Markov Chains and Random Walks

RA-MIRI

QT Curs 2020-2021

- A stochastic process is a sequence of random variables $\left\{X_{t}\right\}_{t=0}^{n}$.
- Usually the subindex t refers to time steps and if $t \in \mathbb{N}$, the stochastic process is said to be discrete.
- The random variable X_{t} is called the state at time t.
- If $n<\infty$ the process is said to be finite, otherwise it is said infinite.
- A stochastic process is used as a model to study the probability of events associated to a random phenomena.

An example: Gambler's Ruin

Model used to evaluate insurance risks.

- You place bets of $1 €$. With probability p, you gain $1 €$, and with probability $q=1-p$ you loose your $1 €$ bet.
- You start with an initial amount of $100 €$.
- You keep playing until you loose all your money or you arrive to have $1000 €$.

An example: Gambler's Ruin

Model used to evaluate insurance risks.

- You place bets of $1 €$. With probability p, you gain $1 €$, and with probability $q=1-p$ you loose your $1 €$ bet.
- You start with an initial amount of $100 €$.
- You keep playing until you loose all your money or you arrive to have $1000 €$.
- One goal is finding the probability of winning i.e. getting the $1000 €$.

An example: Gambler's Ruin

Model used to evaluate insurance risks.

- You place bets of $1 €$. With probability p, you gain $1 €$, and with probability $q=1-p$ you loose your $1 €$ bet.
- You start with an initial amount of $100 €$.
- You keep playing until you loose all your money or you arrive to have $1000 €$.
- One goal is finding the probability of winning i.e. getting the $1000 €$.
Notice in this process, once we get $0 €$ or $1000 €$, the process stops.

Markov Chain

One simple model of stochastic process is the Markov Chain:

- Markov Chains are defined on a finite set of states (S), where at time t, X_{t} could be any state in S, together with by the matrix of transition probability for going from each state in S to any other state in S, including the case that the state X_{t} remains the same at $t+1$.
- In a Markov Chain, at any given time t, the state X_{t} is determined only by X_{t-1}.
memoryless: does not remember the history of past events,
Other memoryless stochastic processes are said to be Markovian.

An example: Gambler's Ruin

- You place bets of $1 €$. With probability p, you gain $1 €$, and with probability $q=1-p$ you loose your $1 €$ bet.
- You start with an initial amount of $100 €$.
- You keep playing until you loose all your money or you arrive to have $1000 €$.

An example: Gambler's Ruin

- You place bets of $1 €$. With probability p, you gain $1 €$, and with probability $q=1-p$ you loose your $1 €$ bet.
- You start with an initial amount of $100 €$.
- You keep playing until you loose all your money or you arrive to have $1000 €$.
- We have a state for each possible amount of money you can accumulate $S=\{0,1, \ldots, 1000\}$.

An example: Gambler's Ruin

- You place bets of $1 €$. With probability p, you gain $1 €$, and with probability $q=1-p$ you loose your $1 €$ bet.
- You start with an initial amount of $100 €$.
- You keep playing until you loose all your money or you arrive to have $1000 €$.
- We have a state for each possible amount of money you can accumulate $S=\{0,1, \ldots, 1000\}$.
- The probability of losing/winning is independent on the state and the time, so this process is a Markov chain.

An example: Gambler's Ruin

- You place bets of $1 €$. With probability p, you gain $1 €$, and with probability $q=1-p$ you loose your $1 €$ bet.
- You start with an initial amount of $100 €$.
- You keep playing until you loose all your money or you arrive to have $1000 €$.
- We have a state for each possible amount of money you can accumulate $S=\{0,1, \ldots, 1000\}$.
- The probability of losing/winning is independent on the state and the time, so this process is a Markov chain.
- Observe that the number of states is finite.

Markov-Chains: An important tool for CS

- One of the simplest forms of stochastic dynamics.
- Allows to model stochastic temporal dependencies
- Applications in many areas
- Surfing the web
- Design of randomizes algorithms
- Random walks
- Machine Learning (Markov Decision Processes)
- Computer Vision (Markov Random Fields)
- etc. etc.

