
Basics on Probability

RA-MIRI QT Curs 2020-2021

I Overview on basic probability

I The principle of deferred decisions

I Checking matrix multiplication

I The minimum cut problem

Review of basic mathematics

I Arithmetic Series:
∑n

i=1 i = n(n+1)
2 = Θ(n2).

I Geometric Series: for x 6= 1,
∑n

i=0 x
i = xn+1−1

x−1 .

I Geometric Series: for |x | < 1,
∑n

i=0 x
i = 1

1−x .

I Harmonic Series: for n finite,

Hn =
n∑

i=1

1

i
= ln n + O(1).

Note that if n→∞ then
∑n

i=1
1
i diverges.

Review of basic mathematics: Log and Exponential

logb n = x means n = bx ,
log(x y) = log x + log y
log(x f (x)) = f (x) log x ⇒ 2lg n = n.

loga x = logb x
loga b

Recall:
d

dx
ln(f (x)) =

d(f (x))
dx

f (x)
.

d

dx
ln x =

1

x
.

lg = log2, ln = loge , log = log10

Review of basic mathematics: Exponential

ln n = loge n = x means n = ex ,
where e = limn→∞(1 + 1

n)n ∼ 2.71...
ex = limn→∞(1 + x

n)n.

e−x = limn→∞(1− x
n)n. d

dx e
x = ex .

Recall Taylor: f (x) differentiable at a: f (x) =
∑∞

i=0
f i (a)
i! (x − a)i

Therefore ex = 1 + x + x2

2! + · · · , e−x = 1− x + x2

2! −
x3

3! + · · ·

ex < 1 + x and e−x > 1− x

In fact, for x is vey small 0 < x << 1: e−x ∼ 1− x

e−0.4 = 0.67032, e−0.1 = 0.904837, e−0.01 = 0.99005

Binomial

I Stirling: n! =
√

2πn(ne)n + γ + O(1/n),

I Binomial coefficients:
(n
k

)
= n!

(n−k)!k!

I Binomial Thm.: (a + b)n =
∑n

i=0

(n
i

)
an−ibi .

∴ (1 + x)n =
∑n

i=0

(n
i

)
x i = 1 + nx + n(n−1)

2 x2 + · · ·+ xn

I Important:
(n
k

)k
≤
(
n

k

)
≤
(ne
k

)k
I Also useful If k = o(

√
n) then

(n
k

)
∼ nk

k!

Why using asymptotic notation?

Considering that an instance with size n = 1 takes 1 µ second:
26 THE BASICS

100

103

106

109

1012

1015

1018

1021

1024

0 10 20 30 40 50 60 70 80 90 100
n

µs

n

n 2

n 3

2n

n !

1 minute

1 day

1 year

age of universe

FIGURE 2.5: Running times of algorithms as a function of the size n . We assume that each one can solve
an instance of size n = 1 in one microsecond. Note that the time axis is logarithmic.

Euler
input: a graph G = (V, E)
output: “yes” if G is Eulerian, and “no” otherwise
begin

y := 0 ;
for all v ∈V do

if deg(v) is odd then y := y +1;
if y > 2 then return “no”;

end
return “yes”

end

FIGURE 2.6: Euler’s algorithm for EULERIAN PATH. The variable y counts the number of odd-degree vertices.

2.4.2 Details, and Why they Don’t Matter

In the Prologue we saw that Euler’s approach to EULERIAN PATH is much more efficient than exhaustive
search. But how does the running time of the resulting algorithm scale with the size of the graph? It turns
out that a precise answer to this question depends on many details. We will discuss just enough of these
details to convince you that we can and should ignore them in our quest for a fundamental understanding
of computational complexity.

Table of computing times according to the size of an instance.

Recall: Asymptotic notation

Śımbol L = limn→∞
f (n)
g(n) intüıció ..

f (n) = O(g(n)) L <∞ f ≤ g

f (n) = Ω(g(n)) L > 0 f ≥ g

f (n) = Θ(g(n)) 0 < L <∞ f = g

f (n) = o(g(n)) L = 0 f < g

f (n) = ω(g(n)) L =∞ f > g

f (n) ∼ g(n) L = 1

For ex. loga x = Θ(logb x), for any a, b > 0.

