Counting different items in a stream

QT Curs 2020-2021

RA-MIRI Data streams

Counting the number of distinct elements

RA-MIRI Data streams

Counting the number of distinct elements

@ Distinct elements problem: Given a stream s, output

AVAR/UIE
where f; is the frequency of the j in the stream s

RA-MIRI Data streams

Counting the number of distinct elements

@ Distinct elements problem: Given a stream s, output

AVAR/UIE
where f; is the frequency of the j in the stream s

@ In order to solve the problem using sublinear space, we need
to use probabilistic algorithms/data structure and some
adequate notion of approximation.

RA-MIRI Data streams

An (€, 0)-approximation

RA-MIRI Data streams

An (€, 0)-approximation

@ Let A(s) denote the output of a randomized streaming
algorithm A on input s; note that this is a random variable.

o Let ®(s) be the function that A is supposed to compute.

RA-MIRI Data streams

An (€, 0)-approximation

@ Let A(s) denote the output of a randomized streaming
algorithm A on input s; note that this is a random variable.

o Let ®(s) be the function that A is supposed to compute.

o Ais a (e d)-approximation to ¢ if we have

Pr HA(S) - 1‘ > e} <.

RA-MIRI Data streams

An (€, 0)-approximation

@ Let A(s) denote the output of a randomized streaming
algorithm A on input s; note that this is a random variable.

o Let ®(s) be the function that A is supposed to compute.

e Ais a (e, 0)-approximation to @ if we have

o[- =

o Ais a (e, 0)-additive approximation to ® if we have

Pr[|A(s) — ®(s)| > ¢] < 6.

RA-MIRI Data streams

An (€, 0)-approximation

@ Let A(s) denote the output of a randomized streaming
algorithm A on input s; note that this is a random variable.

o Let ®(s) be the function that A is supposed to compute.

o Ais a (e d)-approximation to ¢ if we have

o[- =

o Ais a (e 0)-additive approximation to ® if we have
Pr[]A(s) — ®(s)| > €] < 0.

@ When § =0, A must be deterministic.
When ¢ = 0, A must be an exact algorithm.

RA-MIRI Data streams

Counting the number of distinct elements

RA-MIRI Data streams

Counting the number of distinct elements

e For an integer p > 0, let zeros(p) be the number of zeros at
the end of the binary representation of p.

RA-MIRI Data streams

Counting the number of distinct elements

e For an integer p > 0, let zeros(p) be the number of zeros at
the end of the binary representation of p.

zeros(p) = max{i | 2' divides p}.

RA-MIRI Data streams

Counting the number of distinct elements

e For an integer p > 0, let zeros(p) be the number of zeros at
the end of the binary representation of p.

zeros(p) = max{i | 2' divides p}.

@ Algorithm:

1: procedure COUNT-DIF(stream s)

2: Choose a random hash function h : [n] — [n] form a
universal family

3 intz=0

4 while not s.end() do

5: Jj = s.read()

6: if zeros(h(j)) > z then

7: z = zeros(h(j))

8 Return 272

RA-MIRI Data streams

Counting the number of distinct elements

e For an integer p > 0, let zeros(p) be the number of zeros at
the end of the binary representation of p.

zeros(p) = max{i | 2' divides p}.

@ Algorithm:

1: procedure COUNT-DIF(stream s)

2: Choose a random hash function h : [n] — [n] form a
universal family

3 intz=0

4 while not s.end() do

5: Jj = s.read()

6: if zeros(h(j)) > z then

7: z = zeros(h(j))

8 Return 272

@ Assuming that there are d distinct elements, the algorithm
computes max zeros(h(j)) as a good approximation of log d.

RA-MIRI Data streams

Counting the number of distinct elements: Quality

@ 1 pass, O(log n+ loglog n) memory and O(1) time per item.

RA-MIRI Data streams

Counting the number of distinct elements: Quality

@ 1 pass, O(log n+ loglog n) memory and O(1) time per item.
@ For j € [n] and r > 0, let X, ; be the indicator r.v. for
zeros(h(j)) > r.

o Let Y, = Zj\fj>0 Xrj.
@ Let t denote the final value of z.

RA-MIRI Data streams

Counting the number of distinct elements: Quality

@ 1 pass, O(log n+ loglog n) memory and O(1) time per item.
@ For j € [n] and r > 0, let X, ; be the indicator r.v. for
zeros(h(j)) > r.

Let Yr == Z_/‘f;>0 Xr’j.
Let t denote the final value of z.
Y, > 0iff t > r, or equivalently Y, =0 iff t < r —1.