A finite, time-discrete Markov Chain, with finite state $S=\{1,2, \ldots, k\}$ is a stochastic process $\left\{X_{t}\right\}$ s.t. for all $i, j \in S$, and for all $t \geq 0$,
$\operatorname{Pr}\left[X_{t+1}=j \mid X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{t}=i\right]=\operatorname{Pr}\left[X_{t+1}=j \mid X_{t}=i\right]$.

A finite, time-discrete Markov Chain, with finite state $S=\{1,2, \ldots, k\}$ is a stochastic process $\left\{X_{t}\right\}$ s.t. for all $i, j \in S$, and for all $t \geq 0$,
$\operatorname{Pr}\left[X_{t+1}=j \mid X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{t}=i\right]=\operatorname{Pr}\left[X_{t+1}=j \mid X_{t}=i\right]$.

We can abstract the time and consider only the probability of moving from state i to state j, as $\operatorname{Pr}\left[X_{t+1}=j \mid X_{t}=i\right]$

MC: Transition probability matrix

For $v, u \in S$, let $p_{u, v}$ be the probability of going from $u \leadsto v$ in q steps i.e. $p_{u, v}=\operatorname{Pr}\left[X_{s+1}=v \mid X_{s}=u\right]$.

MC: Transition probability matrix

For $v, u \in S$, let $p_{u, v}$ be the probability of going from $u \leadsto v$ in q steps i.e. $p_{u, v}=\operatorname{Pr}\left[X_{s+1}=v \mid X_{s}=u\right]$.
$P=\left(p_{u, v}\right)_{u, v \in S}$ is a matrix describing the transition probabilities of the MC
P is called the transition matrix

MC: Transition probability matrix

For $v, u \in S$, let $p_{u, v}$ be the probability of going from $u \leadsto v$ in q steps i.e. $p_{u, v}=\operatorname{Pr}\left[X_{s+1}=v \mid X_{s}=u\right]$.
$P=\left(p_{u, v}\right)_{u, v \in S}$ is a matrix describing the transition probabilities of the MC
P is called the transition matrix P also defines digraph, possibly with loops.

Gambler's Ruin: MC digraph

- You place bets of $1 €$. With probability p, you gain $1 €$, and with probability $q=1-p$ you loose your $1 €$ bet.
- You start with an initial amount of $i €$ and keep playing until you loose all your money or you arrive to have $n €$.
- We have a state for each possible amount of money you can accumulate $S=\{0,1, \ldots, n\}$.

Gambler's Ruin: MC digraph

- You place bets of $1 €$. With probability p, you gain $1 €$, and with probability $q=1-p$ you loose your $1 €$ bet.
- You start with an initial amount of $i €$ and keep playing until you loose all your money or you arrive to have $n €$.
- We have a state for each possible amount of money you can accumulate $S=\{0,1, \ldots, n\}$.

$\left.\begin{array}{c}\mathrm{A} \\ \mathrm{A} \\ \mathrm{B} \\ \mathrm{C}\end{array} \begin{array}{ccc}\mathrm{B} & \mathrm{C} \\ 0 & 2 / 3 & 1 / 3 \\ 1 / 2 & 0 & 1 / 2 \\ 1 / 2 & 0 & 1 / 2\end{array}\right)=\mathrm{P}$

Notice the entry (u, v) in P denotes the probability of going from $u \rightarrow v$ in one step.

Notice, in a MC the transition matrix is stochastic, so sum of transitions out of any state must be 1 .

Longer transition probabilities

For $v, u \in S$, let $p_{u, v}^{t}$ be the probability of going from $u \leadsto v$ in exactly t steps i.e. $p_{u, v}^{t}=\operatorname{Pr}\left[X_{s+t}=v \mid X_{s}=u\right]$.