Remember: Basic Combinatorics

For a set S with n elements

I The Permutations of S are all the ordered sequences of length
n without repetition.
Ex.: S = {a, b, c} then abc, acb, bac , bca, cab, cba.
There are n! permutations of S .

I The k-Permutation of S (k ≤ n) are all the ordered sequences
of length k without repetition.
The 2-permutations of {a, b, c} are ab, ac, ba, bc, ca, cb.
There are P(n, k) + n!

(n−k)! k-permutations of S .

P(n, k) = n(n − 1)(n − 2) · · · (n − k + 1).

I For m > n the number of ordered m-sequences with
repetitions that we can form with elements in S is nm.
Ex. The number of binary sequences with length 5 is 25.

k-Combination: Binomial

A k-combination of S with (k ≤ n) are all the non-ordered
sequences of length k without repetition. Ex.: S = {a, b, c}, k = 2
then we get ab, ac , bc

This is the same as the number of different k-subsets, i.e.,(
n

k

)
=

n(n − 1) · · · (n − k + 1)

k!
=

n!

k!(n − k)!
.

Notice
(n
0

)
=
(n
n

)
= 1 and

(n
k

)
=
(n
n−k
)
.

Experiments and Events

Probability space (Ω): the set of outcomes associated with an
experiment.

Basic events: the elements in Ω.
Event: E ⊆ Ω, i.e. an event is any collection of outcomes.

Example: Flip two coins:

I Basic events Ω = {HH,HT ,TH,TT}. |Ω| = 4.

I Non-basic event: Let A be the event of having at least one H,
then A = {HH,HT ,TH}.

Given Ω, define F as the set of all events in the power set of Ω,
P(Ω).

For any event E ∈ F , let Ē the set of events F\E

Probability

Given F on Ω, define the probability function (distribution)
Pr : F → [0, 1] such that:

1. For any event A ∈ F : 0 ≤ Pr [A] ≤ 1, Pr [Ω] = 1,Pr [∅] = 0.

2. Given all basic events {Ei}ni=1,
∑n

i=1 Pr [Ei] = 1,

3. If {Aj}kj=1 are mutually exclusive events then

Pr
[
∪kj=1Aj

]
=

k∑
j=1

Pr [Aj] .

In a Probability Space (Ω,F ,Pr []), the set of basic events {Ei}ni=1

form a partition of Ω, i.e. they are mutually disjoint, therefore∑n
i=1 Pr [Ei] = 1 follows from 1 and 3.

Uniform distribution

In a discrete probability space, |Ω| = n, the uniform distribution
assigns to any basic event Ei , Pr [Ei] = 1

n .

Given a probability space we select uniformly at random (u.a.r.) an
element in Ω if we choose wiith equal probability among all basic
events.

Examples:
Flip 3 coins: |Ω| = 23 = 8, so probability of choosing u.a.r. :
Pr [000] = Pr [011] = 1/8.
If A is the event that we choose an element with two 1’s,
Pr [A] = Pr [011] + Pr [101] + Pr [110] = 3/8

More on events

In general, an event A is a collection of outcomes, i.e. A ⊆ Ω
Given an event A ⊆ Ω we define its probability:

Pr [A] =
∑
ω∈A

Pr [ω] ,

Example-1: Flip a fair coin. If it comes up heads, roll a 3-sided die;
if it comes up tails, roll a 4-sided die. What is the probability that
the die roll is at least 3?
Ω = {(H, 1), (H, 2), (H, 3), (T , 1), (T , 2), (T , 3), (T , 4)}, |Ω| = 7

As A = {(H, 3), (T , 3), (T , 4)}
⇒ Pr [A] = Pr [(H, 3)] + Pr [(T , 3)] + Pr [(T , 4)] = 5/12.

