
Concentration of a random variable around its
mean

RA-MIRI QT Curs 2020-2021

Expectation does not suffice
The expected value of a random variable is a nice single number to
tag the random variable, but it leaves out most of the important
properties of the r.v.

Consider r.v X with X (Ω) = {−2,−1, 0, 1, 2} with
Pr [X = −2] = 1

8 ,Pr [X = −1] = 1
4 ,Pr [X = 0] = 1

4 ,
Pr [X = 1] = 1

4 ,Pr [X = 2] = 1
8 .

and consider r.v. Y with Y (Ω′) = {−2, 2} and PMF:
Pr [Y = −2] = 1

2 ,Pr [Y = 2] = 1
2 .

Note that E [X] = 0 = E [Y], but pX is totally different from pY .

Y

0−1 1 2 20−2−2

1/2

1/4

1/8

X

Deviation of a r.v. from its mean

I Consider the deterministic Quicksort algorithm on n-size
inputs. Let T (n) be a r.v. counting the number of steps of
Quicksort on a specific input with size n

I Its worst case complexity is O(n2), but its average complexity
is O(n lg n).

I It does not give information about the behavior of the
algorithm on a particular input.

I Given an algorithm, for any input x of size |x | = n, how close
is T (x) to E [T (n)].

Deviation of a r.v. and Concentration

I For ex.: If E [T (n)] = 10, then 10 is an average running time
on ”most inputs” to the algorithm. We want to assure, that
for most inputs, T (n) is concentrated around 10.

I That is, to make sure that the probability of having instances
for which |E [T (n)]− T (n)| is large, is very small.

I Intuitively, it seems clear from the definition of E [], if for the
above running time, we get an instance e for which
T (e) = 109, and E [T (n)] = 10, the probability of selecting
that specific e is going to be quite small, so that its
contribution to the average, 109Pr

[
T (n) = 109

]
, is small.

Markov’s inequality
Lemma If X ≥ 0 is a r.v, for any constant a > 0,

Pr [X ≥ a] ≤ E [X]

a
.

Proof Given the r.v. X ≥ 0 define the indicator r.v.

Y =

{
1 if X ≥ a true

0 otherwise

Notice if Y = 1 then Y ≤ X/a, and if Y = 0 also Y ≤ X/a, so
E [Y] = Pr [Y = 1] = Pr [X ≥ a] and

E [Y] = Pr [Y = 1] ≤ E
[
X
a

]
= E[X]

a . 2

Alternative expression for Markov: Taking a = bE [X]

Corollary If X ≥ 0 is a r.v, for any constant b > 0,

Pr [X ≥ bE [X]] ≤ 1

b
.

Markov could be too weak

Consider the randomized hiring algorithm. We computed that the
expected number of pre-selected students is E [X] = lg n. We also
know there are instances for which X = n.

We would like to show that the probability of selecting a ”bad
instance” is very small.

Using Markov, for any constant b, Pr [X ≥ b lg n] ≤ 1/b. (for ex.
b = 100)

The problem with Markov is that it does not bound away the
probability of bad cases as a function of the input size.

With High Probability

In the randomized algorithms, we aim to obtain results that hold
with high probability: the probability that the complexity of the
algorithm for any input is ”near” the expected value, i.e., it tends
to 1 as the size n grows.

An event that occurs with high probability (whp) is one that
happens with probability ≥ 1− 1

f (n) , so that it goes to 1 as
n→∞.

The parameter n is usually the size of the inputs, or the size of the
combinatorial structure,

Variance

Given a r.v. X , its variance measures the spread of its distribution.

Given X , with µ = E [X], the variance of X is:

Var [X] = E
[
(X − µ)2

]

Usually it is more easy to use the expression:
Var [X] = E

[
X 2
]
− E [X]2

Proof

Var [X] = E
[
(X − µ)2

]
= E

[
X 2 − 2µE [X] + µ2

]
= E

[
X 2
]
− 2µE [X]︸ ︷︷ ︸

µ

+µ2 = E
[
X 2
]
− µ2 2

Further properties of the Variance

I Var [X] ≥ 0 as by Jensen’s inequality, for any r.v X ,
E
[
X 2
]
≥ E [X]2.