Formally for $s \geq 0$ and $t>1, p_{u, v}^{t}=\operatorname{Pr}\left[X_{s+t}=v \mid X_{s}=u\right]$.
A times, we may use i $P_{u, v}^{t}$ to indicate entry (u, v) in the matrix P, i.e $p_{u, v}^{t}=P_{u, v}^{t}=\operatorname{Pr}\left[X_{s+t}=v \mid X_{s}=u\right]$.

How can we relate P^{t} with P ?

The powers of the transition matrix

$\left.\begin{array}{c}\mathrm{A} \\ \mathrm{A} \\ \mathrm{B} \\ \mathrm{C}\end{array} \begin{array}{ccc}\mathrm{B} & \mathrm{C} \\ 0 & 2 / 3 & 1 / 3 \\ 1 / 2 & 0 & 1 / 2 \\ 1 / 2 & 0 & 1 / 2\end{array}\right)=\mathrm{P}$

In ex. $\operatorname{Pr}\left[X_{1}=C \mid X_{0}=A\right]=P_{A, C}^{1}=1 / 3$.
$\operatorname{Pr}\left[X_{2}=C \mid X_{0}=A\right]=P_{A B}^{1} P_{B C}^{1}+P_{A C}^{1} P_{C C}^{1}=1 / 3+1 / 6=P_{A, C}^{2}$
In general, assume a MC with k states and transition matrix P, let $u, v \in S$:

- What is the $\operatorname{Pr}\left[X_{1}=u \mid X_{0}=v\right]$, i.e. $=P_{v, u}$?
- What is the $\operatorname{Pr}\left[X_{2}=u \mid X_{0}=v\right]=P_{v, u}^{2}$?

Use Law Total Probability+ Markov property:

$$
\begin{aligned}
\operatorname{Pr}\left[X_{2}=u \mid X_{0}=v\right] & =\sum_{w=1}^{m} \operatorname{Pr}\left[X_{1}=w \mid X_{0}=v\right] \operatorname{Pr}\left[X_{2}=u \mid X_{1}=w\right] \\
& =\sum_{w=1}^{m} P_{v, w} P_{w, u}=P_{v, u}^{2}
\end{aligned}
$$

In general $\operatorname{Pr}\left[X_{t}=w \mid X_{0}=v\right]=P_{v, u}^{t}$ and
$\operatorname{Pr}\left[X_{k+t}=w \mid X_{k}=v\right]=P_{v, u}^{t}$.
The argument can be generalized to
Given the transition matrix P of a MC, then for any $t>1$,

$$
P^{t}=P \cdot P^{t-1}
$$

Notice the entry (u, v) in P^{t} denotes the probability of going from $u \rightarrow v$ in t steps.

Distributions at time t

To fix the initial state, we consider a random variable X_{0}, assigning to S an initial distribution π_{0}, which is a row vector indicating at $t=0$ the probability of being in the corresponding state.
For example, in the MC:

we may consider,

$$
\left.\begin{array}{ccc}
A & B & C \\
(0 & 0.3 & 0.6
\end{array}\right)=\pi_{0}
$$

Distributions at time t

Starting with an initial distribution π_{0}, we can compute the state distribution π_{t} (on S) at time t,

For a state v,

$$
\begin{aligned}
\pi_{t}[v] & =\operatorname{Pr}\left[X_{t}=v\right] \\
& =\sum_{u \in S} \operatorname{Pr}\left[X_{0}=u\right] \operatorname{Pr}\left[X_{t}=v \mid X_{0}=u\right] \\
& =\sum_{u \in S} \pi_{0}[u] P_{v, u}^{t}
\end{aligned}
$$

i.e. $\pi_{t}[y]$ is the probability at step t the system is in state y.

Therefore, $\pi_{t}=\pi_{0} P^{t}$ and $\pi_{s+t}=\pi_{s} P^{t}$.

