
Random variables and expectation

RA-MIRI QT Curs 2020-2021



Most if the material included here is based on Chapter 13 of
Kleinberg & Tardos Algorithm Design book.



Waiting for a first success
I A coin is heads with probability p and tails with probability

1–p.

I How many independent flips we expect to get heads for the
first time?

I Let X the random variable that gives the number of flips.
Observe that

Pr [X = j ] = (1− p)j−1p

and

E [X ] =
∞∑
j=1

jPr [X = j ] =
∞∑
j=1

(1−p)j−1p =
p

1− p

∞∑
j=1

j(1−p)j

as
∑∞

j=1 jx
j = x

(1−x)2 , we have

E [X ] =
p

1− p

1− p

p2
=

1

p



Bernoulli process

I A Bernoulli process denotes a sequence of experiments, each
of them a with binary output: success (1) with probability p,
and failure (0) with prob. q = 1− p.

I A nice thing about Bernoulli distributions: it is natural to
define a indicator r.v.

X = 1 if the output is 1, otherwise X = 0.

Clearly, E [X ] = p



The binomial distribution

A r.v. X has a Binomial distribution with parameter p (B(n, p)) if
X counts the number of successes during n trials of a Bernoulli
experiments having probability of success p.

Pr [X = k] =
(n
k

)
pk(1− p)n−k .

Let X ∈ B(n, p), to compute E [X ], we define indicator r.v.
{Xi}ni=1, where Xi = 1 iff the i-th output is 1, otherwise Xi = 0.

Then X =
∑n

i=1 Xi ⇒ E [X ] = E [
∑n

i=1 Xi ] =
∑n

i=1 E [Xi ]︸ ︷︷ ︸
=p

= np.



The Geometric distribution

A r.v. X has a Geometric distribution with parameter p
(X ∼ G (p)) if X counts the number of trials until the first success.

If X ∈ G (p) then
Pr [X = k] = (1− p)k−1p,
E [X ] = 1

p .



Random generators

Consider a sequential random generator of n bits, so that the
probability that a bit is 1 is p.

I If X = # number of 1’s in the generated n bit number,
X ∈ B(n, p).

I If Y = # bits in the generated number until the first 1,
Y ∈ G (p).



Coupon collector

Each box of cereal contains a coupon. There are n different types
of coupons. Assuming all boxes are equally likely to contain each
coupon, how many boxes before you have at least 1 coupon of
each type?

Claim
The expected number of steps is Θ(nlogn).

Proof.

I Phase j = time between j and j + 1 distinct coupons.

I Let Xj = number of steps you spend in phase j .

I Let X = total number of steps,
of course, X = X0 + X1 + · · ·+ Xn–1.



Coupon collector

Xj = number of steps you spend in phase j .

I We can consider a Bernoulli process that succeeds when we
hit one of the still not collected coupons.

I The probability of success is n−j
n .

I Xj counts the time until the Bernoulli process reaches a
success, therefore

E [Xj ] =
n

n − j



Coupon collector

X = total number of steps
Using the decomposition in sums of indicator r.v. we have

E [X ] = E [X0] + E [X1] + · · ·+ E [Xn–1]

=
n−1∑
j=0

n

n − j
= n

n∑
i=1

1

n
= nH(n) ≈ n log n



A randomized approximation algorithm for MAX 3-SAT

A 3-SAT formula is a Boolean formula in CNF such that each
clause has exactly 3 literals and each literal corresponds to a
different variable.

(x2∨x3∨x4)∧(x2∨x3∨x4)∧(x1∨x2∨x4)∧(x1∨x2∨x3)∧(x1∨x2∨x4)

Maximum 3-Sat. Given a 3-SAT formula, find a truth
assignment that satisfies as many clauses as possible.

The problem is NP-hard. We can try to design a randomized
algorithm that produces a good assignment, even if it is not
optimal.



A randomized approximation algorithm for MAX 3-SAT
Algorithm. For each variable, flip a fair coin, and the variable to
True (1) if it is heads, to False (0) otherwise.

