Markov Chains and Random Walks

RA-MIRI

QT Curs 2020-2021

RA-MIRI Markov Chains and Random Walks

イロト イヨト イヨト イヨト

臣

- A stochastic process is a sequence of random variables ${X_t}_{t=0}^n$.
- Usually the subindex t refers to time steps and if $t \in \mathbb{N}$, the stochastic process is said to be discrete.
- The random variable X_t is called the state at time t.
- If n < ∞ the process is said to be finite, otherwise it is said infinite.
- A stochastic process is used as a model to study the probability of events associated to a random phenomena.

Model used to evaluate insurance risks.

- You place bets of 1€. With probability p, you gain 1€, and with probability q = 1 - p you loose your 1€ bet.
- You start with an initial amount of 100€.
- You keep playing until you loose all your money or you arrive to have 1000€.

Model used to evaluate insurance risks.

- You place bets of 1€. With probability p, you gain 1€, and with probability q = 1 - p you loose your 1€ bet.
- You start with an initial amount of $100 \in$.
- You keep playing until you loose all your money or you arrive to have 1000€.
- One goal is finding the probability of winning i.e. getting the 1000€.

A B K A B K

Model used to evaluate insurance risks.

- You place bets of 1€. With probability p, you gain 1€, and with probability q = 1 - p you loose your 1€ bet.
- You start with an initial amount of $100 \in$.
- You keep playing until you loose all your money or you arrive to have 1000€.
- One goal is finding the probability of winning i.e. getting the 1000€.

Notice in this process, once we get $0 \in$ or $1000 \in$, the process stops.

A (10) × (10)

One simple model of stochastic process is the Markov Chain:

- Markov Chains are defined on a finite set of states (S), where at time t, Xt could be any state in S, together with by the matrix of transition probability for going from each state in S to any other state in S, including the case that the state Xt remains the same at t + 1.
- In a Markov Chain, at any given time t, the state X_t is determined only by X_{t-1}.
 memoryless: does not remember the history of past events,
 Other memoryless stochastic processes are said to be Markovian.

- You place bets of 1€. With probability p, you gain 1€, and with probability q = 1 - p you loose your 1€ bet.
- You start with an initial amount of $100 \in$.
- You keep playing until you loose all your money or you arrive to have 1000€.

< 回 > < 三 > < 三 >

- You place bets of 1€. With probability p, you gain 1€, and with probability q = 1 - p you loose your 1€ bet.
- You start with an initial amount of $100 \in$.
- You keep playing until you loose all your money or you arrive to have 1000€.
- We have a state for each possible amount of money you can accumulate $S = \{0, 1, \dots, 1000\}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- You place bets of 1€. With probability p, you gain 1€, and with probability q = 1 - p you loose your 1€ bet.
- You start with an initial amount of $100 \in$.
- You keep playing until you loose all your money or you arrive to have 1000€.
- We have a state for each possible amount of money you can accumulate $S = \{0, 1, \dots, 1000\}$.
- The probability of losing/winning is independent on the state and the time, so this process is a Markov chain.

イロト イポト イヨト イヨト

- You place bets of 1€. With probability p, you gain 1€, and with probability q = 1 - p you loose your 1€ bet.
- You start with an initial amount of $100 \in$.
- You keep playing until you loose all your money or you arrive to have 1000€.
- We have a state for each possible amount of money you can accumulate $S = \{0, 1, \dots, 1000\}$.
- The probability of losing/winning is independent on the state and the time, so this process is a Markov chain.
- Observe that the number of states is finite.

・ 同 ト ・ ヨ ト ・ ヨ ト

- One of the simplest forms of stochastic dynamics.
- Allows to model stochastic temporal dependencies
- Applications in many areas
 - Surfing the web
 - Design of randomizes algorithms
 - Random walks
 - Machine Learning (Markov Decision Processes)
 - Computer Vision (Markov Random Fields)
 - etc. etc.