Examples

Example-2: We have a unit square S with side 1, and inside a circle
C centered at the central point of S and of radius r = 1/4. If we
throw u.a.r. a point to S, which is the probability it hits inside C?

The probability is = Area C
Area S = π(1/4)2 = 0.1965

Example-3: A bag contains 100 balls, 50 red and 50 blue. We
select 5 balls independently and u.a.r. What is the probability that
3 are blue and 2 are red?
The total number of outcomes |Ω| =

(100
5

)
. Therefore the

probability is: (50
3

)(50
2

)(100
5

) .

Some consequences of the probability properties

Given A,B,C ∈ F :

I Pr
[
Ā
]

= 1− Pr [A].

I If A ⊆ B then Pr [B] = Pr [A] + Pr [B\A] ≥ Pr [A].

I Pr [A ∪ B] = Pr [A] + Pr [B]− Pr [A ∩ B].
Pf. Events (A\B), (A\B) and (A ∩ B) are disjoint.

I Inclusion-Exclusion 3 events

Pr [A ∪ B ∪ C] = Pr [A] + Pr [B] + Pr [C]

− Pr [A ∩ B]− Pr [B ∩ C]− Pr [A ∩ C]

+ Pr [A ∩ B ∩ C] .

Inclusion-Exclusion and Union-Bound

Inclusion-Exclusion Given n events {A1, . . . ,An},

Pr [∪ni=1Ai] =
n∑

i=1

Pr [Ai]−
∑
i<j

Pr [Ai ∩ Aj]

+
∑

i<j<k

Pr [Ai ∩ Aj ∩ Ak]− · · · (−1)l+1
∑

i1<···<il

Pr
[
∩lr=1Air

]
.

Very useful upper-bound to the probability of non-exclusive events:
Trick 1: Union-Bound. Given non-independent events {Ai}ni=1,

Pr [∪ni=1Ai] ≤
n∑

i=1

Pr [Ai] .

Basic Example

Given a k-dimensional vector K [1, . . . , k] and a set
S = {1, 2, . . . , n}, where n >> k, we want to compute the
probability of having a random assignment to K , so that no two
integers in S are repeated.

We watn to compute:
(# assignments S → K without repeated integers)/(total # of assignments)

Total # of assignments S → K : nk

assignments to K without repeated integers:
n(n − 1)(n − 2) · · · (n − k + 1)

Therefore,

n(n−1)···(n−k+1)
nk

= n
n
n−1
n · · ·

n−k+1
n = 1 ·(1− 1

n) ·(1− 2
n) · · · (1− k−1

n)

where (1− j
n) is the probability of no-choosing the same integer in

K [j] that in any of the previous K [i] for 1 ≤ i < j .

Independent and correlated events

Given events A,B on Ω, the are said to be independent (mutually
independent) if if Pr [A ∩ B] = Pr [A]× Pr [B] , otherwise they are
said to be correlated or dependent.
Events A1,A2, · · ·An are independent if

Pr [A1 ∩ A2 ∩ · · · ∩ An] =
n∏

i=1

Pr [Ai] .

Notice the basic events in Ω are not independent, although they
are disjoint.
For example, if we flip a coin, and E1 is the event of (H), and E2 is
the event of (T), then Pr [E1]Pr [E2] = 1

4 6= 0 = Pr [E1 ∩ E2]

But if the experiment is flipping twice a coin and E1 is the event of
(H) in the 1st flip E2 = event of (H) in the 2nd. flip, then E1 and
E2 are independent.

Independent and correlated events

Toss 2 fair coins and consider the events: A, there is at least 1
head, and B, there is at least one tail.

Ω = {HH,TT ,TH,HT} ⇒ Pr [A] = 3
4 = Pr [B] = 3

4

but Pr [A ∩ B] = 2
4 6=

3
4
3
4 = 9

16

Therefore A and B, are dependent (correlated).