Note that a variable gets 1 with probability 1
2 , and this assignment

is made independently of the other variables.

What is the expected number of satisfied clauses?

Assume that the 3-SAT formula has n variables and m clauses.

I Let Z = number of clauses satisfied by the random assignment

I For 1 ≤ j ≤ m, define the random variables
Zj = 1 if clause j is satisfied, 0 otherwise.

I By definition, Z =
∑m

j=1 Zj .

I Pr [Zj = 1] = 1− (1/2)3 = 7/8, so E [Zj ] = 7/8. Therefore ,

E [Z ] =
m∑
j=1

E [Zj ] =
7

8
m



A randomized approximation algorithm for MAX 3-SAT

How good is the solution computed by the random algorithm?

I For a 3-CNF formula let opt(F ) be the maximum number of
clauses than can be satisfied by an assignment.

I As for any assignment x the number of satisfied clauses is
always ≤ opt(F ), we have that E [Z ] ≤ opt(F ).

I Of course opt(F ) ≤ m, that is 7
8opt(F ) ≤ 7

8m = E [Z ], then

opt(F )

E [Z ]
≤ 8

7

We have a 8
7 -approximation algorithm for Max 3-Sat.



The probabilistic method

Claim
For any instance of 3-SAT, there exists a truth assignment that
satisfies at least a 7/8 fraction of all clauses.

Proof. Random variable must have one event on which the
measured value is at least its expectation.

Probabilistic method. [Paul Erdös] Prove the existence of a
non-obvious property by showing that a random construction
produces it with positive probability



Random-Quicksort

Input: An array A holding n keys. For simplicity we assumed that
all keys are different.
Output: A sorted in increasing order.

I’m assuming that all of you known:

I The Quick sort algorithm which has O(n2) cost

I and O(n log n) average cost.

I One randomized version randomly sorts the input and then
applies the deterministic algorithm, having average running
time O(n log n)

I Here we consider another randomized version of Quick sort.



Random-Quicksort

Ran-Quicksort (A)
if A.size() ≤ 3 then

Sort A using insertion sort
return A

Choose an element a ∈ A uniformly at random
Put in B all elements < a and in C all elements > a
B = Ran-Quicksort (B)
C = Ran-Quicksort (C )
return B followed by a followed by C

The main difference is that we perform a random partition in each
call around the random pivot a.



Example

Ran−Partition of input

A={1,3,5,6,8,10,12,14,15,16,17,18,20,22,23}

8

3

6

16

12 18

1715 22

1

5 10

232014



Expected Complexity of Ran-Partition

Taken from CMU course 15451-07
https://www.cs.cmu.edu/afs/cs/academic/class/

15451-s07/www/lecture_notes/lect0123.pdf

I The expected running time T (n) of Rand-Quicksort is
dominated by the number of comparisons.

I Every Rand-Partition has cost
Θ(1) + Θ(number of comparisons︸ ︷︷ ︸

A.size()

)

I If we can count the number of comparisons, we can bound the
the total time of Quicksort.

I Let X be the number of comparisons made in all calls of
Ran-Quicksort

I X is a r.v. as it depends of the random choices of the element
used to do a Ran-Partition

https://www.cs.cmu.edu/afs/cs/academic/class/15451-s07/www/lecture_notes/lect0123.pdf
https://www.cs.cmu.edu/afs/cs/academic/class/15451-s07/www/lecture_notes/lect0123.pdf


Expected Complexity of Ran-Partition

I Note: In the first application of Ran-Partition the selected a
compares with all n − 1 elements.

I Key observation: Any two keys are compared iff one of them
is selected as pivot, and they are compared at most one time.

never compare

10 12 14 16 17 18 20 22 2315



Denote the i-th smallest element in the array by zi and define the
indicator r.v.:

Xij =

{
1 if zi is compared to zj ,

0 otherwise.

