Random variables and expectation

RA-MIRI QT Curs 2020-2021

Most if the material included here is based on Chapter 13 of
Kleinberg & Tardos Algorithm Design book.

Waiting for a first success

» A coin is heads with probability p and tails with probability
1-p.

» How many independent flips we expect to get heads for the
first time?

» Let X the random variable that gives the number of flips.
Observe that

PriX=j]=(1-p)y'p

and
EX] =D jPriX=j1=> (1-p) 'p=7"2> i(l-p)
j=1 j=1 P J=1
as Y2 = sy We have
p 1—p 1
E[X] = =
XI=1= p p? p

Bernoulli process

» A Bernoulli process denotes a sequence of experiments, each
of them a with binary output: success (1) with probability p,
and failure (0) with prob. g =1 — p.

» A nice thing about Bernoulli distributions: it is natural to
define a indicator r.v.

X =1 if the output is 1, otherwise X = 0.

Clearly, E[X] = p

The binomial distribution

A r.v. X has a Binomial distribution with parameter p (B(n, p)) if
X counts the number of successes during n trials of a Bernoulli
experiments having probability of success p.

PrX =kl = (})p(1—p)" . . W

Let X € B(n, p), to compute E [X], we define indicator r.v.
{Xi}7_;, where X; = 1 iff the i-th output is 1, otherwise X; = 0.

Then X =371, X; = E[X] =E[30L, Xi] = 327, E[X{] = np.

=p

The Geometric distribution

A r.v. X has a Geometric distribution with parameter p
(X ~ G(p)) if X counts the number of trials until the first success.

If X € G(p) then
Pr[X =kl =(1-p)'p,

E[X] = ;.

Random generators

Consider a sequential random generator of n bits, so that the
probability that a bit is 1 is p.

» If X = # number of 1's in the generated n bit number,
X € B(n, p).

» If Y = # bits in the generated number until the first 1,
Y € G(p).

Coupon collector

Each box of cereal contains a coupon. There are n different types
of coupons. Assuming all boxes are equally likely to contain each
coupon, how many boxes before you have at least 1 coupon of
each type?

Claim

The expected number of steps is ©(nlogn).

Proof.
> Phase j = time between j and j + 1 distinct coupons.
» Let X; = number of steps you spend in phase j.

> Let X = total number of steps,
of course, X = Xg + X1 + -+ - 4+ Xy-1.

Coupon collector

Xj = number of steps you spend in phase j.

» We can consider a Bernoulli process that succeeds when we
hit one of the still not collected coupons.

-y . n—.
» The probability of success is —~.

» X; counts the time until the Bernoulli process reaches a

success, therefore
n

n—j

EIXj] =

Coupon collector

X = total number of steps
Using the decomposition in sums of indicator r.v. we have

E[X] = E[Xo] + E[Xl] + -4 E[X _1]

-1
Jj=0

n
1
.ZnZ;:nH(n)%nlogn

n
n —
J i=1

A randomized approximation algorithm for MAX 3-SAT

A 3-SAT formula is a Boolean formula in CNF such that each
clause has exactly 3 literals and each literal corresponds to a
different variable.

(x2VX3VXa) A (x2Vx3VXa)A(X1VXx2VXa) A (X1 VX2V X3) A (X1 VX2 VX2s)
MAXIMUM 3-SAT. Given a 3-SAT formula, find a truth
assignment that satisfies as many clauses as possible.

The problem is NP-hard. We can try to design a randomized
algorithm that produces a good assignment, even if it is not
optimal.

A randomized approximation algorithm for MAX 3-SAT

Algorithm. For each variable, flip a fair coin, and the variable to
True (1) if it is heads, to False (0) otherwise.

Note that a variable gets 1 with probability % and this assignment
is made independently of the other variables.

What is the expected number of satisfied clauses?
Assume that the 3-SAT formula has n variables and m clauses.

> Let Z = number of clauses satisfied by the random assignment

» For 1 < j < m, define the random variables
Z;j = 1 if clause j is satisfied, 0 otherwise.

> By definition, Z =37, Z;.
> Pr(Z;=1]=1-(1/2)3=7/8, so E[Z;] = 7/8. Therefore ,

ElZ]=) ElZ]= {m
j=1

A randomized approximation algorithm for MAX 3-SAT

How good is the solution computed by the random algorithm?

» For a 3-CNF formula let opt(F) be the maximum number of
clauses than can be satisfied by an assignment.

> As for any assignment x the number of satisfied clauses is
always < opt(F), we have that E[Z] < opt(F).

> Of course opt(F) < m, that is fopt(F) < Zm = E[Z], then

We have a %—approximation algorithm for MAX 3-SAT.

The probabilistic method

Claim
For any instance of 3-SAT, there exists a truth assignment that
satisfies at least a 7/8 fraction of all clauses.

Proof. Random variable must have one event on which the
measured value is at least its expectation.

Probabilistic method. [Paul Erdos| Prove the existence of a
non-obvious property by showing that a random construction
produces it with positive probability

Random-Quicksort

Input: An array A holding n keys. For simplicity we assumed that
all keys are different.

Output: A sorted in increasing order.

I'm assuming that all of you known:
» The Quick sort algorithm which has O(n?) cost
» and O(nlog n) average cost.

» One randomized version randomly sorts the input and then

applies the deterministic algorithm, having average running
time O(nlog n)

» Here we consider another randomized version of Quick sort.