I Var [X] = 0 iff X = constant.
Proof (⇐) If X = c then E [X] = c ⇒ Var [X] = 0.
(⇒) If Var [X] = 0 ⇒ E

[
X 2
]

= E [X]2 ⇒ E [X] = c .

I Var [cX] = c2Var [X].
Proof
Var [cX] = E

[
(cX)2

]
− E [cX]2 = c2E

[
X 2
]
− (cE [X])2

Computing Var [X]

Given a r.v. X on Ω, such that X (Ω) = {x1, x2, . . . , xn}, we first
compute
µ = E [X] =

∑n
i=1 xiPr [X = xi]. Then, use one of the following

methods:

1. Use Var [X] = E
[
(X − µ)2

]
: For each xi compute (xi − µ)2,

and then Var [X] =
∑n

i=1(xi − µ)2Pr [X = xi]

2. Use Var [X] = E
[
X 2
]
− E [X]2: For each xi compute x2i , then

E
[
X 2
]

=
∑n

i=1 x
2
i Pr [X = xi].

From now on, we use the probability mass function of X ,
pX : Ω→ [0, 1], defined as pX (ω) = Pr [X = ω].

Computing Var [X]: Examples

EX.: Consider r.v. X with X (Ω) = {1, 3, 5} and PMF:
pX (1) = 1

4 , pX (3) = 1
4 ,PX (5) = 1

2 . Then µ = 7/2.

1. Var [X] = 1
4(3− 7

2)2 + 1
4(5− 7

2)2 + 1
2(1− 7

2)2 = 11
4

2. X 2(Ω) = {1, 9, 25}, so E
[
X 2
]

= 1
4 + 9

4 + 25
2 = 15

Var [X] = 15− (72)2 = 11
4

Consider r.v. Y with X (Ω) = {−2, 2} and PMF:
pY (−2) = 1

2 , pY (2) = 1
2 .

Therefore, the values (X − µ)2 are (−2− 0)2 and (2− 0)2

⇒ Var [X] = 1
24 + 1

24 = 4
Notice in this case Var [X] = E

[
X 2
]

= 4

You win 100e with probability = 1/10, otherwise you win 0e. Let
X be a r.v. counting your earnings. What is Var [X]?
µ = 100/10 = 10. Therefore, E

[
X 2
]

= 1
10(1002) = 1000, and as

µ2 = 100, so Var [X] = 900.

Var [] is not necessarily linear

Let X1, . . . ,Xn be independent r.v., then

Var

[
n∑

i=1

Xi

]
=

n∑
i=1

Var [Xi] .

We prove the particular case that if X and Y are independent
Var [X + Y] = Var [X] + Var [Y]

Var [X + Y] = E
[
(X + Y)2

]
− (E [X + Y])2

= E
[
X 2
]
+ E

[
Y 2
]
+ 2E [XY]− (E [X])2 − (E [Y])2 − 2E [X]E [Y]

= E
[
X 2
]
− (E [X])2 + E

[
Y 2
]
− (E [Y])2 + 2 (E [XY]− E [X]E [Y])︸ ︷︷ ︸

E[XY]=E[X]E[Y]

Variance of some basic distributions

1. If X ∈ B(p, n) then Var [X] = pqn, where q = (1− p).

2. If X ∈ P(λ) then Var [X] = λ.

3. If X ∈ G (p) then Var [X] = q
p2

.

Proof
(1.-) Let X =

∑n
i=1 Xi , where Xi is an indicator r.v s.t. Xi = 1

with probability p
Then, Var [Xi] = E

[
X 2
i

]
−E [X]2 = (p · 12 + q · 0− p2 = p(1− p),

as all Xi are independent, Var [X] =
∑n

i=1Var [Xi] = np(1− p).

Proof of 2

Var [X] = E
[
X 2
]
− (E [X])2 = E [(X)(X − 1) + X]− (E [X])2

= E [(X)(X − 1)] + E [X]− (E [X])2 = E [(X)(X − 1)] + λ− λ2.

E [(X)(X − 1)] =
∞∑
x=0

(x)(x − 1)
e−λλx

x!