Then, X =
∑n−1

i=1

∑n
j=i+1 Xi ,j

(this is true because we never compare a pair more than once)

E [X ] = E

n−1∑
i=1

n∑
j=i+1

Xi ,j

 =
n−1∑
i=1

n∑
j=i+1

E [Xi ,j ]

As E [Xi ,j ] = 0Pr [Xi ,j = 0] + 1Pr [Xi ,j = 1]

∴ E [Xi ,j ] = Pr [Xi ,j = 1] = Pr [zi is compared to zj ]



I If the pivot we choose is between zi and zj then we never
compare them to each other.

I If the pivot we choose is either zi or zj then we do compare
them.

I If the pivot is less than zi or greater than zj then both zi and
zj end up in the same partition and we have to pick another
pivot.

I So, we can think of this like a dart game: we throw a dart at
random into the array: if we hit zi or zj then Xij becomes 1, if
we hit between zi and zj then Xij becomes 0, and otherwise
we throw another dart.

I At each step, the probability that Xij = 1 conditioned on the
event that the game ends in that step is exactly 2/(j − i + 1).
Therefore, overall, the probability that Xij = 1 is 2/(j − i + 1).



End of the computation

E [X ] =
n−1∑
i=1

n∑
j=i+1

E [Xi ,j ]

=
n−1∑
i=1

n∑
j=i+1

2

j − i + 1

= 2 ·
n∑

i=1

(
1

2
+

1

3
+ · · ·+ 1

n − i + 1
)

< 2 ·
n∑

i=1

(
1

2
+

1

3
+ · · ·+ 1

n
)

= 2 ·
n∑

i=1

Hn = 2 · n · Hn = O(n lg n).

Therefore, E [X ] = 2n ln n + Θ(n).



Main theorem

Theorem
The expected complexity of Ran-Quicksort is E [Tn] = O(n lg n).



Selection and order statistics

Problem: Given a list A of n of unordered distinct keys, and a
i ∈ Z, 1 ≤ i ≤ n, select the element x ∈ A that is larger than
exactly i − 1 other elements in A.

Notice if:

1. i = 1 ⇒ MINIMUM element

2. i = n ⇒ MAXIMUM element

3. i = bn+1
2 c ⇒ the MEDIAN

4. i = b0.9 · nc ⇒ order statistics

Sort A (O(n lg n)) and search for A[i ] (Θ(n)).
Can we do it in linear time?
Yes, we saw it in the Algorismia class a deterministic linear time
algorithm for selection with a bad constant.



Quick-Select

Given unordered A[1, . . . , n] return the i-th. element

I Quick-Select (A[p, . . . , q], i)

I r = Ran-Partition (p, q) to find
position of pivot and partition
the array

I if i = r return A[r ]

I if i < r Quick-Select
(A[p, . . . , r − 1], i)

I else Quick-Select
(A[r + 1, . . . , q], i)

3

A

1 8

Search for i=2 in A

m u h e c b k v

3=Ran−Partition(1,8)

he c b u v k m

1



Analysis

Theorem
Given A[1, . . . , n] and i, the expected number of steps for
Quick-Select to find the i-th. element in A is O(n)



I The algorithm is in phase j when the size of the set under
consideration is at most n(3/4)j but greater than n(3/4)j−1

I We bound the expected number of iterations spent in phase j .

I An element is central if at least a quarter of the elements are
smaller and at least a quarter of the elements are larger.

I If a central element is chosen as pivot, at least a quarter of
the elements are dropped. So, the set shrinks by a 3/4 factor
or better.

I As, half of the elements are central, the probability of
choosing as pivot a central element is 1/2.

I So, the expected number of iterations in phase j is 2.



Analysis

I Let X = number of steps taken by the algorithm.

I Let Xj = number of steps in phase j . We have
X = X0 + X1 + X2 + . . .

I An iteration in phase j requires at most cn(3/4)j steps, for
some constant c .

I Therefore, E [Xj ] = 2cn(3/4)j and by linearity of expectation.

E [X ] =
∑
j

E [Xj ] ≤
∑
j

2cn

(
3

4

)j

= 2cn
∑
j

(
3

4

)j

≤ 8cn


