Random variables and expectation

RA-MIRI QT Curs 2020-2021

Most if the material included here is based on Chapter 13 of Kleinberg \& Tardos Algorithm Design book.

Waiting for a first success

- A coin is heads with probability p and tails with probability $1-p$.
- How many independent flips we expect to get heads for the first time?
- Let X the random variable that gives the number of flips. Observe that

$$
\operatorname{Pr}[X=j]=(1-p)^{j-1} p
$$

and

$$
E[X]=\sum_{j=1}^{\infty} j \operatorname{Pr}[X=j]=\sum_{j=1}^{\infty}(1-p)^{j-1} p=\frac{p}{1-p} \sum_{j=1}^{\infty} j(1-p)^{j}
$$

as $\sum_{j=1}^{\infty} j x^{j}=\frac{x}{(1-x)^{2}}$, we have

$$
E[X]=\frac{p}{1-p} \frac{1-p}{p^{2}}=\frac{1}{p}
$$

Bernoulli process

- A Bernoulli process denotes a sequence of experiments, each of them a with binary output: success (1) with probability p, and failure (0) with prob. $q=1-p$.
- A nice thing about Bernoulli distributions: it is natural to define a indicator r.v.
$X=1$ if the output is 1 , otherwise $X=0$.
Clearly, $E[X]=p$

The binomial distribution

A r.v. X has a Binomial distribution with parameter $p(B(n, p))$ if X counts the number of successes during n trials of a Bernoulli experiments having probability of success p.

$$
\operatorname{Pr}[X=k]=\binom{n}{k} p^{k}(1-p)^{n-k} .
$$

Let $X \in B(n, p)$, to compute $\mathbf{E}[X]$, we define indicator r.v. $\left\{X_{i}\right\}_{i=1}^{n}$, where $X_{i}=1$ iff the i-th output is 1 , otherwise $X_{i}=0$.
Then $X=\sum_{i=1}^{n} X_{i} \Rightarrow \mathbf{E}[X]=\mathbf{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \underbrace{\mathbf{E}\left[X_{i}\right]}_{=p}=n p$.

The Geometric distribution

A r.v. X has a Geometric distribution with parameter p $(X \sim G(p))$ if X counts the number of trials until the first success.

If $X \in G(p)$ then
$\operatorname{Pr}[X=k]=(1-p)^{k-1} p$,
$\mathrm{E}[X]=\frac{1}{p}$.

Random generators

Consider a sequential random generator of n bits, so that the probability that a bit is 1 is p.

- If $X=\#$ number of 1 's in the generated n bit number, $X \in B(n, p)$.
- If $Y=\#$ bits in the generated number until the first 1 , $Y \in G(p)$.

Coupon collector

Each box of cereal contains a coupon. There are n different types of coupons. Assuming all boxes are equally likely to contain each coupon, how many boxes before you have at least 1 coupon of each type?

Claim
The expected number of steps is Θ (nlogn).
Proof.

- Phase $j=$ time between j and $j+1$ distinct coupons.
- Let $X_{j}=$ number of steps you spend in phase j.
- Let $X=$ total number of steps, of course, $X=X_{0}+X_{1}+\cdots+X_{n-1}$.

Coupon collector

$X_{j}=$ number of steps you spend in phase j.

- We can consider a Bernoulli process that succeeds when we hit one of the still not collected coupons.
- The probability of success is $\frac{n-j}{n}$.
- X_{j} counts the time until the Bernoulli process reaches a success, therefore

$$
E\left[X_{j}\right]=\frac{n}{n-j}
$$

Coupon collector

$X=$ total number of steps
Using the decomposition in sums of indicator r.v. we have

$$
\begin{aligned}
E[X] & =E\left[X_{0}\right]+E\left[X_{1}\right]+\cdots+E\left[X_{n-1}\right] \\
& =\sum_{j=0}^{n-1} \frac{n}{n-j}=n \sum_{i=1}^{n} \frac{1}{n}=n H(n) \approx n \log n
\end{aligned}
$$

A randomized approximation algorithm for MAX 3-SAT

A 3-SAT formula is a Boolean formula in CNF such that each clause has exactly 3 literals and each literal corresponds to a different variable.
$\left(x_{2} \vee \bar{x}_{3} \vee \bar{x}_{4}\right) \wedge\left(x_{2} \vee x_{3} \vee \bar{x}_{4}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{4}\right)$
Maximum 3-Sat. Given a 3-SAT formula, find a truth assignment that satisfies as many clauses as possible.

