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Stationary distribution: Writing a research paper

Recall that Markov Chains are given either by a weighted digraph,
where the edge weights are the transition probabilities,
or by the |S | × |S | transition probability matrix P,

Example: Writing a paper S = {r ,w , e, s}
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

r 0.5 0.3 0 0.2
w 0.2 0.5 0.1 0.2
e 0.1 0.3 0.3 0.3
s 0 0.2 0.3 0.5
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Stationary distributions: Writing a paper

Suppose in the writing a paper example, the t is measured in
minutes.

To see how the Markov chain will evolve after 20 minutes i.e.
Pr [X20 = s|X0 = r ] we must compute P20, and to see if 5’
later Pr [X25 = s|X20 = s].

Vectors π0P
20 and π′0P25 may be almost identical.

This indicates that in the long run, the starting state doesn’t
really matter,

which implies that after a sufficiently long t: πt = πt+k , it
doesn’t change when you do further steps, and this is
independent of the initial distribution.

That is, for sufficient large t, the vector distribution converges
to a π, πt+1 = πtP, i.e., ⇒ π = πP.
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Stationary distributions

A probability vector π is called a stationary distribution over S for
P if it satisfies the stationary equations

π = πP.

If a MC has a stationary distribution π, running enough time the
MC, the PMF for every Xt , will be close to π.
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How to find the stationary distribution

Given a finite MC with finite set of states k = |S |, let P be the
k × k matrix of transition probabilities.

The stationary distribution π = (π[1], . . . , π[k]) over S , where
πi = π[si ]. is defined by

(π[1], . . . , π[k]) = (π[1], . . . , π[k])P.

Therefore we have a system of k unknowns with k equations plus
an extra equation:

∑k
i=1 π[i ] = 1.
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Stationary distributions: Example

In the writing a paper problem, we can transform π = πP into 5
equations to get the value of π:

(π[t], π[w ], π[e], π[s]) = (π[t], π[w ], π[e], π[s])


0.5 0.3 0 0.2
0.2 0.5 0.1 0.2
0.1 0.3 0.3 0.3
0 0.2 0.3 0.5



π[r ] = .5π[r ] + .2π[w ] + .1π[e],

π[w ] = .3π[r ] + .5π[w ] + .3π[e] + .2π[s],

π[e] = .1π[w ] + .3π[e] + .3π[s],

π[s] = .2π[r ] + .2π[w ] + .3π[e] + .3π[s],

1 = π[r ] + π[w ] + π[e] + π[s],

which yields, π = (0.170732, 0.336043, 0.181572, 0.311653).
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Stationary distributions

Notice that {π[1], . . . π[n]} means π is a left eigenvector of P
with eigenvalue=1.

A Markov Chain with k states and transition matrix P, it has
a set of k + 1 stationary equations with k unknowns
{π[1], . . . π[n]}, which are given by π = πP together with∑k

u=1 π[u] = 1:

π[u] =
∑k

v=1 π[v ]Pvu, ∀1 ≤ v ≤ k

Linear algebra tells us that such a system either has a unique
solution, or infinitely many solutions.

We want a unique stationary distribution, so we will give
conditions for MC that have a unique π.

However, for MC with a huge number of states, it is a
problem to get the stationary distribution by solving stationary
equations.
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Properties of Markov chains: Recurrent

We would like to know which properties a Markov chain should have to

assure the existence of a unique stationary distribution, i.e. that

limt→∞ Pt → a stable matrix.

A state is defined to be recurrent if any time that we leave the
state, we will return to it with probability 1.

Formally, if at time t0 the MC is in state s, s is recurrent if the
probability that ∃t > 0 such that Xt0+t = s is 1. Otherwise the
state is said to be transient.

A MC is said to be recurrent if every state is recurrent.

Intuitively, transience attempts to capture how ”connected” a state
is to the entirety of the Markov chain. If there is a possibility of
leaving the state and never returning, then the state is not very
connected at all, so it is known as transient.
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More on Recurrent and Transient MC

Alternatively, given a MC {Xt} with state set S , a u ∈ S is
transient if for t > 0,
Pr [Xt = u for infinitely many t |X0 = u] = 0.
A v ∈ S is recurrent if for t > 0,
Pr [Xt = u for infinitely many t |X0 = u] = 1.