Gambler's Ruin: Exercise

- You place bets of $1 €$. With probability p, you gain $1 €$, and with probability $q=1-p$ you loose your $1 €$ bet.
- You start with an initial amount of $i €$ and keep playing until you loose all your money or you arrive to have $n €$.
- We have a state for each possible amount of money you can accumulate $S=\{0,1, \ldots, n\}$.

Gambler's Ruin: Exercise

- You place bets of $1 €$. With probability p, you gain $1 €$, and with probability $q=1-p$ you loose your $1 €$ bet.
- You start with an initial amount of $i €$ and keep playing until you loose all your money or you arrive to have $n €$.
- We have a state for each possible amount of money you can accumulate $S=\{0,1, \ldots, n\}$.
- Which is the initial distribution π_{0} ?
- And, the state distribution at time $t=3$?

Example MC: Writing a research paper

Recall that Markov Chains are given either by a weighted digraph, where the edge weights are the transition probabilities, or by the $|S| \times|S|$ transition probability matrix P,

Example: Writing a paper $S=\{r, w, e, s\}$

$\left.\begin{array}{c} \\ r \\ w \\ w \\ e \\ s\end{array} \begin{array}{cccc}r & w & e & s \\ 0.5 & 0.3 & 0 & 0.2 \\ 0.2 & 0.5 & 0.1 & 0.2 \\ 0.1 & 0.3 & 0.3 & 0.3 \\ 0 & 0.2 & 0.3 & 0.5\end{array}\right)$

More on the Markovian property

Notice the memoryless property does not mean that X_{t+1} is independent from $X_{0}, X_{1}, \ldots, X_{t-1}$.
(For instance notice that intuitively we have: $\operatorname{Pr}[$ Thinking at $t+1]<\operatorname{Pr}$ [Thinking at $t \mid$ Thinking at $t-1]$).

But, the dependencies of X_{t} on X_{0}, \ldots, X_{t-1}, are all captured by X_{t-1}.

Example of writing a paper

$\operatorname{Pr}\left[X_{2}=s \mid X_{0}=r\right]$ is the probability that, at $t=2$, we are in state s, starting in state r.
$\left(\begin{array}{cccc}0.5 & 0.3 & 0 & 0.2 \\ 0.2 & 0.5 & 0.1 & 0.2 \\ 0.1 & 0.3 & 0.3 & 0.3 \\ 0 & 0.2 & 0.3 & 0.5\end{array}\right)\left(\begin{array}{cccc}0.5 & 0.3 & 0 & 0.2 \\ 0.2 & 0.5 & 0.1 & 0.2 \\ 0.1 & 0.3 & 0.3 & 0.3 \\ 0 & 0.2 & 0.3 & 0.5\end{array}\right)=\left(\begin{array}{cccc}0.31 & 0.34 & 0.09 & 0.26 \\ 0.21 & 0.38 & 0.14 & 0.27 \\ 0.14 & 0.33 & 0.21 & 0.32 \\ 0.07 & 0.29 & 0.26 & 0.38\end{array}\right) \begin{gathered}r \\ w \\ e \\ s\end{gathered}$
$\operatorname{Pr}\left[X_{1}=s \mid X_{0}=r\right]=0.07$.

Distribution on states

Recall π_{t} is the prob. distribution at time t over S.
For our example of writing a paper, if $t=0$ (after waking up):

$$
\pi_{0}=\left(\begin{array}{cccc}
r & w & e & s \\
0.2 & 0 & 0.3 & 0.5
\end{array}\right)
$$

$\left(\begin{array}{llll}0.2 & 0 & 0.3 & 0.5\end{array}\right)\left(\begin{array}{cccc}0.5 & 0.3 & 0 & 0.2 \\ 0.2 & 0.5 & 0.1 & 0.2 \\ 0.1 & 0.3 & 0.3 & 0.3 \\ 0 & 0.2 & 0.3 & 0.5\end{array}\right)=\left(\begin{array}{llll}0.13 & 0.25 & 0.24 & 0.38\end{array}\right)=\pi_{1}$
Therefore, we have $\pi_{t}=\pi_{0} \times P^{t}$ and $\pi_{k+t}=\pi_{k} \times P^{t}$
Notice $\pi_{t}=\left(\pi_{t}[r], \pi_{t}[w], \pi_{t}[e], \pi_{t}[s]\right)$

An Example of MC analysis: The 2-SAT problem

Section 7.1 of [MU].

