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Jensen’s inequality
Recall f : R→ R is convex if,
for each x1, x2 ∈ R and for each t ∈ [0, 1] we have

f (t x1 + (1− t)x2) ≤ t f (x1) + (1− t) f (x2).

If f is twice differentiable, a necessary and sufficient condition for f
to be convex is that f ′′ f ′′(x) ≥ 0 for x ∈ R.

Lemma If f is convex then E [f (X )] ≥ f (E [X ]).
Proof. Let µ = E [X ] (µ ∈ R). Using Taylor to expand f at
X = µ,

f (X ) = f (µ) + f ′(µ)(X − µ) +
f ′′(µ)(X − µ)2

2
+ · · ·

≥ f (µ) + f ′(µ)(X − µ)

E [f (X )] ≥ E
[
f (µ) + f ′(µ)(X − µ)

]
= E [f (µ)] + f ′(µ)(E [X ]− µ) = f (µ) 2

i.e E [f (X )] ≥ f (E [X ]).



Expectation of combinations of r.v.
Consider the following experiment:
X = Unif({1, 2}) and Y = Unif({1,X + 1})
(Y depends on X )
What is the expectation of the r.v. XY ?

Ω = {(1, 1), (1, 2), (2, 1), (2, 2), (2, 3)}

E [XY ] =
∑
ω∈Ω

X (ω)Y (ω)Pr [ω]

We have

Pr [(1, 1)] = Pr [(1, 2)] = 1/4;

Pr [(2, 1)] = Pr [(2, 2)] = Pr [(2, 3)] = 1/6.

E [XY ] =
1

4
· 1 · 1 +

1

4
· 1 · 2 +

1

6
· 2 · 1 +

1

6
· 2 · 2 +

1

6
· 2 · 3 =

11

4
.
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We have, Pr [X = 1] = 1/2; Pr [X = 2] = 1/2 and

Pr [Y = 1] = Pr [Y = 1|X = 1] + Pr [Y = 1|X = 2] = 1/4 + 1/6 = 5/12;

Pr [Y = 2] = Pr [Y = 2|X = 1] + Pr [Y = 2|X = 2] = 1/4 + 1/6 = 5/12;

Pr [Y = 3] = Pr [Y = 3|X = 1] + Pr [Y = 3|X = 2] = 0 + 1/6 = 1/6.

Then E [X ] = 3/2 and E [Y ] = 7/4 so E [X ]E [Y ] = 21/8.
Therefore,

E [XY ] 6= E [X ]E [Y ] .



Joint Probability Mass Function

The joint PMF of r.v. X ,Y is the function pXY : R2 → R defined
by pXY (x , y) = Pr [X = x ∧ Y = y ].

Useful equation: With the joint PMF of r.v. X ,Y you can
compute the expectation of any function f (X ,Y ):

E [f (X ,Y )] =
∑
x ,y

f (x , y) · pXY (x , y).

Compute E
[
X
Y

]
for the previous r.v. X ,Y

E

[
X

Y

]
= pXY (1, 1)

1

1
+ pXY (1, 2)

2

1
+ pXY (1, 3)

3

1

+ pXY (2, 1)
1

2
+ pXY (2, 2)

2

2
+ pXY (3, 2)

2

3
=

5

4



Independent r.v.

Two random variables X and Y are said to be independent if

∀x , y ∈ R,Pr [(X = x) ∩ (Y = y)] = Pr [X = x ] · Pr [Y = y ] .

Two not independent r.v. are said to be correlated.

Rolling two dices, let X1 be a r.v. counting the pips in dice 1, and
let X2 be a r.v. counting the pips in dice 2. Then X1 and X2 are
independents.
Rolling two dices, let X1 be a r.v. counting the pips in dice 1, and
let X3 count the sum of pips in the two rollings, then X1 and X3

are correlated.



Independent r.v.: Main result

Theorem If X and Y are independent r.v. then
E [XY ] = E [X ]E [Y ].
Proof

E [XY ] =
∑
x ,y

pXY (x , y) · xy

=
∑
x ,y

pX (x)pY (y) · xy (by independence)

=
∑
x ,y

xpX (x)ypY (y) =

(∑
x

xpX (x)

)(∑
y

ypY (y)

)
= E [X ]E [Y ] 2

Recall that if X and Y are independent, then for any real value f
and g , f (X ) and g(Y ) also are independent
⇒ E [f (X ) · g(Y )] = E [f (X )] · E [g(Y )]



The Poisson approximation to the Binomial

For X ∈ B(n, p), for large n, computing the PMF Pr [X = x ] could
be quite nasty.
It turns out that for large n and small p, B(n, p) can be easily
approximated by the PMF of a simpler Poisson random variable.

A discrete r.v. X is Poisson with parameter λ (X ∈ P(λ)), if it has

PMF Pr [X = i ] = λie−λ

i! , for i ∈ {0, 1, 2, 3, . . .}

If X ∈ P(λ) then E [X ] = λ.

This is the reason that sometimes λ is denoted µ.

Proof:

E [X ] =
∑∞

i=1 i
λie−λ

i! = e−λλ
∞∑
i=1

λi−1

(i − 1)!︸ ︷︷ ︸
Taylor for eλ

= e−λλeλ = λ 2



The Poisson approximation to the Binomial

Theorem: If X ∈ B(n, p), with µ = pn, then as n→∞, for each
fixed i ∈ {0, 1, 2, 3, . . .},

Pr [X = i ] ∼ µie−µ

i !
.

Proof: As µ = np,

Pr [X = i ] =

(
n

i

)
(
µ

n
)i (1− µ

n
)n−i

=
n(n − 1) · · · (n − i + 1)

i !

µi

ni
(1− µ

n
)n(1− µ

n
)−i

=
µi

i !
(1− µ

n
)n
n(n − 1) · · · (n − i + 1)

ni
(1− µ

n
)−i

∼ µi

i !
e−µ as n→∞. 2



Example

The population of Catalonia is around 7 million people. Assume
Suppose that the probability that a person is killed by lightning in
a year is, independently, p = 1

5×108 .

a.- Compute the exact probability that 3 or more people will be
killed by lightning next year in Catalonia.
Let X be a r.v. counting the number of people that will be killed
in Cat. next year by a lightning.
We want to compute
Pr [X ≥ 3] = 1− Pr [X ≥ 0]− Pr [X = 1]− Pr [X = 2], where
X ∈ B(7× 106, 1

5×108 ).
Then,
Pr [X ≥ 3] = 1− (1− p)n − np(1− p)n−1 −

(
n
2

)
p2(1− p)n−2 = 1.65422× 10−7



Example

b.- Approximate Pr [X ≥ 3] λ = np = 7/500 so

Pr [X ≥ 3] ∼ 1− eλ − λe−λ − λ2

2 e−λ = 1.52558× 10−7

c.- Approximate the probability that 2 or more people will be killed
by lightning the first 6 months of 2019
Notice we are considering λ as a rate. Then λ = 7/2× 500
Pr [X ≥ 2 during 6 months] ∼ 1− eλ − λe−λ = 5.79086× 10−7

d.- Approximate the probability that in 3 of the next 10 years
exactly 3 people will be killed
We have λ = 7/500, then the probability that every year 3 people

are killed = e−λλ3

3! . Let Y be a r.v. counting the number of years
with exactly 3 kills.
Assuming independence between years, Y ∈ B(19, e

−λλ3

3! ),

therefore the answer is
(10

3

)
( e

−λλ3

3! )3(1− e−λλ3

3! )7