RECURRENT: a,b,d,e,f
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For transient state, the number of times the chain visits s when
starting at s is given by a geometric random variable in G (p),
where p =

∑
t≥1 P

t
s,s .
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Properties of Markov chains: Positive recurrent state

A recurrent state u has the property that the MC is expected to
return to u an infinite number of times.
However, when restricting to finite time the MC may not return to
u in a finite number of steps, which contradicts the intuition for
recurrence.
We need a further finer classification of recurrence states:
If Xt = u define τu = min{t̂ |Xt+t̂ = u}, as the first return time to
u.
Define a recurrent state u to be positive recurrent if
E [τu|X0 = u] <∞. Otherwise u is said to be null recurrent state.

A MC with all states positive recurent.
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1/2
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B

C
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Properties of Markov chains: Periodicity

Define the period of sj ∈ S as d(sj) = gcd{t ∈ Z+ |Pn
sj ,sj

> 0}.
So from sj the chain can return to sj in periods of d(sj).

Define sj to be periodic if d(sj) > 1, and sj to be aperiodic if
d(sj) = 1.

A Markov chain P is periodic if every state is periodic, otherwise it
is aperiodic.
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Periodicity: 1st. example

A state u in a MC has period=t if only comes back to itself every
t steps i.e. P i

u,u = 0, ∀i = t, 2t, 3t, . . .. Otherwise, the state is said
to be aperiodic.

C and D aperiodics

1/2 1/2

DA  B C  

1

1 1
A,B periodic with period=2

Notice for the left side Markov chain:

P =

(
0 1
1 0

)
,P2 =

(
1 0
0 1

)
,P3 =

(
0 1
1 0

)
, . . .

⇒ limt→∞ Pt does not exist.
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Periodicity: 1st. example

However, this specific Markov chain has a unique stationary
distribution π = (1/2, 1/2)

Using balence eq. (π[A], π[B]) = (π[A], π[B])×
(

0 1
1 0

)

π[A] = 0π[A] + 1π[B]

π[B] = 1π[A] + 0π[B]

1 = π[A] + π[B]

we get π[A] = 1/2 and π[B] = 1/2.

If a MC has at least one state s with self-transition Ps,s > 0 then
the chain is aperiodic.
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How to check if a MC is aperiodic

Given an irreducible MC with a finite number of states,

1 If there is at least one self-transition Pi ,i in the chain, then
the chain is aperiodic.

2 If you can return from i to i in t steps and in k steps, where
gcd(t, k) = 1, then state i is aperiodic.

3 The chain is aperiodic if and only if there exists a positive
integer k s.t. all entries in matrix Pk are > 0 (for all pair of
states (i , j) then Pk

i ,j > 0).
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Properties of Markov chains: Reducibility and irreducibility

1a b c
1/21/2

1

This MC is sensitive to initial state.
In this MC, ∀t, limt→∞ Pt exists,

P t =

 1 0 0
1/2 0 1/2

0 0 1

 ,

Solving the stationary equations

(π[1], π[2], pi [3]) = (π[1], π[2], pi [3])×

 1 0 0
1/2 0 1/2

0 0 1

 ,

it turns out that we have infinite many stationary distributions

π = (p, 0, 1− p).
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Properties of Markov chains: Irreducibility

A finite Markov chain P is irreducible if its graph representation W
is strongly connected.
In irreducible W , the system can’t be trapped in small subsets of S
.

1/3

IRREDUCIBLENo−IRREDUCIBLE

1/2

1/2
1/2

1/2

1/2 1/2

1/2 1/21/3
1/3

For finite Markov chains, an irreducible Markov chain is also
denoted as ergodic.

RA-MIRI Markov Chains: stationary distribution



Stationary distribution
MC Monte Carlo technique

Reversible MC
Expected first passage

Some relations among the previous classes of MC

If P is irreducible and contains a self-loop, then P is also
aperiodic.

If in a finite MC P all its states are irreducible then all the
states are positive recurrent.

If P is irreducible and finite all its states are positive recurrent,
then the Markov chain has a unique stationary distribution.
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Regular Markov Chain

A matrix A is defined to be regular if there is an integer n > 0 such
that An contains only positive entries.

