frac{n}{\lg n} \lg \left(\frac{n}{\lg n}\right)\right)=O(n)$.
The only incorrect answer is that it outputs an item, but $m \notin C$, but if so, it would fail in step 6 , as either $I_{d}>n / 2$ or $I_{u}<n / 2$.
$\ln [3]=\operatorname{Plot}\left[\left\{n^{\wedge}\{3 / 4\} * \log \left[n^{\wedge}\{3 / 4\}\right], n\right\},\{n, 100,1000\}, \operatorname{PlotStyle} \rightarrow\{B l u e, \operatorname{Red}\}\right]$

Figure: $n^{3 / 4} \lg \left(n^{3 / 4}\right)$ versus n

Bounding the probability of output FAIL

Theorem: The Randomized Median algorithm finds m with probability $\geq 1-\frac{1}{n^{1 / 4}}$, i.e., whp.
Proof (Highlights): Consider the following 3 events:
$E_{1}: d>m$,
$E_{2}: u<m$,
$E_{3}:|C|>4 n^{3 / 4}$.
Then, the algorithm outputs FAIL iff one of the three events occurs, i.e.
$\operatorname{Pr}[$ FAILS $]=\operatorname{Pr}\left[E_{1} \cup E_{2} \cup E_{3}\right] \leq \operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right]+\operatorname{Pr}\left[E_{3}\right]$

Bounding $\operatorname{Pr}\left[E_{1}\right]$

Consider R ordered, where R is obtained by sampling $n^{3 / 4}$ elements from S
Recall: $d=\left\lfloor\left(\frac{n^{3 / 4}}{2}-\sqrt{n}\right)\right\rfloor$-th element

- $d>m$, when the green block has size $<\left\lfloor n^{3 / 4} / 2-\sqrt{n}\right\rfloor$.
- Let $Y=|\{x \in R \mid x \leq m\}|$, then $\operatorname{Pr}\left[E_{1}\right]=\operatorname{Pr}\left[Y<n^{3 / 4} / 2-\sqrt{n}\right]$.
- For $1 \leq j \leq n^{3 / 4}$, define $Y_{j}=1$ iff the value in the j-th. position in R is $\leq m$.
- Then $Y=\sum_{j=1}^{n^{3 / 4}} Y_{j}$, moreover as the sampling is with replacement, then each Y_{j} is independent.
As $m=$ median of $S(|S|=n)$, then we have $\frac{(n-1)}{2}+1$ elements in S that are $\leq m$.

Bounding $\operatorname{Pr}\left[E_{1}\right]$

- $\operatorname{Pr}\left[Y_{j}=1\right]=\frac{(n-2) / 2+1}{n}=\frac{1}{2}+\frac{1}{2 n}$, as there are $(n-1) / 2+1$ elements $\leq m$.
- so $Y \in B\left(n^{3 / 4}, \frac{1}{2}+\frac{1}{2 n}\right)$.
- Then $\mathbf{E}\left[Y_{i}\right] \geq 1 / 2 \Rightarrow \mathbf{E}[Y] \geq \frac{n^{3 / 4}}{2}$,
- Y is $B\left(n^{3 / 4}, 1 / 2+1 / 2 n\right.$, so
$\operatorname{Var}[Y]=n^{3 / 4}\left(\frac{1}{2}+\frac{1}{2 n}\right)\left(\frac{1}{2}-\frac{1}{2 n}\right) \leq \frac{n^{3 / 4}}{4}$.
Using Chebyshev:

$$
\begin{aligned}
\operatorname{Pr}\left[E_{1}\right] & =\operatorname{Pr}\left[Y<\frac{n^{3 / 4}}{4}-\sqrt{n}\right] \\
& \leq \operatorname{Pr}[|Y-\mathbf{E}[Y]| \geq \sqrt{n}] \leq \frac{\operatorname{Var}[Y]}{(\sqrt{n})^{2}}=\frac{1}{4 n^{1 / 4}} \square
\end{aligned}
$$

Bounding $\operatorname{Pr}\left[E_{2}\right]$

In the same way as for E_{1}, it holds $\operatorname{Pr}\left[E_{2}\right] \leq \frac{1}{4 n^{1 / 4}}$

Bounding $\operatorname{Pr}\left[E_{3}\right]$

$E_{3}:|C|>4 n^{3 / 4}$.
C is obtained directly from S by filtering, using the values d and u obtained in R.