The problem is NP-hard. We can try to design a randomized algorithm that produces a good assignment, even if it is not optimal.

A randomized approximation algorithm for MAX 3-SAT

Algorithm. For each variable, flip a fair coin, and the variable to True (1) if it is heads, to False (0) otherwise.

Note that a variable gets 1 with probability $\frac{1}{2}$, and this assignment is made independently of the other variables.

What is the expected number of satisfied clauses?
Assume that the 3-SAT formula has n variables and m clauses.

- Let $Z=$ number of clauses satisfied by the random assignment
- For $1 \leq j \leq m$, define the random variables

$$
Z_{j}=1 \text { if clause } j \text { is satisfied, } 0 \text { otherwise. }
$$

- By definition, $Z=\sum_{j=1}^{m} Z_{j}$.
- $\operatorname{Pr}\left[Z_{j}=1\right]=1-(1 / 2)^{3}=7 / 8$, so $E\left[Z_{j}\right]=7 / 8$. Therefore ,

$$
E[Z]=\sum_{j=1}^{m} E\left[Z_{j}\right]=\frac{7}{8} m
$$

A randomized approximation algorithm for MAX 3-SAT

How good is the solution computed by the random algorithm?

- For a 3-CNF formula let opt (F) be the maximum number of clauses than can be satisfied by an assignment.
- As for any assignment x the number of satisfied clauses is always $\leq \operatorname{opt}(F)$, we have that $E[Z] \leq \operatorname{opt}(F)$.
- Of course opt $(F) \leq m$, that is $\frac{7}{8} \operatorname{opt}(F) \leq \frac{7}{8} m=E[Z]$, then

$$
\frac{\operatorname{opt}(F)}{E[Z]} \leq \frac{8}{7}
$$

We have a $\frac{8}{7}$-approximation algorithm for Max 3-SAT.

The probabilistic method

Claim
For any instance of 3-SAT, there exists a truth assignment that satisfies at least a $7 / 8$ fraction of all clauses.

Proof. Random variable must have one event on which the measured value is at least its expectation.

Probabilistic method. [Paul Erdös] Prove the existence of a non-obvious property by showing that a random construction produces it with positive probability

Random-Quicksort

Input: An array A holding n keys. For simplicity we assumed that all keys are different.
Output: A sorted in increasing order.
I'm assuming that all of you known:

- The Quick sort algorithm which has $O\left(n^{2}\right)$ cost
- and $O(n \log n)$ average cost.
- One randomized version randomly sorts the input and then applies the deterministic algorithm, having average running time $O(n \log n)$
- Here we consider another randomized version of Quick sort.

Random-Quicksort

Ran-Quicksort (A)
if A.size ()≤ 3 then
Sort A using insertion sort
return A
Choose an element $a \in A$ uniformly at random
Put in B all elements $<a$ and in C all elements $>a$
$B=$ Ran-Quicksort (B)
$C=$ Ran-Quicksort (C)
return B followed by a followed by C
The main difference is that we perform a random partition in each call around the random pivot a.

Example

$$
A=\{1,3,5,6,8,10,12,14,15,16,17,18,20,22,23\}
$$

Ran-Partition of input

Expected Complexity of Ran-Partition

Taken from CMU course 15451-07
https://www.cs.cmu.edu/afs/cs/academic/class/
15451-s07/www/lecture_notes/lect0123.pdf

- The expected running time $T(n)$ of Rand-Quicksort is dominated by the number of comparisons.
- Every Rand-Partition has cost $\Theta(1)+\Theta(\underbrace{\text { number of comparisons }}_{\text {A.size }()})$
- If we can count the number of comparisons, we can bound the the total time of Quicksort.
- Let X be the number of comparisons made in all calls of Ran-Quicksort
- X is a r.v. as it depends of the random choices of the element used to do a Ran-Partition

Expected Complexity of Ran-Partition

- Note: In the first application of Ran-Partition the selected a compares with all $n-1$ elements.
- Key observation: Any two keys are compared iff one of them is selected as pivot, and they are compared at most one time.

never compare

Denote the i-th smallest element in the array by z_{i} and define the indicator r.v.:

$$
X_{i j}= \begin{cases}1 & \text { if } z_{i} \text { is compared to } z_{j} \\ 0 & \text { otherwise }\end{cases}
$$

Then, $X=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i, j}$
(this is true because we never compare a pair more than once)

$$
\mathbf{E}[X]=\mathbf{E}\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i, j}\right]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{E}\left[X_{i, j}\right]
$$