A B K A B K

A finite, time-discrete Markov Chain, with finite state $S = \{1, 2, ..., k\}$ is a stochastic process $\{X_t\}$ s.t. for all $i, j \in S$, and for all $t \ge 0$,

 $\Pr[X_{t+1} = j | X_0 = i_0, X_1 = i_1, \dots, X_t = i] = \Pr[X_{t+1} = j | X_t = i].$

A 3 6 A 3 6 6 7

A finite, time-discrete Markov Chain, with finite state $S = \{1, 2, ..., k\}$ is a stochastic process $\{X_t\}$ s.t. for all $i, j \in S$, and for all $t \ge 0$,

$$\Pr[X_{t+1} = j | X_0 = i_0, X_1 = i_1, \dots, X_t = i] = \Pr[X_{t+1} = j | X_t = i].$$

We can abstract the time and consider only the probability of moving from state *i* to state *j*, as $\Pr[X_{t+1} = j | X_t = i]$

MC: Transition probability matrix

For $v, u \in S$, let $p_{u,v}$ be the probability of going from $u \rightsquigarrow v$ in q steps i.e. $p_{u,v} = \Pr[X_{s+1} = v | X_s = u]$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

MC: Transition probability matrix

For $v, u \in S$, let $p_{u,v}$ be the probability of going from $u \rightsquigarrow v$ in q steps i.e. $p_{u,v} = \Pr[X_{s+1} = v | X_s = u]$.

 $P = (p_{u,v})_{u,v \in S}$ is a matrix describing the transition probabilities of the MC

P is called the transition matrix

▲ 国 ▶ | ▲ 国 ▶ | |

MC: Transition probability matrix

For $v, u \in S$, let $p_{u,v}$ be the probability of going from $u \rightsquigarrow v$ in q steps i.e. $p_{u,v} = \Pr[X_{s+1} = v | X_s = u]$.

 $P = (p_{u,v})_{u,v \in S}$ is a matrix describing the transition probabilities of the MC P is called the transition matrix P also defines digraph, possibly with loops.

Gambler's Ruin: MC digraph

- You place bets of 1€. With probability p, you gain 1€, and with probability q = 1 - p you loose your 1€ bet.
- You start with an initial amount of *i* € and keep playing until you loose all your money or you arrive to have *n*€.
- We have a state for each possible amount of money you can accumulate S = {0, 1, ..., n}.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Gambler's Ruin: MC digraph

- You place bets of 1€. With probability p, you gain 1€, and with probability q = 1 - p you loose your 1€ bet.
- You start with an initial amount of *i* € and keep playing until you loose all your money or you arrive to have *n*€.
- We have a state for each possible amount of money you can accumulate S = {0,1,...,n}.

Transition matrix: Example

Notice the entry (u, v) in P denotes the probability of going from $u \rightarrow v$ in one step.

Notice, in a MC the transition matrix is stochastic, so sum of transitions out of any state must be 1.

For $v, u \in S$, let $p_{u,v}^t$ be the probability of going from $u \rightsquigarrow v$ in exactly t steps i.e. $p_{u,v}^t = \Pr[X_{s+t} = v | X_s = u]$.

Formally for $s \ge 0$ and t > 1, $p_{u,v}^t = \Pr[X_{s+t} = v | X_s = u]$.

A times, we may use i $P_{u,v}^t$ to indicate entry (u, v) in the matrix P, i.e $p_{u,v}^t = P_{u,v}^t = \Pr[X_{s+t} = v \mid X_s = u]$.

How can we relate P^t with P?

A B N A B N

The powers of the transition matrix

In ex. $\Pr[X_1 = C | X_0 = A] = P_{A,C}^1 = 1/3.$ $\Pr[X_2 = C | X_0 = A] = P_{AB}^1 P_{BC}^1 + P_{AC}^1 P_{CC}^1 = 1/3 + 1/6 = P_{A,C}^2$

In general, assume a MC with k states and transition matrix P, let $u, v \in S$:

- What is the $\Pr[X_1 = u | X_0 = v]$, i.e. $= P_{v,u}$?
- What is the $\Pr[X_2 = u | X_0 = v] = P_{v,u}^2$?

The powers of the transition matrix

Use Law Total Probability+ Markov property:

$$\Pr[X_2 = u | X_0 = v] = \sum_{w=1}^{m} \Pr[X_1 = w | X_0 = v] \Pr[X_2 = u | X_1 = w]$$
$$= \sum_{w=1}^{m} P_{v,w} P_{w,u} = P_{v,u}^2.$$

In general
$$\Pr[X_t = w | X_0 = v] = P_{v,u}^t$$
 and
 $\Pr[X_{k+t} = w | X_k = v] = P_{v,u}^t$.