A Markov chain is a regular Markov Chain if its transition
probability matrix P is regular.

Consider the following example:

0.3 A B

1

0.7

P =

(
0.3 0.7
1 0

)
P2 =

(
0.79 0.21
0.3 0.07

)
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Properties of Regular MC

A finite state Markov Chain is regular if ∃t <∞ such that for all
states i , j , Pt

i ,j > 0.

Notice that if a finite state MC is irreducible that means that for
every pair of states i , j there is a t ′ s.t. Pt′

i ,j > 0. If the MC is also

aperiodic there is a value k s.t. for all pair of states (i , j), Pk
i ,j > 0,

which is exactly the definition of being regular. Therefore

Theorem A finite state Markov chain is irreducible and aperiodic if
and only if it is regular.

1/2

A

B C

2/3 1/3

1/2

1/2

1/2

RA-MIRI Markov Chains: stationary distribution



Stationary distribution
MC Monte Carlo technique

Reversible MC
Expected first passage

Markov Chains: An issue about names

For finite state Markov chains, many people denotes a that is
aperiodic, irreducible, and positive recurrent as ergodic, as for
instance in MU.

However in this slides we use regular for finite MC that are
aperiodic, irreducible, and positive recurrent, and reserve the
name ergodic for irreducible MC.

The mathematical reason for do so is nicely explained in the
link:
https://math.stackexchange.com/questions/152491/

is-ergodic-markov-chain-both-irreducible-and-aperiodic-or-just-irreducible

However for infinite MC regularity is not easy to define.

RA-MIRI Markov Chains: stationary distribution
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Fundamental Theorem of Markov Chains

Any finite, irreducible and aperiodic Markov chain P (i.e. regular)
has the following properties:

1 The chain has a unique stationary distribution

π = (π[0], π[1], π[2], . . . , π[n]).

2 limt→∞ Pt exists and its row are copies of the stationary
distribution π.

Recall that any finite state MC has a stationary distribution, but it
may not be unique.
If we have a a periodic state i , π[i ] is not necessarily the limit
probability of being in state i , but the frequency of being in state i .
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Sampling independent sets

Markov Chain Monte Carlo technique

The Monte Carlo methods are a collection of tools for estimating
values through sampling and simulations.

The Markov Chain Monte Carlo technique (MCMC) is a particular
technique to sample from a desired probability distribution.

MCMC for sampling
Input: A large, but finite, set S (matching, coloring, independent
sets), a weight function w : S → R+;
Objective: Sample u ∈ S , from a given probability distribution
given by w ,

π[u] ∼ w(u)∑
v∈S w(v)

Technique: Construct and ad-hoc MC which converges to the
distribution we want.
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Sampling independent sets

Why the MCMC sampling is important?

Examining typical members of a combinatorial set (random
graphs, random formulas, etc.)

Approximate Counting: Counting the number of IS
(matching, cliques, k-colorings, etc.) in a graph.

Guessing the number of people, with a certain property, in a
very large crowd.

Combinatorial optimization, in particular heuristics.
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Sampling independent sets

Technique

Given a state space S (|S | may be very large) to form the MC,
which is regular (or better symmetric):

1 Connect the state space.

2 Define carefully the transition probabilities.

3 Starting at any state u follow the MC until arriving to the
stationary distribution π
The simpler case is to aim for π be the uniform distribution.

4 Bound the maximal number streps we need to walk until
arriving to π.
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Sampling independent sets

Example: Sample the set of independent vertices in G

Given a graph G = (V ,E ) the I ⊆ V is independent set if there is no

edge between any two vertices in I .

Consider the Markov chain on all the set of independent subsets of
V , generated by:

We want to sample IS from the

uniform distribution

Must define the appropriated

transition probabilities
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Sampling independent sets

Example: Sampling IS in G

Given G = (V ,E )
I0 is an arbitrary independent set in G
To go from an independent set It to It+1

choose u.a.r. v ∈ V
if v ∈ It then It+1 = It\{v}
if v 6∈ It and adding v still independent, It+1 = It ∪ {v}
Otherwise It+1 = It
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Sampling independent sets

Example: Sampling IS in G

We have a G = (V ,E ) and n = |V |, An we have a set S of
state, each state an independent subset of V . So |S | ∼ 2n.