Sampling with replacement simplifies life

Important Example: We draw sequentially 2 cards from a deck with 52
cards, where 26 of the cards are red and the other half blue. Let R1 be
the event of drawing a red card on the first trial and R2 the event of
drawing a red card on the second trial.

If the draws are with replacement R1 and R2 are independent, if it is

without replacement R1 and R2 are not independent.

(25/51)

26/52

26/52

25/51

26/51

26/51

25/51

(26/52)(25/51)

(26/52)(26/51)

(26/52)(26/51)

(26/52) (26/52)

26/52

26/52

26/52

26/52

26/52

26/52

(26/52)(26/52)

(26/52)(26/52)

(26/52)(26/52)

(26/52)

Without replacement: Pr [R1 ∩ R2] = 26
52 ·

25
51 6= Pr [R1] · Pr [R2]

With replacement: Pr [R1 ∩ R2] = 26
52 ·

26
52 = Pr [R1] · Pr [R2]

Formal proof sampling without replacement are not
independent events

Draw sequentially 2 cards from a 52 deck. Let R1 be the event of drawing a red

card on the first trial and R2 the event of drawing a red card on the second

trial. If we draw without replacement, R1 and R2 are not independent.

Let B1 event of drawing a black card 1st. trial.

Recall: Pr [R1] = 26
52 and Pr [B1] = 26

52 .

Need Pr [R1 ∩ R2] =? Pr [R1]Pr [R2]

After R1, prob. drawing another R = 25
51 ⇒ Pr [R1 ∩ R2] = 26

52
25
51

So Pr [R then R] = 26
52

25
51 and Pr [B then R] = 26

52
26
51

⇒ Pr [R2] = 26
52

25
51 + 26

52
26
51 = 26

51 .

∴ Pr [R1 ∩ R2] =
26

52

25

51
6= 26

52

26

51
= Pr [R1]Pr [R2] .

Conditional probability

One of the important concepts in probability is conditioning, which
means revising probabilities on an event A based on partial
information that we know, i.e. based in another event B.

Flip 2 fair coins. Given that event B that one of them is H, what
is the probability of the even A that both of them are H?
Pr [A|B] = 1/3, as the information B reduces the probability space
to {TH,HT ,HH}, each one with probability 1/3.

Formal definition of conditional probability:

Pr [A|B] =
Pr [A ∩ B]

Pr [B]
=

Pr [B ∩ A]

Pr [B]
=

Pr [B|A]Pr [A]

Pr [B]
.

In previous ex.: Pr [A|B] = Pr[A∩B]
Pr[B] = 1/4

3/4 .

Alternative definition of independence:
A and B are independent iff Pr [A|B] = Pr [A].

The Russian roulette

Two people play one round of Russian roulette. The gun is a
revolver with six chambers, all empty. The players put two bullets
into adjacent chambers of the barrel. The first player takes the
gun and spins the barrel, then he puts the gun in his head and
pulls the trigger and no bullet!
He gives the gun to the second player. Which would be better for
the second player, to spin the barrel first, or just pull the trigger?

The Russian roulette

If player 2 spins the barrel, the probability of getting a bullet is
2/6 = 1/3 so the probability of survival is 1− 1/3 = 2/3, i.e
66.66%

If he does not spin the barrel, we are conditioning to the fact that
we are positioned right after one of the 4 empty chambers. Only
one of the empty chambers leads to one with a bullet. So the
probability of having a bullet is 1/4, therefore the probability of
non-having a bullet is 3/4 = 75%. So it is better no to spin the
barrel.

Total probability law

When dealing with conditional probability, it seems that first we
have to compute the probabilities involved in a random experiment,
and then we can calculate the conditional probabilities.
In practice we use conditional probabilities to reduce the
calculation of probabilities for events.

Total Probability Law If a set of events {Ei}ni=1 is a partition of
Ω and A ∈ F is a event, then

Pr [A] =
n∑

i=1

Pr [A ∩ Ei] =
n∑

i=1

Pr [A|Ei]Pr [Ei] .