For C to have $>4 n^{3 / 4}$ keys either of the following events must happen:

1. A: At least $>2 n^{3 / 4}$ items in C are $>m$.
2. B: At least $>2 n^{3 / 4}$ items in C are $<m$.

Then,

$$
\operatorname{Pr}\left[E_{3}\right] \leq \operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B] .
$$

Bounding $\operatorname{Pr}[A]$

Event A happens when there are at least $2 n^{3 / 4}$ element in C which are $>m$
If so, the $\operatorname{rank}(u)$ in \tilde{S} is $\geq n / 2+2 n^{3 / 4}$.
Let $F=\{x \in R \mid x>u\},|F| \geq n^{3 / 4} / 2-\sqrt{n}$
Any element in F has rank $\geq n / 2+2 n^{3 / 4}$

We will prove that $\operatorname{Pr}[\bar{A}]=1-O(1 / n) \rightarrow 1$.

Bounding $\operatorname{Pr}[A]$

- Let $X=\#$ selected items in R that are in F (have rank $\geq n / 2+2 n^{3 / 4}$)
- Then $\operatorname{Pr}[A] \leq \operatorname{Pr}\left[X \geq\left\lfloor n^{3 / 2} / 2-\sqrt{n}\right\rfloor\right]$.
- For $1 \leq j \leq n^{3 / 4}$, define $X_{j}=1$ iff the j-th item in R is in F.
- Note $X=\sum_{j=1}^{n^{3 / 4}} X_{j}$ and $\operatorname{Pr}\left[X_{j}=1\right]=\frac{1}{2}-\frac{2}{n^{1 / 4}}+\frac{1}{n}$.
- So $\mathbf{E}[X]=\frac{n^{3 / 4}}{2}-2 n^{1 / 2}+n^{1 / 4}$ and $\operatorname{Var}[X] \leq n^{3 / 4} / 4$

$$
\begin{aligned}
\operatorname{Pr}[A] & \leq \operatorname{Pr}\left[X \geq\left\lfloor\frac{n^{3 / 2}}{2}-n^{1 / 2}\right\rfloor\right] \leq \operatorname{Pr}\left[X \geq \frac{n^{3 / 4}}{2}-2 n^{1 / 2}+n^{1 / 4}\right] \\
& \leq \operatorname{Pr}\left[X \geq \mathbf{E}[X]+n^{1 / 2}-1-n^{1 / 4}\right] \\
& \leq \operatorname{Pr}\left[|X-\mathbf{E}[X]| \geq n^{1 / 2}-1-n^{1 / 4}\right]=O\left(\frac{1}{n^{1 / 4}}\right) .
\end{aligned}
$$

Bounding $\operatorname{Pr}[B]$ and finishing the proof

In the same way we can compute $\operatorname{Pr}[B]=O\left(\frac{1}{n^{1 / 4}}\right)$
To end the whole proof, we also proved that
$\operatorname{Pr}\left[E_{3}\right] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]=O\left(\frac{1}{n^{1 / 4}}\right)$
$\Rightarrow \operatorname{Pr}[$ algorithm fails $]=\operatorname{Pr}\left[E_{1} \cup E_{2} \cup E_{3}\right] \leq{ }^{\cup B} O\left(\frac{1}{n^{1 / 4}}\right)$.
Therefore,
$\operatorname{Pr}\left[\right.$ algorithm succeeds] $=1-\operatorname{Pr}\left[\right.$ algorithm fails] $\geq 1-\frac{1}{n^{1 / 4}}$
i.e. w.h.p. the Randomized Median algorithm finds the correct m