In the MC graph every state I ∈ S of differs from its neighbors
N (I ) in one vertex. Therefore, if ∆ = max{d(I )|l ∈ S} the
maxim number of neighbors of any state in the MC is ≤ ∆.

We have to define formally the transition probabilities
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Sampling independent sets

Transition probabilities for the MC on IS

Take for any Ii , Ij ∈ S , PIi ,Ij = 1/∆ = 1/n.
For Ii ∈ S , with probability 1/n choose v ∈ V :

If Ii ∪ {v} is not independent, stay in Ii .

If {v} in Ii go to new state Ij without v .

If {v} is not in Ii and form an i.s. adding v , i.e. go to Ij .
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Sampling independent sets

Example: Sampling IS in a G

e

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

2/3

1/3

1/3

a

b

c

d P =

a b c d e


a 0 1/3 1/3 0 1/3
b 1/3 1/3 0 1/3 0
c 1/3 0 1/3 1/3 0
d 0 1/3 1/3 1/3 0
e 1/3 0 0 0 2/3

π = (1/5, 1/5, 1/5, 1/5, 1/5)
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Sampling independent sets

Sampling IS in a G

Given G = (V ,E ), |V | = n, and want to sample uniformly from all
the N independent sets of vertices in G , including the set with 0
elements.

Make a random walk on a Markov chain on the finite but large
state space S = {I1, I2, . . . , IN}, of all independent vertices in G .

Two states Ii , Ij are directly connected iff their size differs in one
vertex, i.e. if their Hamming distance |Ii ⊕ Ij | = 1.
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Sampling independent sets

Sampling independent vertex in a G

The transition matrix P:

PIi ,Ij =


1
n if |Ii ⊕ Ij | = 1

1− N (Ii )
n if |Ii | 6= 0

0 otherwise.

Notice, P is aperiodic (self-loops) and irreducible (connected) so it
converges to a stationary distribution.

Moreover, as PIi ,Ij = PIj ,Ii then P is symmetric and therefore it has
a uniform stationary distribution (1/N, 1/N, 1/N, . . . , 1/N).

How long do we have to walk to get the stationary distribution?
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definition
Kolmogorov’s loop criterium
Random walk

Reversible Markov Chain

For regular MC limt→∞ Pt has all rows the same: the
stationary π.

If |S | small, we can compute π by solving the stationary
equations: π = πP.

There is a nice property for MC, which makes more easy to
compute the stationary distribution π of those MC: The
reversibility.
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definition
Kolmogorov’s loop criterium
Random walk

Reversible Markov Chain

Intuitively assume the MC below has the appropriate
probabilities to have stationary distribution π. Then. for
sufficiently large t, pt+1

B,C = π[B]Pt
B,C (red), and

pt+1
C ,B = π[C ]Pt

C ,B (blue).

So in stationary distribution, the rate B → C = rate C → A,
and this holds for every pair of adjacent states.
i.e. For such MC, ∀u, v ∈ S π[u]Pu,v = π[v ]Pv ,u.

DA B C

If a MC P has a stationary distribution π, this means π is the joint
PMF for X0,X1, . . . ,Xn. Assume that we run backwards the
process: as well Xn,Xn−1, . . . ,X0, an π is also the joint PMF of
this time-reversal process. Then we say that the MC is reversible.
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definition
Kolmogorov’s loop criterium
Random walk

Reversible Markov Chain

Given a Markov Chains P, with a finite state S and a unique
stationary distribution π, we say that the Markov Chain is time
reversible if for all pair u, v ∈ S , it satisfies the balance equations:

π[u]Pu,v = π[v ]Pv ,u.

The name reversible is due to the fact that we can run the MC in
the reverse and we have the same values.

The next theorem shows that if the balance equation holds for
some distribution π̂ then it must be a stationary distribution
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definition
Kolmogorov’s loop criterium
Random walk

Reversible Markov Chain

Theorem Let P be Markov Chain with estates S . If π is a
probability vector satisfying the balance equations
π[u]Pu,v = π[v ]Pv ,u,∀u, v ∈ S , then π is a stationary distribution.

