More on Random Variables and Expectation

RA-MIRI QT 2020-2021

Jensen's inequality

Recall $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex if, for each $x_{1}, x_{2} \in \mathbb{R}$ and for each $t \in[0,1]$ we have

$$
f\left(t x_{1}+(1-t) x_{2}\right) \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right) .
$$

If f is twice differentiable, a necessary and sufficient condition for f to be convex is that $f^{\prime \prime} f^{\prime \prime}(x) \geq 0$ for $x \in \mathbb{R}$.
Lemma If f is convex then $\mathbf{E}[f(X)] \geq f(\mathbf{E}[X])$.
Proof. Let $\mu=\mathbf{E}[X](\mu \in \mathbb{R})$. Using Taylor to expand f at $X=\mu$,

$$
\begin{aligned}
f(X) & =f(\mu)+f^{\prime}(\mu)(X-\mu)+\frac{f^{\prime \prime}(\mu)(X-\mu)^{2}}{2}+\cdots \\
& \geq f(\mu)+f^{\prime}(\mu)(X-\mu) \\
\mathbf{E}[f(X)] & \geq \mathbf{E}\left[f(\mu)+f^{\prime}(\mu)(X-\mu)\right] \\
& =\mathbf{E}[f(\mu)]+f^{\prime}(\mu)(\mathbf{E}[X]-\mu)=f(\mu)
\end{aligned}
$$

i.e $\mathbf{E}[f(X)] \geq f(\mathbf{E}[X])$.

Expectation of combinations of r.v.

Consider the following experiment:
$X=\operatorname{Unif}(\{1,2\})$ and $Y=\operatorname{Unif}(\{1, X+1\})$
(Y depends on X)
What is the expectation of the r.v. $X Y$?

Expectation of combinations of r.v.

Consider the following experiment:
$X=\operatorname{Unif}(\{1,2\})$ and $Y=\operatorname{Unif}(\{1, X+1\})$
(Y depends on X)
What is the expectation of the r.v. $X Y$?

$$
\Omega=\{(1,1),(1,2),(2,1),(2,2),(2,3)\}
$$

$$
\mathbf{E}[X Y]=\sum_{\omega \in \Omega} X(\omega) Y(\omega) \operatorname{Pr}[\omega]
$$

Expectation of combinations of r.v.

Consider the following experiment:
$X=\operatorname{Unif}(\{1,2\})$ and $Y=\operatorname{Unif}(\{1, X+1\})$
(Y depends on X)
What is the expectation of the r.v. $X Y$?

$$
\begin{aligned}
& \Omega=\{(1,1),(1,2),(2,1),(2,2),(2,3)\} \\
& E[X Y]=\sum_{\omega \in \Omega} X(\omega) Y(\omega) \operatorname{Pr}[\omega]
\end{aligned}
$$

We have

$$
\begin{aligned}
& \operatorname{Pr}[(1,1)]=\operatorname{Pr}[(1,2)]=1 / 4 \\
& \operatorname{Pr}[(2,1)]=\operatorname{Pr}[(2,2)]=\operatorname{Pr}[(2,3)]=1 / 6
\end{aligned}
$$

$E[X Y]=\frac{1}{4} \cdot 1 \cdot 1+\frac{1}{4} \cdot 1 \cdot 2+\frac{1}{6} \cdot 2 \cdot 1+\frac{1}{6} \cdot 2 \cdot 2+\frac{1}{6} \cdot 2 \cdot 3=\frac{11}{4}$.