Principle of deferred decisions

Not to assume that the entire set of random choices is made in
advance. Rather, at each step of the process concentrate only on
the random choices that are relevant to the algorithm outcome

When applicable it provides a simplified probability space to
perform the probabilistic analysis.

Analyzing the Clock Solitaire game

From MR 3.5
The Clock Solitaire game: randomly shuffle a standard pack of 52
cards. Then, split the cards into 13 piles of 4 cards each; label
piles as A, 2, . . . , 10, J, Q, K; take the first card from the “K”
pile; take the next card from the pile “X”, where X is the value of
the previous card taken; repeat until:

I either all cards removed (“win”)

I or you get stuck (“lose”)

We want to evaluate the probability of “win”.

Game termination?

The last card we take before the game ends (either winning or
loosing) is a “K”.

Let us assume that at iteration j we draw card X but the pile X is
empty (thus the game terminates).

Let X 6= K (i.e. we lose). Because pile X is empty and X 6= K , we
must have already drawn (prior to draw j) 4 X cards. But then, we
can not draw an X card at the jth iteration, a contradiction.

There is no contradiction if the last card is a “K” and all other
cards have been already removed (in that case the game
terminates with win).

Game win?

We win if the fourth “K” card is drawn at the 52 iteration.

Whenever we draw for the 1st, 2nd or 3rd time a“K” card, the
game does not terminate because the K pile is not empty so we
can continue.

When the fourth K is drawn at the 52nd iteration then all cards are
removed and the game’s result is “win”

The probability of win?

According to the previous observations

Pr{win} = Pr{4th “K” at the 52nd iteration}

=
#game evolutions: 52nd card = 4th “K”

#all game evolutions

Considering all possible game evolutions is a rather naive approach
since we have to count all ways to partition the 52 cards into 13
distinct piles, with an ordering on the 4 cards in each pile. This
complicates the probability evaluation because of the dependence
introduced by each random draw of a card.

We define another probability space that better captures the
random dynamics of the game evolution.

The principle of deferred decisions

Basic idea: rather than fix (and enumerate) the entire set of
potential random choices in advance, instead let the random
choices unfold with the progress of the random experiment.

In this particular game at each draw any card not drawn yet is
equally likely to be drawn.

A winning game corresponds to a dynamics where the first 51
random draws include 3 “K” cards exactly.

This is equivalent to draw the 4th “K” at the 52nd iteration.
So we “forget” how the first 51 draws came out and focus on the
52nd draw, which must be a “K”.

The probability of win

We actually have 13x4=52 distinct positions (13 piles, 4 positions
each) where 52 distinct cards are placed. This gives a total of 52!
different placements.

Each game evolution actually corresponds to an ordered
permutation of the 52 cards.

The winning permutations are those where the 52nd card is a “K”
(4 ways) and the 51 preceding cards are arbitrarily chosen (51!).
Thus:

Pr{win} =
4 51!

52!
=

4

52
=

1

13
.

A simpler way to get the same: The probability is 1
13 because of

symmetry (e.g. the type of the 52nd card is random uniform
among all 13 types).

The idea was to defer, i.e. first consider the last choice and then
conditionally the previous ones!

The probability of win

We actually have 13x4=52 distinct positions (13 piles, 4 positions
each) where 52 distinct cards are placed. This gives a total of 52!
different placements.

Each game evolution actually corresponds to an ordered
permutation of the 52 cards.

The winning permutations are those where the 52nd card is a “K”
(4 ways) and the 51 preceding cards are arbitrarily chosen (51!).
Thus:

Pr{win} =
4 51!

52!
=

4

52
=

1

13
.

A simpler way to get the same: The probability is 1
13 because of

symmetry (e.g. the type of the 52nd card is random uniform
among all 13 types).

The idea was to defer, i.e. first consider the last choice and then
conditionally the previous ones!

