
Fingerprinting and primality

RA-MIRI QT Curs 2020-2021



Fingerprinting technique

Freivalds algorithm is an example of the algorithmic fingerprinting
technique, we do not want to compute, but just to check.

We want to compare two items, A1 and A2, instead of comparing
them directly, we compute random fingerprints φ(A1) and φ(A2)
and compare these.
We seek a fingerprint function φ() with the following properties:

I If A1 = A2 then whp Pr [φ(A1) = φ(A2)] = 1.

I If A1 6= A2 then Pr [φ(A1) = φ(A2)] = 0.

I It is a lot more efficient to compute and compare φ(A1) and
φ(A2), than computing and comparing A1 and A2.

Notice that for Freivalds’ algorithm, if A is n × n matrix, then
φ(A) = Ar , for a random n-dimensional Boolean vector r .



Database consistency

From MR 7.4
Alice and Bob are in different continents. Each has a copy of a huge database
with N bits. Alice maintain its large N-bit database X = {xN−1, . . . , x0} of
information, while Bob maintains a second copy Y = {yN−1, . . . , y0} of the
same database.

Periodically they want to check consistency of their copies, i.e., to check that
both are the same.

Alice could send X to Bob, and he could compare it to Y . But this requires
transmission of N bits, which is costly and error-prone.

Instead, suppose Alice first computes a much smaller fingerprint φ(X ) and

sends this to Bob. He then computes φ(Y ) and compares it with φ(X ). If the

fingerprints are equal, he announces that the copies are identical.

What kind of fingerprint function should we use here?
How many bits do we need to send?

Which is the error in the fingerprint test?



Database consistency

From MR 7.4
Alice and Bob are in different continents. Each has a copy of a huge database
with N bits. Alice maintain its large N-bit database X = {xN−1, . . . , x0} of
information, while Bob maintains a second copy Y = {yN−1, . . . , y0} of the
same database.

Periodically they want to check consistency of their copies, i.e., to check that
both are the same.

Alice could send X to Bob, and he could compare it to Y . But this requires
transmission of N bits, which is costly and error-prone.

Instead, suppose Alice first computes a much smaller fingerprint φ(X ) and

sends this to Bob. He then computes φ(Y ) and compares it with φ(X ). If the

fingerprints are equal, he announces that the copies are identical.

What kind of fingerprint function should we use here?

How many bits do we need to send?

Which is the error in the fingerprint test?



Database consistency

From MR 7.4
Alice and Bob are in different continents. Each has a copy of a huge database
with N bits. Alice maintain its large N-bit database X = {xN−1, . . . , x0} of
information, while Bob maintains a second copy Y = {yN−1, . . . , y0} of the
same database.

Periodically they want to check consistency of their copies, i.e., to check that
both are the same.

Alice could send X to Bob, and he could compare it to Y . But this requires
transmission of N bits, which is costly and error-prone.

Instead, suppose Alice first computes a much smaller fingerprint φ(X ) and

sends this to Bob. He then computes φ(Y ) and compares it with φ(X ). If the

fingerprints are equal, he announces that the copies are identical.

What kind of fingerprint function should we use here?
How many bits do we need to send?

Which is the error in the fingerprint test?



Database consistency

From MR 7.4
Alice and Bob are in different continents. Each has a copy of a huge database
with N bits. Alice maintain its large N-bit database X = {xN−1, . . . , x0} of
information, while Bob maintains a second copy Y = {yN−1, . . . , y0} of the
same database.

Periodically they want to check consistency of their copies, i.e., to check that
both are the same.

Alice could send X to Bob, and he could compare it to Y . But this requires
transmission of N bits, which is costly and error-prone.

Instead, suppose Alice first computes a much smaller fingerprint φ(X ) and

sends this to Bob. He then computes φ(Y ) and compares it with φ(X ). If the

fingerprints are equal, he announces that the copies are identical.

What kind of fingerprint function should we use here?
How many bits do we need to send?

Which is the error in the fingerprint test?



Review of Algebra 1

Given a, b, n ∈ Z, a congruent with b modulo n (a ≡ b mod n) if
n|(a− b).

1. a mod n = b ⇒ a ≡ b mod n.

2. (a + b) mod n ≡ ((a mod n) + (b mod n)) mod n.

3. (a · b) mod n ≡ ((a mod n) · (b mod n)) mod n.