We have, $\operatorname{Pr}[X=1]=1 / 2 ; \operatorname{Pr}[X=2]=1 / 2$ and

$$
\begin{aligned}
& \operatorname{Pr}[Y=1]=\operatorname{Pr}[Y=1 \mid X=1]+\operatorname{Pr}[Y=1 \mid X=2]=1 / 4+1 / 6=5 / 12 \\
& \operatorname{Pr}[Y=2]=\operatorname{Pr}[Y=2 \mid X=1]+\operatorname{Pr}[Y=2 \mid X=2]=1 / 4+1 / 6=5 / 12 \\
& \operatorname{Pr}[Y=3]=\operatorname{Pr}[Y=3 \mid X=1]+\operatorname{Pr}[Y=3 \mid X=2]=0+1 / 6=1 / 6
\end{aligned}
$$

Then $\mathbf{E}[X]=3 / 2$ and $\mathbf{E}[Y]=7 / 4$ so $\mathbf{E}[X] \mathbf{E}[Y]=21 / 8$. Therefore,
$\mathbf{E}[X Y] \neq \mathbf{E}[X] \mathbf{E}[Y]$.

Joint Probability Mass Function

The joint PMF of r.v. X, Y is the function $p_{X Y}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $p_{X Y}(x, y)=\operatorname{Pr}[X=x \wedge Y=y]$.
Useful equation: With the joint PMF of r.v. X, Y you can compute the expectation of any function $f(X, Y)$:

$$
\mathbf{E}[f(X, Y)]=\sum_{x, y} f(x, y) \cdot p_{X Y}(x, y)
$$

Compute $\mathbf{E}\left[\frac{X}{Y}\right]$ for the previous r.v. X, Y

$$
\begin{aligned}
\mathbf{E}\left[\frac{X}{Y}\right] & =p_{X Y}(1,1) \frac{1}{1}+p_{X Y}(1,2) \frac{2}{1}+p_{X Y}(1,3) \frac{3}{1} \\
& +p_{X Y}(2,1) \frac{1}{2}+p_{X Y}(2,2) \frac{2}{2}+p_{X Y}(3,2) \frac{2}{3}=\frac{5}{4}
\end{aligned}
$$

Independent r.v.

Two random variables X and Y are said to be independent if

$$
\forall x, y \in \mathbb{R}, \operatorname{Pr}[(X=x) \cap(Y=y)]=\operatorname{Pr}[X=x] \cdot \operatorname{Pr}[Y=y]
$$

Two not independent r.v. are said to be correlated.
Rolling two dices, let X_{1} be a r.v. counting the pips in dice 1 , and let X_{2} be a r.v. counting the pips in dice 2. Then X_{1} and X_{2} are independents.
Rolling two dices, let X_{1} be a r.v. counting the pips in dice 1 , and let X_{3} count the sum of pips in the two rollings, then X_{1} and X_{3} are correlated.

Independent r.v.: Main result

Theorem If X and Y are independent r.v. then $\mathbf{E}[X Y]=\mathbf{E}[X] \mathbf{E}[Y]$.
Proof

$$
\begin{aligned}
\mathbf{E}[X Y] & =\sum_{x, y} p_{X Y}(x, y) \cdot x y \\
& =\sum_{x, y} p_{X}(x) p_{Y}(y) \cdot x y \text { (by independence) } \\
& =\sum_{x, y} x p_{X}(x) y p_{Y}(y)=\left(\sum_{x} x p_{X}(x)\right)\left(\sum_{y} y p_{Y}(y)\right) \\
& =\mathbf{E}[X] \mathbf{E}[Y]
\end{aligned}
$$

Recall that if X and Y are independent, then for any real value f and $g, f(X)$ and $g(Y)$ also are independent
$\Rightarrow \mathbf{E}[f(X) \cdot g(Y)]=\mathbf{E}[f(X)] \cdot \mathbf{E}[g(Y)]$

The Poisson approximation to the Binomial

For $X \in B(n, p)$, for large n, computing the $\mathrm{PMF} \operatorname{Pr}[X=x]$ could be quite nasty.
It turns out that for large n and small $p, B(n, p)$ can be easily approximated by the PMF of a simpler Poisson random variable.