=
∞∑
x=2

(x)(x − 1)
e−λλx

x!
terms x = 0 and x = 1 are 0

∞∑
x=2

e−λλx

(x − 2)!
= λ2e−λ

∞∑
x=2

λx−2

(x − 2)!

= λ2e−λ
(
λ0

0!
+
λ1

1!
+
λ2

2!
+ . . .

)
= λ2e−λeλ = λ2.

Proof of 3

If X ∈ G(p) want to compute Var [X] = E
[
X 2
]
− (E [X])2 = E

[
X 2
]
− 1

p2
.

Need to compute E
[
X 2
]
.

E
[
X 2
]

=
∞∑
k=1

k2Pr [X = k]

=
∞∑
k=1

k2p(1− p)k−1 = p
∞∑
k=1

k2(1− p)k−1︸ ︷︷ ︸
∗

Recall Taylor: 1
1−x =

∑∞
k=0 x

k . Differentiating 1
(1−x)2 =

∑∞
k=1 kx

k−1.

Multiplying by x and differentiating 1−x
(1−x)3 =

∑∞
k=1 k

2xk−1

Making x = 1− p then 2−p
p3 =

∑∞
k=1 k

2(1− p)k−1.

By (∗) E
[
X 2
]

= 2−p
p2

Therefore: Var [X] = 2−p
p2
− 1

p2
= 1−p

p2

A more natural measure of spread: Standard Deviation

Why we did not define Var [X] = E [|X − µ|]?
To be sure we are averaging only non-negative values.

But as we defined the variance, we are using squared units!

Recall the example X a r.v. counting the wins, when you win
100e with probability = 1/10, otherwise you win 0e. We got
Var [X] = 900e2.
To convert the numbers back to re-scale, we take the square root.

The Standard Deviation of a r.v. X is defined as

σ [X] =
√
Var [X].

In the previous example, to convert the spread from e
2 to e,

σ [X] =
√

900 = 30 e.

Chebyshev’s Inequality

Pafnuty Chebyshev (XIXc)
If you can compute the Var [] then you can compute σ and get
better bounds for concentration of any r.v. (positive or negative).

Theorem Let X be a r.v. with expectation µ and standard
deviation σ > 0, then for any a > 0

Pr [|X − µ| ≥ aσ] ≤ 1

a2
.

Note that |X − µ| ≥ aσ ⇔ (X ≥ aσ + µ) ∪ (X ≥ µ− aσ).

Proof As the r.v. |X − µ| ≥ 0, we can apply Markov to it:

Pr [|X − µ| ≥ aσ] = Pr
[
(X − µ)2 ≥ a2σ2

]
(by Markov)

≤
E
[
(X − µ)2

]
a2σ2

=
Var [X]

a2Var [X]
=

1

a2
2

More on Chebyshev’s Inequality

We had: Pr [|X − µ| ≥ aσ] ≤ 1
a2
.

Alternative equivalent statement:

∀b > 0,Pr [|X − µ| ≥ b] ≤ Var [X]

b2
.

Proof As before: Pr
[
(X − µ)2 ≥ b2

]
≤ E[(X−µ)2]

b2
.

Chebyshev’s Inequality: Picture

Pr [|X − µ| ≥ a] ≤ Var [X]

a2
.

2

a a

E[X]

Area Var[X]/a

An easy application

Let flip n-times a fair coin, give an upper bound on the probability
of having at least 3n

4 heads.

Let X ∈ B(n, 1/2), then, µ = n/2,Var [X] = n/4.

We want to bound Pr
[
X ≥ 3n

4

]
.

I Markov: Pr
[
X ≥ 3n

4

]
≤ µ

3n/4 = 2/3.

I Chebyshev’s: We need the value of a s.t.
Pr
[
X ≥ 3n

4

]
≤ Pr

[
|X − n

2 | ≥ a
]
⇒ a = 3n

4 −
n
2 = n

4 .

Pr
[
X ≥ 3n

4

]
≤ Pr

[
|X − n

2 | ≥
n
4

]
≤ Var[X]

(n/4)2
= 4

n .

Sampling

I Given a large population Σ, |Σ| = n, we wish to estimate the
proportion p of elements in Σ, with a given property.