Given a Boolean formula ϕ, on

- a set X of n Boolean variables,
- defined by m clauses $C_{1}, \ldots C_{m}$, where each clause is the disjunction of exactly 2 literals, (x_{i} or \bar{x}_{i}), on different variables.
- $\phi=$ conjunction of the m clauses.

The 2-SAT problem is to find an assignment $A^{*}: X \rightarrow\{0,1\}$, which satisfies ϕ,
i.e, to find an A^{*} s.t. $A^{*}(\phi)=1$.

Notice that if $|X|=n$, then $m \leq\binom{ 2 n}{2}=O\left(n^{2}\right)$.
In general $k-S A T \in$ NP-complete, for $k \geq 3$. But $2-S A T \in P$.

A randomized algorithm for 2-SAT

Given a n variable 2-SAT formula $\phi,\left\{C_{j}\right\}_{j=1}^{m}$
for all $1 \leq i \leq n$ do

$$
A\left(x_{i}\right)=1
$$

end for
$t=0$
while $t \leq 2 c n^{2}$ and some clause is unsatisfied do
pick and unsatisfied clause C_{j}
choose u.a.r. one of the 2 variables in C_{j} and flip its value
if ϕ is satisfied then return A
end if
end while
return ϕ is unsatisfiable

An example: unsat formula

If $\phi=\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \bar{x}_{2}\right)$ does not has a $A^{*} \models \phi$.

$$
\begin{array}{c|c|c|c}
t & x_{1} & x_{2} & \text { sel clause } \\
1 & 1 & 1 &
\end{array}
$$

An example: unsat formula

If $\phi=\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \bar{x}_{2}\right)$ does not has a $A^{*} \models \phi$.

$$
\begin{array}{c|c|c|c}
t & x_{1} & x_{2} & \text { sel clause } \\
1 & 1 & 1 & 2
\end{array}
$$

An example: unsat formula

If $\phi=\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \bar{x}_{2}\right)$ does not has a $A^{*} \models \phi$.

t	x_{1}	x_{2}	sel clause
1	1	1	2
2	1	0	

An example: unsat formula

If $\phi=\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \bar{x}_{2}\right)$ does not has a $A^{*} \models \phi$.

t	x_{1}	x_{2}	sel clause
1	1	1	2
2	1	0	3

An example: unsat formula

If $\phi=\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \bar{x}_{2}\right)$ does not has a $A^{*} \models \phi$.

t	x_{1}	x_{2}	sel clause
1	1	1	2
2	1	0	3
3	0	0	

An example: unsat formula

If $\phi=\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \bar{x}_{2}\right)$ does not has a $A^{*} \models \phi$.

t	x_{1}	x_{2}	sel clause
1	1	1	2
2	1	0	3
3	0	0	1
\vdots	\vdots	\vdots	\vdots

ϕ is unsat eventually the algorithm will stop after reaching the maximum number of steps.

An example: sat formula

$$
\begin{aligned}
& \text { If } \phi=\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{4} \vee \bar{x}_{3}\right) \wedge\left(x_{4} \vee \bar{x}_{1}\right) \\
& \qquad \begin{array}{c|c|c|c|c|c}
t & x_{1} & x_{2} & x_{3} & x_{4} & \text { sel clause } \\
1 & 1 & 1 & 1 & 1 &
\end{array}
\end{aligned}
$$

An example: sat formula

$$
\begin{aligned}
& \text { If } \phi=\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{4} \vee \bar{x}_{3}\right) \wedge\left(x_{4} \vee \bar{x}_{1}\right) \\
& \qquad \begin{array}{c|c|c|c|c|c}
t & x_{1} & x_{2} & x_{3} & x_{4} & \text { sel clause } \\
1 & 1 & 1 & 1 & 1 & 2
\end{array}
\end{aligned}
$$