The argument can be generalized to

Given the transition matrix P of a MC, then for any t > 1,

$$P^t = P \cdot P^{t-1}.$$

Notice the entry (u, v) in P^t denotes the probability of going from $u \to v$ in t steps.

To fix the initial state, we consider a random variable X_0 , assigning to S an initial distribution π_0 , which is a row vector indicating at t = 0 the probability of being in the corresponding state. For example, in the MC:

we may consider,

 $\begin{array}{ccc} A & B & C \\ (0 & 0.3 & 0.6) = \pi_0 \end{array}$

Starting with an initial distribution π_0 , we can compute the state distribution π_t (on *S*) at time *t*,

For a state v,

$$\pi_t[v] = \Pr[X_t = v]$$

= $\sum_{u \in S} \Pr[X_0 = u] \Pr[X_t = v | X_0 = u]$
= $\sum_{u \in S} \pi_0[u] P_{v,u}^t$.

i.e. $\pi_t[y]$ is the probability at step t the system is in state y. Therefore, $\pi_t = \pi_0 P^t$ and $\pi_{s+t} = \pi_s P^t$.

Gambler's Ruin: Exercise

- You place bets of 1€. With probability p, you gain 1€, and with probability q = 1 - p you loose your 1€ bet.
- You start with an initial amount of *i* € and keep playing until you loose all your money or you arrive to have *n*€.
- We have a state for each possible amount of money you can accumulate $S = \{0, 1, ..., n\}$.

A (10) × (10) × (10) ×

- You place bets of 1€. With probability p, you gain 1€, and with probability q = 1 - p you loose your 1€ bet.
- You start with an initial amount of *i* € and keep playing until you loose all your money or you arrive to have *n*€.
- We have a state for each possible amount of money you can accumulate $S = \{0, 1, ..., n\}$.
- Which is the initial distribution π_0 ?
- And, the state distribution at time t = 3?

・ 同 ト ・ ヨ ト ・ ヨ ト

Example MC: Writing a research paper

Recall that Markov Chains are given either by a weighted digraph, where the edge weights are the transition probabilities, or by the $|S| \times |S|$ transition probability matrix P,

Example: Writing a paper $S = \{r, w, e, s\}$

	r		е	S
r	/0.5	0.3	0	0.2 0.2 0.3 0.5
W	0.2	0.5	0.1	0.2
е	0.1	0.3	0.3	0.3
s	/ 0	0.2	0.3	0.5/

More on the Markovian property

Notice the memoryless property does not mean that X_{t+1} is independent from $X_0, X_1, \ldots, X_{t-1}$.

(For instance notice that intuitively we have: $\Pr[\text{Thinking at } t+1] < \Pr[\text{Thinking at } t|\text{Thinking at } t-1]).$

But, the dependencies of X_t on X_0, \ldots, X_{t-1} , are all captured by X_{t-1} .

(4) E (4) E (4) E (4)

Pr $[X_2 = s | X_0 = r]$ is the probability that, at t = 2, we are in state *s*, starting in state *r*.

$$\begin{pmatrix} 0.5 & 0.3 & 0 & 0.2 \\ 0.2 & 0.5 & 0.1 & 0.2 \\ 0.1 & 0.3 & 0.3 & 0.3 \\ 0 & 0.2 & 0.3 & 0.5 \end{pmatrix} \begin{pmatrix} 0.5 & 0.3 & 0 & 0.2 \\ 0.2 & 0.5 & 0.1 & 0.2 \\ 0.1 & 0.3 & 0.3 & 0.3 \\ 0 & 0.2 & 0.3 & 0.5 \end{pmatrix} = \begin{pmatrix} 0.31 & 0.34 & 0.09 & 0.26 \\ 0.21 & 0.38 & 0.14 & 0.27 \\ 0.14 & 0.33 & 0.21 & 0.32 \\ 0.07 & 0.29 & 0.26 & 0.38 \end{pmatrix} \stackrel{r}{w} e_{s}$$

 $\Pr\left[X_1 = s | X_0 = r\right] = 0.07.$

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

Recall π_t is the prob. distribution at time t over S. For our example of writing a paper, if t = 0 (after waking up):

$$\begin{pmatrix} 0.2 & 0 & 0.3 & 0.5 \end{pmatrix} \begin{pmatrix} 0.5 & 0.3 & 0 & 0.2 \\ 0.2 & 0.5 & 0.1 & 0.2 \\ 0.1 & 0.3 & 0.3 & 0.3 \\ 0 & 0.2 & 0.3 & 0.5 \end{pmatrix} = \begin{pmatrix} 0.13 & 0.25 & 0.24 & 0.38 \end{pmatrix} = \pi_1$$