4. a + (b + c) ≡ (a + b) + c mod n (associativity)

5. ab ≡ ba mod n (commutativity)

6. a(b + c) ≡ ab + ac mod n (distributivity)

n partitions Z in n equivalence classes: Zn = {0, 1 . . . , n − 1}.
For any m ∈ Z, m mod n ∈ Zn.

Define Z+
n = {1 . . . , n − 1}. (Zn,+n, ·n) form a commutative ring,



Review of Algebra 2

Theorem (Prime number Theorem)

Let n ∈ Z and let π(n) be the number of primes ≤ n, then

π(n) ∼ n

ln n
, as n→∞.

The frequency of primes slowly decay as the integers increase in
length.

For ex. if n = 104, π(n) = 1929 and n
ln n = 1086,

while, if n = 107, π(n) = 664579 and n
ln n = 620420.



Review of Algebra 3

Lemma: If n ∈ Z has N-bits, then n ≤ 2N , and at most N different
primes can divide n.

As prime numbers are ≥ 2, the # of distinct primes that divide n
is ≤ N, because if we multiply together more than N numbers that
are at least 2, then we get a number greater than 2N

For ex. if n = 33, (332 = 100001), so N = 6 and 26 = 64. Besides,
π(33) = 11 of which only 2 of them divide 33 (2 < 6)

Corollary: Let pi be the i-th. prime number, then the value of
pi ∼ i ln i

For ex. if i = 1000, then pi ∼ 1000 ln(1000) = 6907 and the exact
value is p1000 = 7919



Solution to the database consistency problem

If Alice (A) has X and Bob (B) has Y , they use the following
algorithm to check they are the same:

I See the data as N-bit integers: x =
∑N−1

i=0 xi2
i and

y =
∑N−1

i=0 yi2
i .

I A chooses u.a.r. a prime p ∈ [2, 3, 5, . . . ,m], for suitable
m = cN lnN. (The number of primes in 2N is N)

I A computes φ(x) = x mod p and sends the result together
with the value p to B.

I B computes φ(y) = y mod p and compares with the quantity
he got from A.

I If φ(x) 6= φ(y) for sure X 6= Y , but it is possible φ(x) = φ(y)
and X 6= Y . (This happens if x mod p = y mod p, with x 6= y).



Bounding the probability of error

By the Prime Number Theorem π(m) ∼ m
lnm

, so as we see below, we need to

take m = cN lnN, for constant c > 1.

We want to bound the probability that x 6= y but φ(x) = φ(y), i.e.,

Pr [x mod p = y mod p|x 6= y] = Pr [p divides |x− y|]

=
# of primes dividing |x− y|

# primes ≤ m

≤ N

m/ lnm
=

N lnm

cN lnN
=

lnm

c lnN

=
ln(cN lnN)

c lnN
=

lnN + ln(c lnN)

c lnN

=
1

c
+

ln(c lnN)

c lnN
=

1

c
+ o(1)

Lemma: Taking c = 1/ε for a chosen 0 < ε < 1, the algorithm achieves an

error probability of ≤ ε.
Choosing a large m⇒, i.e. a large c, we have a larger selection for p, so it is

less likely that p divides |x− y|.



Communication bits

Lemma: The fingerprint algorithm to check the consistency of two
databases with N bits uses O(lgN) bits of communication.

Proof: A sends to B p and x mod p, both are ≤ m.
Since m = cN lnN, then m requires
lg(cN lnN) = lgN + lg(c lnN) ∼ O(lgN) bits, so the number of
transmitted bits is O(lg n). 2

We proved that by using a more efficient representation of the data
(modular), the randomized fingerprinting algorithm gives an
exponential decrease in the amount of communication at a small
cost in correctness.



How to pick a random prime number

Problem: Given an integer N we want to pick a random prime
p ∈ [2, . . . , 2N − 1].

Recall: if n has N bits ⇒ n ≤ 2N − 1 and N ≥ lg n.

Assume we have an efficient algorithm Prime? which tell us if an
integer is a prime, or not.
Define the set P = {p | 1 < p ≤ 2N − 1, and p is prime}.
We want to pick u.a.r. p ∈ P (i.e., with probability 1

|P|)

Pickprime(p)
for i = 0 to t do

p = Rand (2N − 1)
if Prime?(p) = T then

return p

t will be fixed later
First analyze one iteration of
the algorithm

After we analyze the

probability of error after

amplifying t times.