An example: sat formula

$$
\begin{aligned}
& \text { If } \phi=\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{4} \vee \bar{x}_{3}\right) \wedge\left(x_{4} \vee \bar{x}_{1}\right) \\
& \qquad \begin{array}{c|c|c|c|c|c}
t & x_{1} & x_{2} & x_{3} & x_{4} & \text { sel clause } \\
1 & 1 & 1 & 1 & 1 & 2 \\
2 & 0 & 1 & 1 & 1 & 2
\end{array}
\end{aligned}
$$

An example: sat formula

$$
\begin{aligned}
& \text { If } \phi=\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{4} \vee \bar{x}_{3}\right) \wedge\left(x_{4} \vee \bar{x}_{1}\right) \\
& \qquad \begin{array}{c|c|c|c|c|c}
t & x_{1} & x_{2} & x_{3} & x_{4} & \text { sel clause } \\
1 & 1 & 1 & 1 & 1 & 2 \\
2 & 0 & 1 & 1 & 1 & 1
\end{array}
\end{aligned}
$$

An example: sat formula

$$
\begin{aligned}
& \text { If } \phi=\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{4} \vee \bar{x}_{3}\right) \wedge\left(x_{4} \vee \bar{x}_{1}\right) \\
& \qquad \begin{array}{c|c|c|c|c|c|c}
t & x_{1} & x_{2} & x_{3} & x_{4} & \text { sel clause } \\
1 & 1 & 1 & 1 & 1 & 2 \\
2 & 0 & 1 & 1 & 1 & 1 \\
3 & 0 & 0 & 1 & 1 &
\end{array}
\end{aligned}
$$

An example: sat formula

$$
\begin{aligned}
& \text { If } \phi=\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{4} \vee \bar{x}_{3}\right) \wedge\left(x_{4} \vee \bar{x}_{1}\right) \\
& \qquad \begin{array}{c|c|c|c|c|c|c}
t & x_{1} & x_{2} & x_{3} & x_{4} & \text { sel clause } \\
1 & 1 & 1 & 1 & 1 & 2 \\
2 & 0 & 1 & 1 & 1 & 1 \\
3 & 0 & 0 & 1 & 1 & 4
\end{array}
\end{aligned}
$$

An example: sat formula

$$
\begin{aligned}
& \text { If } \phi=\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{4} \vee \bar{x}_{3}\right) \wedge\left(x_{4} \vee \bar{x}_{1}\right) \\
& \qquad \begin{array}{c|c|c|c|c|c|c}
t & x_{1} & x_{2} & x_{3} & x_{4} & \text { sel clause } \\
1 & 1 & 1 & 1 & 1 & 2 \\
2 & 0 & 1 & 1 & 1 & 1 \\
3 & 0 & 0 & 1 & 1 & 4 \\
4 & 0 & 0 & 1 & 0 &
\end{array}
\end{aligned}
$$

An example: sat formula

$$
\begin{aligned}
& \text { If } \phi=\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{4} \vee \bar{x}_{3}\right) \wedge\left(x_{4} \vee \bar{x}_{1}\right) \\
& \qquad \begin{array}{c|c|c|c|c|c|c}
t & x_{1} & x_{2} & x_{3} & x_{4} & \text { sel clause } \\
1 & 1 & 1 & 1 & 1 & 2 \\
2 & 0 & 1 & 1 & 1 & 1 \\
3 & 0 & 0 & 1 & 1 & 4 \\
4 & 0 & 0 & 1 & 0 & -
\end{array}
\end{aligned}
$$

$(0,0,1,0)$ satisfies ϕ

Analysis for 2-SAT algorithm

Given $\phi,|X|=n,\left\{C_{j}\right\}_{i=1}^{m}$
assume that there is A^{*} such that $\phi\left(A^{*}\right)=1$

- Let A_{i} be the assignment at the i-th iteration.
- Let $X_{i}=\mid\left\{x_{j} \in X \mid A_{i}\left(x_{j}\right)=A^{*}\left(x_{j}\right)\right\}$.
- Notice $0 \leq X_{i} \leq n$. Moreover, when $X_{i}=n$, we found A^{*}.
- Analysis: Starting from $X_{i}<n$, how long to get $X_{i}=n$?
- Note that $\operatorname{Pr}\left[X_{i+1}=1 \mid X_{i}=0\right]=1$.