Therefore, we have $\pi_t = \pi_0 \times P^t$ and $\pi_{k+t} = \pi_k \times P^t$ Notice $\pi_t = (\pi_t[r], \pi_t[w], \pi_t[e], \pi_t[s])$

・ 同 ト ・ ヨ ト ・ ヨ ト

Section 7.1 of [MU].

Given a Boolean formula ϕ , on

- a set X of n Boolean variables,
- defined by *m* clauses C₁,... C_m, where each clause is the disjunction of exactly 2 literals, (x_i or x
 _i), on different variables.
- $\phi = \text{conjunction of the } m$ clauses.

The 2-SAT problem is to find an assignment $A^*: X \to \{0, 1\}$, which satisfies ϕ ,

i.e, to find an A^* s.t. $A^*(\phi) = 1$.

Notice that if |X| = n, then $m \leq \binom{2n}{2} = O(n^2)$.

In general k-SAT \in NP-complete, for $k \ge 3$. But 2-SAT \in P.

(1日) (1日) (日)

```
Given a n variable 2-SAT formula \phi, \{C_i\}_{i=1}^m
for all 1 < i < n do
  A(x_i) = 1
end for
t = 0
while t < 2cn^2 and some clause is unsatisfied do
  pick and unsatisfied clause C_i
  choose u.a.r. one of the 2 variables in C_i and flip its value
  if \phi is satisfied then
     return A
  end if
end while
return \phi is unsatisfiable
```

• • = • • = •

t	<i>x</i> ₁	<i>x</i> ₂	sel clause
1	1	1	

・回 ・ ・ ヨ ・ ・ ヨ ・ …

臣

t	x_1	<i>x</i> ₂	sel clause
1	1	1	2

(4回) (4回) (4回) (回)

t	x_1	<i>x</i> ₂	sel clause
1	1	1	2
2	1	0	

(本部) (本語) (本語) (二語)

t	x_1	<i>x</i> ₂	sel clause
1	1	1	2
2	1	0	3

(本部) (本語) (本語) (二語)

If
$$\phi = (x_1 \lor x_2) \land (\bar{x}_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor x_2) \land (x_1 \lor \bar{x}_2)$$

does not has a $A^* \models \phi$.

t	x_1	<i>x</i> ₂	sel clause
1	1	1	2
2	1	0	3
3	0	0	

<ロ> <四> <四> <四> <三</td>

If $\phi = (x_1 \lor x_2) \land (\bar{x}_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor x_2) \land (x_1 \lor \bar{x}_2)$ does not has a $A^* \models \phi$.

t	x_1	<i>x</i> ₂	sel clause
1	1	1	2
2	1	0	3
3	0	0	1
÷	:	:	÷

 ϕ is unsat eventually the algorithm will stop after reaching the maximum number of steps.

(4回) (4回) (4回) (日)

If $\phi = (x_1 \lor \overline{x}_2) \land (\overline{x}_1 \lor \overline{x}_3) \land (\overline{x}_1 \lor x_2) \land (\overline{x}_4 \lor \overline{x}_3) \land (x_4 \lor \overline{x}_1)$ $\begin{array}{c|c}t & x_1 & x_2 & x_3 & x_4 \\ 1 & 1 & 1 & 1 \end{array} \text{ sel clause}$

★ 圖 ▶ ★ 温 ▶ ★ 温 ▶ … 温

If
$$\phi = (x_1 \lor \overline{x}_2) \land (\overline{x}_1 \lor \overline{x}_3) \land (\overline{x}_1 \lor x_2) \land (\overline{x}_4 \lor \overline{x}_3) \land (x_4 \lor \overline{x}_1)$$

$$\begin{array}{c|c}t & x_1 & x_2 & x_3 & x_4 \\ 1 & 1 & 1 & 1 & 2\end{array}$$
sel clause