Checking matrix multiplication

Problem: Given 3 square matrices (n× n), A,B and C , we want to
see if A× B = C .
Easy solution: compute A× B and compare with C .

n × n matrix multiplication:

1. Naive algorithm: O(n3)

2. Strassen (1969): O(n2.81)

3. Coppersmith-Winograd (1987): O(n2.376)

4. Vassilevska (2015): O(n2.373)

Can we (randomly) check in O(n2) if A× B = C?

Freivald’s algorithm for checking if A× B = C (1977)

From MU 1.3, MR 3.5
Given n× n matrices A,B,C

Freivald(A,B,C)
choose u.a.r. r ∈ {0, 1}n
if A(Br) = Cr then

output true
else
output false

Choosing u.a.r. r can be done choosing independently with
probability 1/2 each of its n bits. This makes the probability of any
given r 1/2n, and the cost of generate the vector O(n).

The time complexity of Freivald’s is Θ(n2).
Notice: if AB = C the algorithm yields always the correct answer.
It could be that AB 6= C the algorithms may yield the wrong
answer (AB = C) with a certain probability
(ex: with prob.=1/2n, r = (0, 0, . . . , 0))

Error probability

Theorem If AB 6= C then Pr [A(B(r)) = Cr] ≤ 1
2

Proof
Neat trick: As AB 6= C taking D = AB − C , then D 6= (0).
⇒ ∃dij ∈ D s.t. dij 6= 0. W.l.o.g. assume d11 6= 0.
If ∃r s.t. A(Br)) = Cr then Dr = 0.
Dr = 0⇒

∑n
j=1 d1j rj = 0, but as d11 6= 0 then

r1 =
−
∑n

j=2 d1j rj

d11
.

Second trick: Choose r = (r1, . . . , rn) from rn to r1 and stop at r2,
just before choosing r1, which could be only 0 or 1.

Then the equality r1 =
−

∑n
j=2 d1j rj
d11

holds with prob. = 1/2

Notice that by considering rn, . . . , r2 to be fixed, we reduce the
sample space to r1 ∈ {0, 1}

Randomized algorithms and amplification

Notice Freivald’s algorithm finish always in finite time (Θ(n2)) but
may output the wrong answer. That type of randomized
algorithms are called Monte-Carlo algorithms.
Moreover Freivald’s also is a one side error, if AB = C we always
get the correct answer, but if AB 6= C we may get the wrong
answer with a ”small” probability.

One-side Monte-Carlo algorithms have the nice characteristic that
can be amplified: Each run of the algorithm can be considered as
an independent ”experiment”, so they can be repeated, at each
run we generate a new random choice, and by independence, each
run decreases the probability of error.

If we repeat k times Freivald’s algo. and each time we generate a
new v , the answer keep being true, the probability of error is
≤ 1/2k .

The Minimum Cut problem

In the mid 50’s Harris and Ross studied the railway links between
cities in the URSS and easter Europe and determined the easiest
way to break the network by removing edges. The minimum cut of
the graph.

The Minimum Cut problem

Given an undirected graph
G = (V ,E) a cut is a partition of
V in S and S̄ . The capacity of
the cut is the number of edges
with an end in S and the other in
S̄ . The min cut is the cut with
minimum capacity.

a

b c

de

Complexity for deterministic algorithms

I Using Ford-Fulkerson: Max Flow-Min-Cut O(n2m) or O(nm)
using J.Orlin’s algorithms from 2013.

I Stoer-Wagner’s algorithm (1994) O(nm + n2 lg n) (non-flow,
weighted graphs)

Monte-Carlo algorithm for the Min-Cut problem

D. Karger, 1993.

Contracting an edge in G
Given a connected undirected graph G = (V ,E), we want to
contract edges this operation will produce a graph with multiple
edges but without self-loops:

Contract (e = (u, v))

I replace u and v by a super-node w ,

I preserve edges, update endpoints of u and v to w ,

I avoid self-loops but keep parallel edges.

w

u v

a

b

g

c

d

h

a
c

g

w
d

hb

(u,v)

Given G , which
DS would you use
to implement
Contract(e)?