Analysis for 2-SAT algorithm

- As A^{*} satisfies ϕ and A_{i} no, there is a clause C_{j} that A^{*} satisfies but A_{i} not.
- So A^{*} and A_{i} disagree in the value of at least one variable.
- It is also possible to flip the value of the variable in C_{j} in which A and A^{*} agree.
- Therefore,

For $1 \leq k \leq n-1, \operatorname{Pr}\left[X_{i+1}=k+1 \mid X_{i}=k\right] \geq 1 / 2$ and $\operatorname{Pr}\left[X_{i+1}=k-1 \mid X_{i}=k\right] \leq 1 / 2$.

Analysis for 2-SAT

The process X_{0}, X_{1}, \ldots is not necessarily a MC ,

- The probability that $X_{i+1}>X_{i}$ depends on whether A_{i} and A^{*} disagree in 1 or 2 variables in the selected unsatisfied clause C.
- If A^{*} makes true both literals in C,
$\operatorname{Pr}\left[X_{i+1}=k+1 \mid X_{i}=k\right]=1$, otherwise
$\operatorname{Pr}\left[X_{i+1}=k+1 \mid X_{i}=k\right]=1 / 2$
- This difference might depend on the clauses and variables selected in the past, so the transition probabilities are not memoryless.
- X_{t} is not a Markov chain.

Analysis for 2-SAT

The process X_{0}, X_{1}, \ldots is not necessarily a MC ,

- The probability that $X_{i+1}>X_{i}$ depends on whether A_{i} and A^{*} disagree in 1 or 2 variables in the selected unsatisfied clause C.
- If A^{*} makes true both literals in C,
$\operatorname{Pr}\left[X_{i+1}=k+1 \mid X_{i}=k\right]=1$, otherwise
$\operatorname{Pr}\left[X_{i+1}=k+1 \mid X_{i}=k\right]=1 / 2$
- This difference might depend on the clauses and variables selected in the past, so the transition probabilities are not memoryless.
- X_{t} is not a Markov chain. Can we bound the process by a MC?

Analysis for 2-SAT

Define a MC $Y_{0}, Y_{1}, Y_{2}, \ldots$ which is a pessimistic version of process X_{0}, X_{1}, \ldots, in the sense that Y_{i} measures exactly the same quantity than X_{i} but the probability of change (up or down) will be exactly $1 / 2$.

- $Y_{0}=X_{0}$ and $\operatorname{Pr}\left[Y_{i+1}=1 \mid Y_{i}=0\right]=1$;
- For $1 \leq k \leq n-1, \operatorname{Pr}\left[Y_{i+1}=k+1 \mid Y_{i}=k\right]=1 / 2$;
- $\operatorname{Pr}\left[Y_{i+1}=k-1 \mid Y_{i}=k\right]=1 / 2$.

The time to reach n from $j \geq 0$ in $\left\{Y_{i}\right\}_{i=0}^{n}$ is \geq that in $\left\{X_{i}\right\}_{i=0}^{n}$.

Upper Bound on the time to arrive state n

Lemma

If a 2-CNF ϕ on n variables has a satisfying assignment A^{*}, the $2-S A T$ algorithm finds one in expected time $\leq n^{2}$.