Random-Quicksort

Ran-Quicksort (A)
if A.size() <3 then
Sort A using insertion sort
return A
Choose an element a € A uniformly at random
Put in B all elements < a and in C all elements > a
B = Ran-Quicksort (B)
C = Ran-Quicksort (C)
return B followed by a followed by C

The main difference is that we perform a random partition in each
call around the random pivot a.

Example

g A={13,5,6,8,10,12,14,15,16,17,18,20,22,23}

?i me==@> Ran-Partition of input

23

Expected Complexity of Ran-Partition

Taken from CMU course 15451-07
https://www.cs.cmu.edu/afs/cs/academic/class/
16451-s07/www/lecture_notes/lect0123.pdf
» The expected running time T(n) of Rand-Quicksort is
dominated by the number of comparisons.

» Every Rand-Partition has cost
©(1) + ©(number of comparisons)

A.size()
» If we can count the number of comparisons, we can bound the
the total time of Quicksort.

> Let X be the number of comparisons made in all calls of
Ran-Quicksort

» X is ar.v. as it depends of the random choices of the element
used to do a Ran-Partition

https://www.cs.cmu.edu/afs/cs/academic/class/15451-s07/www/lecture_notes/lect0123.pdf
https://www.cs.cmu.edu/afs/cs/academic/class/15451-s07/www/lecture_notes/lect0123.pdf

Expected Complexity of Ran-Partition

> Note: In the first application of Ran-Partition the selected a
compares with all n — 1 elements.

> Key observation: Any two keys are compared iff one of them
is selected as pivot, and they are compared at most one time.

» N
‘10‘ 12‘ 14‘15 ‘ 16‘17 ‘18 ‘20‘22‘23‘
' . . | v .

never compare

Denote the i-th smallest element in the array by z; and define the
indicator r.v.:

1 if z; is compared to z;,
Xij = _
0 otherwise.

_ n—1 n .
Then, X =} /"] Zj:i+1 Xij
(this is true because we never compare a pair more than once)

n—1 n n—1 n
EXI=E Y > Xy| =D > ElXy
i=1 j=i4+1 i=1 j=i+1

As E [X,"j] = 0Pr [X,'J' = 0] + 1Pr [X,',j =].]
o E[Xij] =Pr[Xij = 1] = Pr[z is compared to z]

If the pivot we choose is between z; and z; then we never
compare them to each other.

If the pivot we choose is either z; or z; then we do compare
them.

If the pivot is less than z; or greater than z; then both z; and
z; end up in the same partition and we have to pick another
pivot.

So, we can think of this like a dart game: we throw a dart at
random into the array: if we hit z; or z; then Xj; becomes 1, if
we hit between z; and z; then Xj; becomes 0, and otherwise
we throw another dart.

At each step, the probability that Xj; = 1 conditioned on the

event that the game ends in that step is exactly 2/(j — i + 1).
Therefore, overall, the probability that Xj; = 1is 2/(j — i +1).

End of the computation

n—1 n
EXI=)_ Y E[X]

i=1 j=i+1

n—1 n)
=22 i

i=1 j=i+1
101 1

=2. B T A
§(2+3+ +n—i+1)
11

2. Bl

< ;(2+3+ +-)

:2~ZHn:2‘n-Hn:O(n|gn).

i=1

Therefore, E [X] = 2nlnn+ O(n).

Main theorem

Theorem
The expected complexity of Ran-Quicksort is E[T,] = O(nlg n).

Selection and order statistics

Problem: Given a list A of n of unordered distinct keys, and a
i €7Z,1<i<n, select the element x € A that is larger than
exactly i — 1 other elements in A.
Notice if:

1. i=1= MINIMUM element

2. i =n = MAXIMUM element

3. 0= L%lj = the MEDIAN

4. i = 0.9 n| = order statistics

Sort A (O(nlgn)) and search for A[i] (©(n)).

Can we do it in linear time?

Yes, we saw it in the Algorismia class a deterministic linear time
algorithm for selection with a bad constant.

Quick-Select

Given unordered A[l, ..., n|] return the i-th. element

>
>

Quick-Select (Alp, ..., q],)

r = Ran-Partition (p, g) to find

position of pivot and partition A [m[ufnfefc]b]k]v]
the array

Search for i=2 in A

1 8
if i =r return A[r] 3=Ran-Partition(1,8)

if i < r Quick-Select
(A[p,...,r—l],i) ‘e‘c‘b‘h‘u‘v‘k‘m‘

else Quick-Select

(Alr +1,....q],1) b

Analysis

Theorem
Given A[L,...,n] and i, the expected number of steps for
Quick-Select to find the i-th. element in A is O(n)

The algorithm is in phase j when the size of the set under
consideration is at most n(3/4) but greater than n(3/4y !

We bound the expected number of iterations spent in phase ;.

An element is central if at least a quarter of the elements are
smaller and at least a quarter of the elements are larger.

If a central element is chosen as pivot, at least a quarter of
the elements are dropped. So, the set shrinks by a 3/4 factor
or better.

As, half of the elements are central, the probability of
choosing as pivot a central element is 1/2.

So, the expected number of iterations in phase j is 2.

Analysis

> Let X = number of steps taken by the algorithm.

» Let X; = number of steps in phase j. We have
X:X0+X1—|-X2+...

» An iteration in phase j requires at most cn(3/4) steps, for
some constant c.

> Therefore, E[X;] = 2cn(3/4) and by linearity of expectation.

E[X] = Z E[X] < Z2cn <2>J = 2an (i)J < 8cn