I Sampling: Take a random sample S with size m << n and
observe p− in S .

I Sometimes, if n is large, the obvious estimator m × p− is
sufficiently good, i.e. it is sharply concentrated.

I Many times getting the random sample S is non-trivial.

Finding the median of n elements

From MU 3.4

I Recall that, given a set S with n distinct elements, the median
of S is the dn/2e larger element in S .

I We can use Quickselect to find the median with expected
time O(n). Even there is a linear time deterministic algorithm,
which in practice for large instance works worst than
Quick-select.

I We present another randomized algorithm to find the median
m in S , which is based in sampling.

I The purpose of this algorithm is to introduce the technique of
filtering large data by sampling small amount of the data.

Finding the median of n elements: A Filtering Data
algorithm

INPUT: An unordered set S = {x1, x2, . . . xn}, with n = 2k + 1
elements.
OUTPUT: The median, which is the k + 1 largest element in S .
For any element y define the rank(y) = |{x ∈ S |x ≤ y}|.

The idea of the filtering Algorithm is to sample with replacement a
”small” subset of C elements from S , so we can order C in O(n)
time (linear with respect to the size of S).
Then the algorithm find the median of the elements in C and
either return it as the median in S or return failure

We will prove that whp the algorithm finds the median m of S , in
linear time.

Outline of the algorithm

1. Let S̃ be the ordered set S (we do not know S̃). Let m be its
median.

2. Find elements d , u ∈ S s.t. d < m < u and distance between
d and u in S̃ is < n/ lg n.

3. To find d and u sample with replacement S to get a multi-set
R, with |R| = O(dn3/4e). Notice dn3/4e < n/ lg n. Find
u, d ∈ R s.t. m will be close to median in R).

4. Filter-out the elements x ∈ S , which are < d or > u to form a
set C = {x ∈ S |d ≤ x ≤ u}.

5. Sort elements in C in O(n), and find its median. This will be
the algorithm’s output

6. Prove that w.h.p. the algorithm succeeds.

Outline of the algorithm

we wish that

S

R

C

m

n different elements non−ordered

Sampling n

with repetition

3/4

d umedian
m’

m’−n m’+n

Filter from S the

elemts between d and u

Sort R in O(n)

1/2

)

1/2

|C| = O(n3/4

Things that can be wrong:
C too large,
m 6∈ C ,
m ∈ C but no the median in C .

Randomized Median algorithm

1. Sample dn3/4e elements from S , u.a.r., independently, and
with replacement.

2. Sort R in O(n)

3. Set d = b(n3/42 −
√
n)c-smallest element in R

4. Set d = b(n3/42 +
√
n)c-greatest element in R

5. Compute C = {x ∈ S |d ≤ x ≤ u}, ld = |{x ∈ S |x < d}| and
lu = |{x ∈ S |x > u}| (cost = Θ(n)).

6. If ld >
n
2 or lu <

n
2 OUTPUT FAIL (m 6∈ C)

7. If |C | ≤ 4n3/4, sort C , otherwise OUTPUT FAIL.

8. OUTPUT the (bn2c − ld + 1)-smallest element in sorted C ,
that should be m.

Complexity and correctness of the Randomized Median
algorithm

Theorem: The Randomized Median algorithm terminates in O(n)
steps. If the algorithm does not output FAIL, then it outputs the
median m of S .
Proof: As asymptotically n3/4 lg(n3/4) ≤ n, using Mergesort on R
takes O(n

lg n lg(n
lg n)) = O(n).

The only incorrect answer is that it outputs an item, but m 6∈ C ,
but if so, it would fail in step 6, as either ld > n/2 or lu < n/2. 2

?

Figure: n3/4 lg(n3/4) versus n

Bounding the probability of output FAIL

Theorem: The Randomized Median algorithm finds m with
probability ≥ 1− 1

n1/4
, i.e., whp.