Karger’s algorithm

Karger (G = (V ,E))
while |V | > 2 do

Chose u.a.r. ei = (u, v) ∈ E
G =Contract(ei)

return the edges between the 2 remaining vertices

Min cut=2

a

c d

A

da

B

a

b e

dc

a

c d

A

Pr=1/7 Pr=1/6

da

B

Pr=1/4

a D

Karger’s algorithm

Karger (G = (V ,E))
while |V | > 2 do

Chose u.a.r. ei = (u, v) ∈ E
G =Contract(ei)

return the edges between the 2 remaining vertices

Min cut=2

a

c d

A

da

B

a

b e

dc

a

c d

A

Pr=1/7 Pr=1/6

da

B

Pr=1/4

a D

Karger’s algorithm

Karger (G = (V ,E))
while |V | > 2 do

Chose u.a.r. ei = (u, v) ∈ E
G =Contract(ei)

return the edges between the 2 remaining vertices

Min cut=4

Pr=1/6

a

C

a

b e

dc

a

c d

Pr=1/7

a

c d

B B

BB
Pr=1/5

Pr=1/6

a

C

A

C

Analysis of the algorithm

The running time of the algorithm is Θ(n2).

Assume G , with |V | = n has a min-cut set C ⊆ E of size k.

Notice:

I Any cut in a contracted graph is a cut in the initial graph,

I Karger’s returns a cut,

I A contraction eliminates all the set of edges among the
identified vertices.

I Karger’s might provide a cut that is not of minimum size.

Theorem
Karger’s algorithm returns a min-cut with probability ≥ 2/n2.

Proof of the Theorem

I Let C be a min -cut of G , assume that |C | = k

I Let Gi be the graph after i contractions, Gi has n − i nodes.

I If no e ∈ C has been contracted then C is still a min-cut of
Gi , so
⇒ |E (Gi)| ≥ nk

2 (as then, ∀v ∈ V (Gi), v is adjacent to at
least k edges)

I Let Ei be the event none of the edge(s) contracted at the
i-iteration is in E and let Fi = ∩ij=1Ei i.e. no edge in E ∗

contracted in the first i iterations.

Proof of the Theorem

I We want to compute Pr [Fn−2] probability of success.

I Notice Pr [E1] = Pr [F1] ≥ 1− 2k
nk

As C = k all vertices in G must have degree ≥ k ,
|E (G)| ≥ nk/2. So 1st contracted edge chosen u.a.r. among
the ≥ nk/2 edges and |C | = k)

I The Pr [E2|F1] ≥ 1− k
k(n−1)/2 ≥ 1− 2/(n − 1)

If 1st. contraction did not eliminate an edge in C (i.e
conditioning on F1), we are left with |V (G1)| = n − 1 and
|E (G1)| ≥ k(n − 1)/2, again deg(v) ≥ k

I Working iteratively, Pr [Ei |Fi−1] ≥ 1− 2
(n−i+1) .

Proof of the Theorem

From Pr [A ∩ B] = Pr [A|B]Pr [B]:

Pr [Fn−2] = Pr [En−2 ∩ Fn−3])

= Pr [En−2 | Fn−3]Pr [Fn−3]

= Pr [En−2|Fn−3]Pr [En−3|Fn−4] . . .Pr [E2|F1]Pr [F1]

≥
n−2∏
i=1

(
1− 2

n − i + 1

)
=

n−2∏
i=1

(
n − i − 1

n − i + 1

)
= (

n − 2

n
)(
n − 3

n − 1
)(
n − 4

n − 2
) · · · (3

5
)(

2

4
)(

1

3
)

=
2

n(n − 1)
2

Amplification

To increase the probability of success, run Karger’s algorithm
several times.

Theorem
If we run Karger’s min-cut algorithm n(n − 1) lg n times and
output the smallest cut found in all the runs the probability of
failure (it is not the global min-cut) is ≤(

1− 2

n(n − 1)

)n(n−1) lg n
≤ e−2 lg n =

1

n2
.

The proof is straightforward using the definition of e−1