Proof: Check the stationary distribution holds, i.e. π = πP

(πP)[v ] =
∑
u∈S

π[u]Pu,v =
∑
u∈S

π[v ]Pv ,u

=π[v ]
∑
u∈S

Pv ,u = π[v ]. 2

Given a finite-state MC, which is reversible, to find a stationary
distribution: Solve the balance equations together with the
equation

∑
v∈S π[v ].
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definition
Kolmogorov’s loop criterium
Random walk

What happens if the Markov Chain is not reversible

Not all Markov Chains are time reversible.

If there is no solution to the time reversibility equations , the way
to find πc is to use the stationary equations, which always yield a
solution (provided the state-space in not too large).

The following MC is not reversible:

1/3
A B

C

2/3

1/3

2/3
1/3

2/3

To prove it, find the stationary distribution π = (1/3, 1/3, 1/3)
and notice that π[B]PB,C = 2

9 6=
1
6 = π[C ]PC ,B .

RA-MIRI Markov Chains: stationary distribution



Stationary distribution
MC Monte Carlo technique

Reversible MC
Expected first passage

definition
Kolmogorov’s loop criterium
Random walk

Testing if a MC is reversible: Kolmogorov’s loop criterion

It is desirable to verify reversibility before finding the stationary
vector π.
Recall A MC is reversible if for every finite sequence of states
i0, i1, i2, . . . ik we have pi0,i1pi1,i2 · · · · pik−1,ikpik ,i0 = pi0,ik · · · pi1,i0
Kolmogorov’s loop criterion: A Markov transition matrix P is
reversible iff for every loop of distinct states, the forward loop
probability product equals the backward loop probability product.

But for large number of states n, the number of loops could be
exponential.
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definition
Kolmogorov’s loop criterium
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Kolmogorov’s loop criterion

A two-state MC is always reversible as p1,2p2,1 = p2,1p1,2.

If P is symmetric (bistochastic), then. pi ,j = pj ,i , ∀i , j ∈ S ,
Kolmogorov’s criterion is satisfied and P is reversible.

If the zeros in a regular MC P are not symmetric, then the
chain is not reversible:

There is a nice algorithm based in matrix operations to check
if a MC P is reversible. Brill, Cheung, Hlynka, Jiang:
Reversibility checking for Markov chains, Comm. on
Stochastic Analysis, 12: 2, 129–135, (2018)

RA-MIRI Markov Chains: stationary distribution



Stationary distribution
MC Monte Carlo technique

Reversible MC
Expected first passage

definition
Kolmogorov’s loop criterium
Random walk

Symmetric matrix

As said P is symmetric (∀i , j ∈ S then Pi ,j = Pj ,i ) the MC is
reversible.
Lemma If P is symmetric then it has a unique stationary
distribution π which is the uniform distribution, i.e.
∀i ∈ S , π[i ] = 1/n, where n = |S |.
Proof A regular MC with symmetric transition matrix is also
reversible.
Then ∀i , j ∈ S , π[i ]Pi ,j = π[j ]Pj ,i ⇒ π[i ] = π[j ]. If we have n
states each with the same stationary distribution then
π = (1/n, . . . , 1/n) 2

As a symmetric transition matrix P is also double stochastic we
also can state that: If we have that the transition matrix P of a
Markov chain is stochastic then the MC has unique stationary
distribution π which is the uniform distribution.
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definition
Kolmogorov’s loop criterium
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Example: Random walk on a graph

Given G by its adjacency matrix, a walker moves to a randomly
from vertex i to a neighbor with probability 1/d(i).

G =


0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0


Interpret random walks on G as a Markov chain and give the

transition matrix P.

1/3

1 4

2 3

1/2

1/3

1/2

1/2

1/2

1/3

1/3

1/3

1/3 P =


0 1/2 0 1/4

1/3 0 1/3 1/3
0 1/3 0 1/3

1/3 1/3 1/3 0


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definition
Kolmogorov’s loop criterium
Random walk

Example: Random walk on a graph

Is P reversible?