A discrete r.v. X is Poisson with parameter $\lambda(X \in P(\lambda))$, if it has PMF $\operatorname{Pr}[X=i]=\frac{\lambda^{i} e^{-\lambda}}{i!}$, for $i \in\{0,1,2,3, \ldots\}$
If $X \in P(\lambda)$ then $\mathbf{E}[X]=\lambda$.
This is the reason that sometimes λ is denoted μ.
Proof:

$$
\mathbf{E}[X]=\sum_{i=1}^{\infty} i \frac{i^{\lambda} e^{-\lambda}}{i!}=e^{-\lambda} \lambda \underbrace{\sum_{i=1}^{\infty} \frac{\lambda^{i-1}}{(i-1)!}}_{\text {Taylor for } e^{\lambda}}=e^{-\lambda} \lambda e^{\lambda}=\lambda
$$

The Poisson approximation to the Binomial

Theorem: If $X \in B(n, p)$, with $\mu=p n$, then as $n \rightarrow \infty$, for each fixed $i \in\{0,1,2,3, \ldots\}$,

$$
\operatorname{Pr}[X=i] \sim \frac{\mu^{i} e^{-\mu}}{i!}
$$

Proof: As $\mu=n p$,

$$
\begin{aligned}
\operatorname{Pr}[X=i] & =\binom{n}{i}\left(\frac{\mu}{n}\right)^{i}\left(1-\frac{\mu}{n}\right)^{n-i} \\
& =\frac{n(n-1) \cdots(n-i+1)}{i!} \frac{\mu^{i}}{n^{i}}\left(1-\frac{\mu}{n}\right)^{n}\left(1-\frac{\mu}{n}\right)^{-i} \\
& =\frac{\mu^{i}}{i!}\left(1-\frac{\mu}{n}\right)^{n} \frac{n(n-1) \cdots(n-i+1)}{n^{i}}\left(1-\frac{\mu}{n}\right)^{-i} \\
& \sim \frac{\mu^{i}}{i!} e^{-\mu} \text { as } n \rightarrow \infty .
\end{aligned}
$$

Example

The population of Catalonia is around 7 million people. Assume Suppose that the probability that a person is killed by lightning in a year is, independently, $p=\frac{1}{5 \times 10^{8}}$.
a.- Compute the exact probability that 3 or more people will be killed by lightning next year in Catalonia.
Let X be a r.v. counting the number of people that will be killed in Cat. next year by a lightning.
We want to compute
$\operatorname{Pr}[X \geq 3]=1-\operatorname{Pr}[X \geq 0]-\operatorname{Pr}[X=1]-\operatorname{Pr}[X=2]$, where $X \in B\left(7 \times 10^{6}, \frac{1}{5 \times 10^{8}}\right)$.
Then,

$$
\operatorname{Pr}[X \geq 3]=1-(1-p)^{n}-n p(1-p)^{n-1}-\binom{n}{2} p^{2}(1-p)^{n-2}=1.65422 \times 10^{-7}
$$

Example

b.- Approximate $\operatorname{Pr}[X \geq 3] \lambda=n p=7 / 500$ so
$\operatorname{Pr}[X \geq 3] \sim 1-e^{\lambda}-\lambda e^{-\lambda}-\frac{\lambda^{2}}{2} e^{-\lambda}=1.52558 \times 10^{-7}$
c.- Approximate the probability that 2 or more people will be killed by lightning the first 6 months of 2019
Notice we are considering λ as a rate. Then $\lambda=7 / 2 \times 500$
$\operatorname{Pr}[X \geq 2$ during 6 months $] \sim 1-e^{\lambda}-\lambda e^{-\lambda}=5.79086 \times 10^{-7}$
d.- Approximate the probability that in 3 of the next 10 years exactly 3 people will be killed
We have $\lambda=7 / 500$, then the probability that every year 3 people are killed $=\frac{e^{-\lambda} \lambda^{3}}{3!}$. Let Y be a r.v. counting the number of years with exactly 3 kills.
Assuming independence between years, $Y \in B\left(19, \frac{e^{-\lambda} \lambda^{3}}{3!}\right)$, therefore the answer is $\binom{10}{3}\left(\frac{e^{-\lambda} \lambda^{3}}{3!}\right)^{3}\left(1-\frac{e^{-\lambda} \lambda^{3}}{3!}\right)^{7}$