Proof (Highlights): Consider the following 3 events:
E1: d > m,
E2: u < m,
E3: |C | > 4n3/4.
Then, the algorithm outputs FAIL iff one of the three events
occurs, i.e.
Pr [FAILS] = Pr [E1 ∪ E2 ∪ E3] ≤ Pr [E1] + Pr [E2] + Pr [E3]

Bounding Pr [E1]

Consider R ordered, where R is
obtained by sampling n3/4 elements
from S

x>mx<m

Recall: d = b(n3/42 −
√
n)c-th element

I d > m, when the green block has size < bn3/4/2−
√
nc.

I Let Y = |{x ∈ R | x ≤ m}|, then
Pr [E1] = Pr

[
Y < n3/4/2−

√
n
]
.

I For 1 ≤ j ≤ n3/4, define Yj = 1 iff the value in the j-th.
position in R is ≤ m.

I Then Y =
∑n3/4

j=1 Yj , moreover as the sampling is with
replacement, then each Yj is independent.

As m = median of S (|S | = n), then we have (n−1)
2 + 1 elements in

S that are ≤ m.

Bounding Pr [E1]

I Pr [Yj = 1] = (n−2)/2+1
n = 1

2 + 1
2n , as there are (n − 1)/2 + 1

elements ≤ m.

I so Y ∈ B(n3/4, 12 + 1
2n).

I Then E [Yi] ≥ 1/2 ⇒ E [Y] ≥ n3/4

2 ,

I Y is B(n3/4, 1/2 + 1/2n, so

Var [Y] = n3/4(12 + 1
2n)(12 −

1
2n) ≤ n3/4

4 .

Using Chebyshev:

Pr [E1] = Pr

[
Y <

n3/4

4
−
√
n

]

≤ Pr
[
|Y − E [Y] | ≥

√
n
]
≤ Var [Y]

(
√
n)2

=
1

4n1/4
2

Bounding Pr [E2]

In the same way as for E1, it holds Pr [E2] ≤ 1
4n1/4

Bounding Pr [E3]

E3: |C | > 4n3/4.

C is obtained directly from S by filtering, using the values d and u
obtained in R.

For C to have > 4n3/4 keys either of the following events must
happen:

1. A: At least > 2n3/4 items in C are > m.

2. B: At least > 2n3/4 items in C are < m.

Then,

Pr [E3] ≤ Pr [A ∪ B] ≤ Pr [A] + Pr [B] .

Bounding Pr [A]

Event A happens when there are at least 2n3/4 element in C which
are > m
If so, the rank(u) in S̃ is ≥ n/2 + 2n3/4.

Let F = {x ∈ R | x > u}, |F | ≥ n3/4/2−
√
n

Any element in F has rank ≥ n/2 + 2n3/4

d

Sorted C Sorted R

ud
value >m mm

F

u

We will prove that Pr
[
Ā
]

= 1− O(1/n)→ 1.

Bounding Pr [A]

I Let X = # selected items in R that are in F
(have rank ≥ n/2 + 2n3/4)

I Then Pr [A] ≤ Pr
[
X ≥ bn3/2/2−

√
nc
]
.

I For 1 ≤ j ≤ n3/4, define Xj = 1 iff the j-th item in R is in F .

I Note X =
∑n3/4

j=1 Xj and Pr [Xj = 1] = 1
2 −

2
n1/4

+ 1
n .

I So E [X] = n3/4

2 − 2n1/2 + n1/4 and Var [X] ≤ n3/4/4

Pr [A] ≤ Pr

[
X ≥ bn

3/2

2
− n1/2c

]
≤ Pr

[
X ≥ n3/4

2
− 2n1/2 + n1/4

]
≤ Pr

[
X ≥ E [X] + n1/2 − 1− n1/4

]
≤ Pr

[
|X − E [X] | ≥ n1/2 − 1− n1/4

]
= O(

1

n1/4
). 2

Bounding Pr [B] and finishing the proof

In the same way we can compute Pr [B] = O(1
n1/4

)

To end the whole proof, we also proved that
Pr [E3] ≤ Pr [A] + Pr [B] = O(1

n1/4
)

⇒ Pr [algorithm fails] = Pr [E1 ∪ E2 ∪ E3] ≤UB O(1
n1/4

).

Therefore,
Pr [algorithm succeeds] = 1− Pr [algorithm fails] ≥ 1− 1

n1/4

i.e. w.h.p. the Randomized Median algorithm finds the correct m
2