・ロト ・回ト ・ヨト ・ヨト

æ

If $\phi = (x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor \bar{x}_3) \land (\bar{x}_1 \lor x_2) \land (\bar{x}_4 \lor \bar{x}_3) \land (x_4 \lor \bar{x}_1)$ $\begin{array}{c|c}t & x_1 & x_2 & x_3 & x_4 & \text{sel clause}\\1 & 1 & 1 & 1 & 1\\2 & 0 & 1 & 1 & 1 \end{array}$

<回 > < 注 > < 注 > … 注

If $\phi = (x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor \bar{x}_3) \land (\bar{x}_1 \lor x_2) \land (\bar{x}_4 \lor \bar{x}_3) \land (x_4 \lor \bar{x}_1)$ $\begin{array}{c|c} t & x_1 & x_2 & x_3 & x_4 & \text{sel clause} \\ 1 & 1 & 1 & 1 & 1 \\ 2 & 0 & 1 & 1 & 1 & 1 \end{array}$

<回 > < 注 > < 注 > … 注

t	x_1	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4	sel clause
1	1	1	1	1	2
2	0	1	1	1	1
3	0	0	1	1	

() 이 물) 이 물) 문

t	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4	sel clause
1	1	1	1	1	2
2	0	1	1	1	1
3	0	0	1	1	4

() 이 물) 이 물) 문

t	x_1	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4	sel clause 2
1	1	1	1	1	2
2	0	1	1	1	1
3	0	0	1	1	4
4	0	0	1	0	

() 이 물) 이 물) 문

t	x_1	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4	sel clause
1	1	1	1	1	2
2	0	1	1	1	1
3	0	0	1	1	4
4	0	0	1	0	-

(0,0,1,0) satisfies ϕ

(*) * 문 * * 문 * · · ·

臣

Given ϕ , |X| = n, $\{C_j\}_{i=1}^m$

assume that there is A^* such that $\phi(A^*) = 1$

- Let A_i be the assignment at the *i*-th iteration.
- Let $X_i = |\{x_j \in X \mid A_i(x_j) = A^*(x_j)\}.$
- Notice $0 \le X_i \le n$. Moreover, when $X_i = n$, we found A^* .
- Analysis: Starting from $X_i < n$, how long to get $X_i = n$?
- Note that $\Pr[X_{i+1} = 1 | X_i = 0] = 1.$

・ 何 ト ・ ヨ ト ・ ヨ ト

- As A* satisfies φ and A_i no, there is a clause C_j that A* satisfies but A_i not.
- So A^* and A_i disagree in the value of at least one variable.
- It is also possible to flip the value of the variable în C_j in which A and A^{*} agree.
- Therefore,

For $1 \le k \le n-1$, $\Pr[X_{i+1} = k+1 | X_i = k] \ge 1/2$ and $\Pr[X_{i+1} = k-1 | X_i = k] \le 1/2$.

・ 同 ト ・ ヨ ト ・ ヨ ト

The process X_0, X_1, \ldots is not necessarily a MC,

• The probability that $X_{i+1} > X_i$ depends on whether A_i and A^* disagree in 1 or 2 variables in the selected unsatisfied clause C.

• If
$$A^*$$
 makes true both literals in *C*,
Pr $[X_{i+1} = k + 1 | X_i = k] = 1$, otherwise
Pr $[X_{i+1} = k + 1 | X_i = k] = 1/2$

- This difference might depend on the clauses and variables selected in the past, so the transition probabilities are not memoryless.
- X_t is not a Markov chain.

The process X_0, X_1, \ldots is not necessarily a MC,

The probability that X_{i+1} > X_i depends on whether A_i and A^{*} disagree in 1 or 2 variables in the selected unsatisfied clause C.

• If
$$A^*$$
 makes true both literals in *C*,
Pr $[X_{i+1} = k + 1 | X_i = k] = 1$, otherwise
Pr $[X_{i+1} = k + 1 | X_i = k] = 1/2$

- This difference might depend on the clauses and variables selected in the past, so the transition probabilities are not memoryless.
- X_t is not a Markov chain. Can we bound the process by a MC?.

向下 イヨト イヨト

Define a MC $Y_0, Y_1, Y_2, ...$ which is a pessimistic version of process $X_0, X_1, ...$, in the sense that Y_i measures exactly the same quantity than X_i but the probability of change (up or down) will be exactly 1/2.