Notice all non-diagonal 0s in P are symmetric.
There are 3 loops: (a) (1→ 2→ 4→ 1) (b) (2→ 3→ 4→ 2),
(c) (1→ 2→ 3→ 4→ 1).
For the (a), (b) and (c) Markov’s loop criteria works, so yes.

Using the previous fact determine the stationary distribution of the
MC.
As it is reversible, using the balance equations:

π[1]

2
=
π[2]

3
;
π[2]

3
=
π[3]

2
;

π[2]

3
=
π[4]

3
; 1 = π[1] + π[2] + π[3] + π[4];

We get
π = (15 ,

3
10 ,

1
5 ,

3
10)
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Number of steps: Expected first passage

Given a regular Markov chain with a set S of states , |S | = r , and
a unique stationary distribution π,

We want to compute the expected first recurrence time for u ∈ S ,
hu,u,
i.e. the expected number of steps we need so that starting from u
we return for first time to return to u.
Intuitively, in the long run we expect the MC to be in state u a
fraction of π[u], so hu,u ∼ 1/π[u]

The expected first passage from u to v is denoted hu,v . and
denoted mean first passage time.

In the particular case of random walks hu,v is denoted as the
hitting time.
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Computing hu,u using π

Theorem. In a finite, regular Markov chain with |S | = r and a
unique stationary distribution π, for u ∈ S

hu,u =
1

π[u]
.

This technique is important and it is called first step analysis: it
consist in breaking down the possibilities resulting from the first
step in the MC.
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Proof of the Theorem

Proof For u, v ∈ S , huv = E [# steps u → v ] =∑k
w=1 Pu,wE [# steps u → v |1st. step u → w ]

Two cases for w :

(w = v) Then the expected time u → v is 1.

(w 6= v)

RA-MIRI Markov Chains: stationary distribution
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Proof of the Theorem

(w 6= v) We take 1 step v → w . By the Markovian property, we
have to concentrate in state w :

huv = Pu,v +
∑
w 6=v

Pu,w (1 + E [time from w → v ]︸ ︷︷ ︸
hw,v

)

= Pu,v +
∑
w 6=v

Pu,w (1 + hwv )

= Pu,v − Pu,v (1 + hvv ) +
r∑

w=1

Pu,w (1 + hwv )

= −Pu,vhvv︸ ︷︷ ︸
3

+
k∑

w=1

Pu,w (1 + hwv )︸ ︷︷ ︸
∗

(1)
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Proof of the Theorem: Term (∗)

Let J be the k × k matrix of 1’s, then 1 + hwv = (J + H)[w , v ],
where H = (hv ,u):1 1 1

1 1 1
1 1 1

+

hAA hAB hAC
hBA hBB hBC
hCA hCB hCC

 =

1 + hAA 1 + hAB 1 + hAC
1 + hBA 1 + hBB 1 + hBC
1 + hCA 1 + hCB 1 + hCC


k∑

w=1

hu,w (1+hwv ) =
k∑

w=1

H[u,w ](J+H)[w , v ] = (H×(J+H))[w , v ].

So the sum is just the entry (w , v) in the matrix H × (J + H).
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Proof of the Theorem: Term (3)

Introduce r × r diagonal matrix D, where Dv ,v = hv ,v ,
so Pu,vhv ,v = (P × D)[u, v ].1/3 1/3 1/3

1/2 0 1/2
1/2 1/2 0

×
hAA 0 0

0 hBB 0
0 0 hCC

 =

hAA/3 hBB/3 hCC/3
hAA/2 0 hCC/2
hAA/2 hBB/2 0


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Ending the proof

Substituting 3 and ∗ in equation (1):
hu,v = −(P × D)[u, v ] + (H × (J + M))[n, v ].

As it is true ∀(u, v), we have
H = −PD + P(J + H) = −PD + PJ + PH

Multiply both sides by the stationary distribution:
πH = −πPD + πPJ + πPH.
But by the stationary equation: πP = π
⇒ πH = −πD + πJ + πH ⇒ πD = πJ

Notice πJ is just the k-dimensional vector (1, 1, . . . , 1)
(
∑

i π[i ] = 1)

πD = (π[1]h11, π[2]h22, . . . , π[k]hkk)⇒ π[u] = 1
hu,u

2
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