Analysis of the algorithm

Let A be the event that a random generated N-bit integer is a
prime in P:

Pr [A] =
|P|
2N

=
(2N/ ln 2N)

2N
=

1

N ln 2
=

1.442

N
.

If N = 2000 then Pr [A] = 0.000721, therefore the probability of failing is

Pr
[
Ā
]

= 0.999271. Quite high !

Taking into consideration the t-amplification,

Pr [Failure after t repetitions] = (1− 1.442

N
)t ≤ e−

1.442t
N ,

so taking t = 10N suffices to make small the probability of failure.



Analysis of the algorithm: Numerical example

If N = 2000 taking t = 10N = 20000 yields
Pr [Failure] = 0.00004539 and Pr [Success] = 0.999955. If
t = N = 2000, Pr [Success] = 0.76425.

In practice, most of the algorithms to generate a large prime,
follows the previous scheme (see for ex.
https://asecuritysite.com/encryption/random3)



The Primality problem

From Cormen et al., 31.8 (3rd edition)
INPUT: n ∈ N. QUESTION: Is n prime?

Naive algorithm:
Is n ∈ N prime?
for a = 2, 3, . . . ,

√
n do

if a | n then
return composite

return prime

Recall that in arithmetic complexity, for large n (n = 22024), the
input size is the number of bits N to express n
i.e., n = 2N and N = lg n

Complexity of the algorithm: T (N) = O(2N/2N2) Too slow!



Randomized algorithms for Primality Testing

Theorem (Fermat’s Little Th.,XVII)

If n is prime, then for all a ∈ Z+
n , a

n−1 ≡ 1 mod n.

Fermat only works in one direction:
BUT ∃n ∈ Z s.t. for all a, an−1 ≡ 1 mod n with n NOT prime.

The Carmichael numbers: n ∈ Z is a Carmichael number if, for
each a ∈ Z∗n, an−1 ≡ 1 mod n and n is not prime.

Carmichael numbers are very rare (255 with value < 100000000)
561, 1105, 1729, · · ·
For example 561 = 3× 11× 17



Test of pseudo-primality

(Assuming the non-existence of Carmichael numbers)

For any n ∈ Z, n is a pseudo-prime if n is composite and ∀a ∈ Z+
n ,

an−1 ≡ 1 mod n.

Is n ∈ N prime?
a = rand (1, n − 1)
if an−1 ≡ 1 mod n then
return pseudo-prime

else
return composite

Complexity: O(N3).



Test of pseudo-primality: Error probability

If the algorithm says composite n is composite
If the algorithm says pseudo-prime if n is prime, the answer is
correct, but if n is composite it errs. This happens with probability
≤ 1/2.

The previous algorithm has one-side error, therefore amplifying t
times the algorithm, the probability of error goes down to ≤ 1/2t .

Reapeated-Fermat n, t
for i = 1 to t do

a = rand (1, n − 1)
if an−1 6≡ 1 mod n then

return non-prime
else

return prime



Taking into consideration the Carmichel numbers

Sketch of a Monte-Carlo algorithm for deciding of a given n is a
prime: G. Miller (1976), M. Rabin (1980)

I If equation x2 ≡ 1 mod n has exactly solutions x = ±1 that
implies n is prime.

I If there is another solution different than ±1, then n can not
be prime.

I To see if n is prime: Randomly choose an integer a < n, if
a2 ≡ 1 mod n, then a is a non-trivial root of 1 mod n, so n
is not prime. Such an a is denoted a witness to the
compositeness of n. Otherwise, n may be a prime.

The error of the resulting Monte-Carlo algorithm is 1/2t and the
complexity is O(tN3).



Deciding primality

I For a long time it was open to prove that primality∈ P. In
2002, Agrawal, Kayal, Saxena, (AKS) gave a deterministic
polynomial time algorithm for Primality.

I If n ≤ 2N the best implementation for the AKS is
Õ(N6) = O(N6 lgN).

I AKS has terrible running time, and it is not clear that it can
be improved in the near future.

I From the computational point the Miller-Rabin’s algorithm is
the basis for existing efficient algorithms.

I However, the Fermat pseudo-primality test can also work fairly
nicely, (if we are dealing with N = 9, the probability of hitting
a Carmichel number is 0.000000255.