- $Y_0 = X_0$ and $\Pr[Y_{i+1} = 1 | Y_i = 0] = 1;$
- For $1 \le k \le n-1$, $\Pr[Y_{i+1} = k+1 | Y_i = k] = 1/2$;
- **Pr** $[Y_{i+1} = k 1 | Y_i = k] = 1/2.$

MC for 2-SAT

The time to reach *n* from $j \ge 0$ in $\{Y_i\}_{i=0}^n$ is \ge that in $\{X_i\}_{i=0}^n$.

Lemma

If a 2-CNF ϕ on n variables has a satisfying assignment A^* , the 2-SAT algorithm finds one in expected time $\leq n^2$.

Proof

- Let h_j be the expected time, for process Y, to go from state j to state n.
- It suffices to prove that, when Y starts in state j the time to arrives to n is $\leq 2cn^2$.
- We devise a recurrence to bound h

- $h_n = 0$ and $h_1 = h_0 + 1$;
- We want a general recurrence on h_j , for $1 \le j < n$
- Define a rv Z_j counting the steps to go from state $j \rightarrow n$ in Y.
- With probability 1/2, $Z_j = Z_{j-1} + 1$ and, with probability 1/2, $Z_j = Z_{j+1} + 1$.
- So $h_j = \mathbf{E}[Z_j]$.

$$\mathbf{E}[Z_j] = \mathbf{E}\left[\frac{Z_{j-1}+1}{2} + \frac{Z_{j+1}+1}{2}\right] = \frac{\mathbf{E}[Z_{j-1}]+1}{2} + \frac{\mathbf{E}[Z_{j+1}]+1}{2}.$$

So, $h_j = \frac{h_{j-1}}{2} + \frac{h_{j+1}}{2} + 1.$

<回を < 回を < 回を -

From the previous bound we get $h_j = \frac{h_{j-1}}{2} + \frac{h_{j+1}}{2} + 1$. The recurrence has the n + 1 equations,

$$h_n = 0$$

$$h_0 = h_1 + 1$$

$$h_j = \frac{h_{j-1}}{2} + \frac{h_{j+1}}{2} + 1 \qquad 0 \le j \le n - 1$$

Let us prove, by induction that

$$h_j = h_{j+1} + 2j + 1.$$

(신문) (신문)

For $0 \le j \le n - 1$, $h_j = h_{j+1} + 2j + 1$.

Proof

Base case: If j = 0, 2j + 1 = 1, and we were given $h_0 = h_1 + 1$.

・ 回 ト ・ ヨ ト ・ ヨ ト

For
$$0 \le j \le n - 1$$
, $h_j = h_{j+1} + 2j + 1$.

Proof

IH: for j = k - 1, $h_{k-1} = h_k + 2(k - 1) + 1$. Now consider j = k. By the "middle case" of our system of equations,

$$h_{k} = \frac{h_{k-1} + h_{k+1}}{2} + 1$$

= $\frac{h_{k} + 2(k-1) + 1}{2} + \frac{h_{k+1}}{2} + 1$ by IH
= $\frac{h_{k}}{2} + \frac{h_{k+1}}{2} + \frac{2k+1}{2}$

Subtracting $\frac{h_k}{2}$ from each side, we get the result.

As

$$h_j = h_{j+1} + 2j + 1.$$

$$h_0 = h_1 + 1 = h_2 + 3 + 1 = h_3 + 5 + 3 + 1 \cdots$$
$$= \underbrace{h_n}_{=0} + \sum_{i=0}^{n-1} (2i+1) = n^2.$$

日本・日本・日本・

æ

Error probability for 2-SAT algorithm

Theorem

The 2-SAT algorithm gives the correct answer NO if ϕ is not satisfiable. Otherwise, with probability $\geq 1 - \frac{1}{2^c}$ the algorithm returns a satisfying assignment.

Proof

- Let ϕ be satisfiable (otherwise the theorem holds).
- Break the $2cn^2$ iterations into *c* blocks of $2n^2$ iterations.
- For each block *i*, define a r.v. *Z* = number of iterations from the start of the *i*-block until a solution is found.
- Using Markov's inequality:

$$\Pr\left[Z>2n^2\right] \le \frac{n^2}{2n^2} = \frac{1}{2}.$$

• Therefore, the probability that the algorithm fails to find a satisfying assignment after *c* segments (no block includes a solution) is at most $\frac{1}{2^c}$.