Proof

- Let h_{j} be the expected time, for process Y, to go from state j to state n.
- It suffices to prove that, when Y starts in state j the time to arrives to n is $\leq 2 c n^{2}$.
- We devise a recurrence to bound h

Upper Bound on the time to arrive state n

- $h_{n}=0$ and $h_{1}=h_{0}+1$;
- We want a general recurrence on h_{j}, for $1 \leq j<n$
- Define a rv Z_{j} counting the steps to go from state $j \rightarrow n$ in Y.
- With probability $1 / 2, Z_{j}=Z_{j-1}+1$ and, with probability $1 / 2$, $Z_{j}=Z_{j+1}+1$.
- So $h_{j}=\mathbf{E}\left[Z_{j}\right]$.

$$
\mathbf{E}\left[Z_{j}\right]=\mathbf{E}\left[\frac{Z_{j-1}+1}{2}+\frac{Z_{j+1}+1}{2}\right]=\frac{\mathbf{E}\left[Z_{j-1}\right]+1}{2}+\frac{\mathbf{E}\left[Z_{j+1}\right]+1}{2} .
$$

So, $h_{j}=\frac{h_{j-1}}{2}+\frac{h_{j+1}}{2}+1$.

Upper Bound on the time to arrive state n

From the previous bound we get $h_{j}=\frac{h_{j-1}}{2}+\frac{h_{j+1}}{2}+1$.
The recurrence has the $n+1$ equations,

$$
\begin{aligned}
& h_{n}=0 \\
& h_{0}=h_{1}+1 \\
& h_{j}=\frac{h_{j-1}}{2}+\frac{h_{j+1}}{2}+1 \quad 0 \leq j \leq n-1
\end{aligned}
$$

Let us prove, by induction that

$$
h_{j}=h_{j+1}+2 j+1
$$

Upper Bound on the time to arrive state n

For $0 \leq j \leq n-1, h_{j}=h_{j+1}+2 j+1$.
Proof
Base case: If $j=0,2 j+1=1$, and we were given $h_{0}=h_{1}+1$.

Upper Bound on the time to arrive state n

For $0 \leq j \leq n-1, h_{j}=h_{j+1}+2 j+1$.
Proof
$\mathrm{IH}:$ for $j=k-1, h_{k-1}=h_{k}+2(k-1)+1$.
Now consider $j=k$. By the "middle case" of our system of equations,

$$
\begin{aligned}
h_{k} & =\frac{h_{k-1}+h_{k+1}}{2}+1 \\
& =\frac{h_{k}+2(k-1)+1}{2}+\frac{h_{k+1}}{2}+1 \quad \text { by IH } \\
& =\frac{h_{k}}{2}+\frac{h_{k+1}}{2}+\frac{2 k+1}{2}
\end{aligned}
$$

Subtracting $\frac{h_{k}}{2}$ from each side, we get the result.

Upper Bound on the time to arrive state n

As

$$
h_{j}=h_{j+1}+2 j+1
$$

$$
\begin{aligned}
h_{0} & =h_{1}+1=h_{2}+3+1=h_{3}+5+3+1 \cdots \\
& =\underbrace{h_{n}}_{=0}+\sum_{i=0}^{n-1}(2 i+1)=n^{2} .
\end{aligned}
$$

Error probability for 2-SAT algorithm

Theorem

The 2-SAT algorithm gives the correct answer NO if ϕ is not satisfiable. Otherwise, with probability $\geq 1-\frac{1}{2^{c}}$ the algorithm returns a satisfying assignment.

Proof

- Let ϕ be satisfiable (otherwise the theorem holds).
- Break the $2 c n^{2}$ iterations into c blocks of $2 n^{2}$ iterations.
- For each block i, define a r.v. $Z=$ number of iterations from the start of the i-block until a solution is found.
- Using Markov's inequality:

$$
\operatorname{Pr}\left[Z>2 n^{2}\right] \leq \frac{n^{2}}{2 n^{2}}=\frac{1}{2}
$$

- Therefore, the probability that the algorithm fails to find a satisfying assignment after c segments (no block includes a solution) is at most $\frac{1}{2^{c}}$.