As $\mathbf{E}\left[X_{i, j}\right]=0 \operatorname{Pr}\left[X_{i, j}=0\right]+1 \operatorname{Pr}\left[X_{i, j}=1\right]$
$\therefore \mathbf{E}\left[X_{i, j}\right]=\operatorname{Pr}\left[X_{i, j}=1\right]=\operatorname{Pr}\left[z_{i}\right.$ is compared to $\left.z_{j}\right]$

- If the pivot we choose is between z_{i} and z_{j} then we never compare them to each other.
- If the pivot we choose is either z_{i} or z_{j} then we do compare them.
- If the pivot is less than z_{i} or greater than z_{j} then both z_{i} and z_{j} end up in the same partition and we have to pick another pivot.
- So, we can think of this like a dart game: we throw a dart at random into the array: if we hit z_{i} or z_{j} then $X_{i j}$ becomes 1 , if we hit between z_{i} and z_{j} then $X_{i j}$ becomes 0 , and otherwise we throw another dart.
- At each step, the probability that $X_{i j}=1$ conditioned on the event that the game ends in that step is exactly $2 /(j-i+1)$. Therefore, overall, the probability that $X_{i j}=1$ is $2 /(j-i+1)$.

End of the computation

$$
\begin{aligned}
\mathbf{E}[X] & =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{E}\left[X_{i, j}\right] \\
& =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \\
& =2 \cdot \sum_{i=1}^{n}\left(\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n-i+1}\right) \\
& <2 \cdot \sum_{i=1}^{n}\left(\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right) \\
& =2 \cdot \sum_{i=1}^{n} H_{n}=2 \cdot n \cdot H_{n}=O(n \lg n)
\end{aligned}
$$

Therefore, $\mathbf{E}[X]=2 n \ln n+\Theta(n)$.

Main theorem

Theorem
The expected complexity of Ran-Quicksort is $\mathbf{E}\left[T_{n}\right]=O(n \lg n)$.

Selection and order statistics

Problem: Given a list A of n of unordered distinct keys, and a $i \in \mathbb{Z}, 1 \leq i \leq n$, select the element $x \in A$ that is larger than exactly $i-1$ other elements in A.

Notice if:

1. $i=1 \Rightarrow$ MINIMUM element
2. $i=n \Rightarrow$ MAXIMUM element
3. $i=\left\lfloor\frac{n+1}{2}\right\rfloor \Rightarrow$ the MEDIAN
4. $i=\lfloor 0.9 \cdot n\rfloor \Rightarrow$ order statistics

Sort $A(O(n \lg n))$ and search for $A[i](\Theta(n))$.
Can we do it in linear time?
Yes, we saw it in the Algorismia class a deterministic linear time algorithm for selection with a bad constant.

Quick-Select

Given unordered $A[1, \ldots, n]$ return the i-th. element

- Quick-Select $(A[p, \ldots, q], i)$
- $r=$ Ran-Partition (p, q) to find position of pivot and partition the array
- if $i=r$ return $A[r]$
- if $i<r$ Quick-Select $(A[p, \ldots, r-1], i)$
- else Quick-Select

$$
(A[r+1, \ldots, q], i)
$$

Search for $\mathrm{i}=2$ in A

Analysis

Theorem
Given $A[1, \ldots, n]$ and i, the expected number of steps for Quick-Select to find the i-th. element in A is $O(n)$

- The algorithm is in phase j when the size of the set under consideration is at most $n(3 / 4)^{j}$ but greater than $n(3 / 4)^{j-1}$
- We bound the expected number of iterations spent in phase j.
- An element is central if at least a quarter of the elements are smaller and at least a quarter of the elements are larger.
- If a central element is chosen as pivot, at least a quarter of the elements are dropped. So, the set shrinks by a $3 / 4$ factor or better.
- As, half of the elements are central, the probability of choosing as pivot a central element is $1 / 2$.
- So, the expected number of iterations in phase j is 2 .

Analysis

- Let $X=$ number of steps taken by the algorithm.
- Let $X_{j}=$ number of steps in phase j. We have $X=X_{0}+X_{1}+X_{2}+\ldots$
- An iteration in phase j requires at most $c n(3 / 4)^{j}$ steps, for some constant c.
- Therefore, $E\left[X_{j}\right]=2 c n(3 / 4)^{j}$ and by linearity of expectation.

$$
E[X]=\sum_{j} E\left[X_{j}\right] \leq \sum_{j} 2 c n\left(\frac{3}{4}\right)^{j}=2 c n \sum_{j}\left(\frac{3}{4}\right)^{j} \leq 8 c n
$$