RA-MIRI Data streams

Counting the number of distinct elements: Quality

@ 1 pass, O(log n+ loglog n) memory and O(1) time per item.
For j € [n] and r > 0, let Xy j be the indicator r.v. for
zeros(h(j)) > r.

o Let Y, =3 o X,
o Let t denote the final value of z.
o Y, >0iff t > r, or equivalently Y, =0 iff t < r — 1.
@ Since h(j) is uniformly distributed over the log n-bit strings,
1
E[X,] = Pr[zeros(h(j)) > r] = Pr[2" divides h(j)] = >

RA-MIRI Data streams

Counting the number of distinct elements: Quality

E[X,] = Prlzeros(h(j)) > r] = Pr[2" divides h(j)] = %

RA-MIRI Data streams

Counting the number of distinct elements: Quality

E[X,] = Prlzeros(h(j)) > r] = Pr[2" divides h(j)] = %

Elv]= Y EXl= 2

jI>0

RA-MIRI Data streams

Counting the number of distinct elements: Quality

E[X,] = Prlzeros(h(j)) > r] = Pr[2" divides h(j)] = %

Elv]= Y EXl= 2

jI>0

@ Random variables Y, are pairwise independent, as they come
from a universal hash family.

VarlY,] = Y Var[X, ;1< D E[XZ]= > E[X.]] :%

jlf>0 jlf>0 Jjlfi>0

RA-MIRI Data streams

Counting the number of distinct elements: Quality

e E[Y,] = Var[Y,|=d/2"

@ Using Markov's and Chebyshev's inequalities,

E[Y,] d
12

Pr[Y, > 0] = Pr[Y, > 1] <

Var[Y;] < 2"
(d/2r)2 = d°

PrlY, = 0] = Pr{|Y, — E[Y}]| > 2i"r] <

RA-MIRI Data streams

Counting the number of distinct elements: Quality

o PrlY, > 0] < £ and Pr[Y, =0] < Z.

RA-MIRI Data streams

Counting the number of distinct elements: Quality

o PrlY, > 0] < £ and Pr[Y, =0] < Z.
o Let d be the estimate of d, d = 2t72.

RA-MIRI Data streams

Counting the number of distinct elements: Quality

o PrlY, > 0] < £ and Pr[Y, =0] < Z.
o Let d be the estimate of d, d = 2t*3.
@ Let a be the smallest integer so that 2a+3 > 3d,

ol

Prid > 3d] = Prlt > a] = Pr[Y, = 0] < 2;"3 <

RA-MIRI Data streams

Counting the number of distinct elements: Quality

o PrlY, > 0] < £ and Pr[Y, =0] < Z.
o Let d be the estimate of d, d = 2t*3.
@ Let a be the smallest integer so that 2a+3 > 3d,

- d 2
Prid > 3d] = Prlt > a] = Pr[Y, = 0] < - < \3[
@ Let b be the largest integer so that ob+3 < 3d,
A 2b+1 2
Prid <3d] = Pr[t < b] = Pr[Yp41 =0] < — < \3[

RA-MIRI Data streams

Counting the number of distinct elements: Quality

o Prld >3d] < ¥2 and Pr[d < 3d] < ¥2.

@ Thus the algorithm provides a (2, g)—approximation.

RA-MIRI Data streams

Counting the number of distinct elements: Quality

o Pr[d >3d] < ? and Pr[d < 3d] < %
@ Thus the algorithm provides a (2, g)—approximation.

@ How to improve the quality of the approximation?

RA-MIRI Data streams

Counting the number of distinct elements: Quality

o Prld >3d] < ¥2 and Pr[d < 3d] < ¥2.

@ Thus the algorithm provides a (2, g)—approximation.

@ How to improve the quality of the approximation?

@ Usual technique: run k several independent copies of the
algorithm and take the best information from them, in this
case,

RA-MIRI Data streams

Counting the number of distinct elements: Quality

o Prld >3d] < ¥2 and Pr[d < 3d] < ¥2.

@ Thus the algorithm provides a (2, g)—approximation.

@ How to improve the quality of the approximation?

@ Usual technique: run k several independent copies of the
algorithm and take the best information from them, in this
case, the median of the k answers.

RA-MIRI Data streams

Counting the number of distinct elements: Quality

o Prld >3d] < ¥2 and Pr[d < 3d] < ¥2.

@ Thus the algorithm provides a (2, g)—approximation.

@ How to improve the quality of the approximation?

@ Usual technique: run k several independent copies of the
algorithm and take the best information from them, in this
case, the median of the k answers.

If the median exceed 3d at least k/2 of the runs do.

RA-MIRI Data streams

Counting the number of distinct elements: Quality

o Pr[d >3d] < ? and Pr[d < 3d] < %
@ Thus the algorithm provides a (2, g)—approximation.

@ How to improve the quality of the approximation?

@ Usual technique: run k several independent copies of the
algorithm and take the best information from them, in this
case, the median of the k answers.

If the median exceed 3d at least k/2 of the runs do.

@ By standard Chernoff bounds, the median exceed 3d with

probability 2~ %(k) and the median is below 3d with probability
2—Sk),

RA-MIRI Data streams

Counting the number of distinct elements: Quality

o Pr[d >3d] < ? and Pr[d < 3d] < %
@ Thus the algorithm provides a (2, g)—approximation.

@ How to improve the quality of the approximation?

@ Usual technique: run k several independent copies of the
algorithm and take the best information from them, in this
case, the median of the k answers.

If the median exceed 3d at least k/2 of the runs do.

@ By standard Chernoff bounds, the median exceed 3d with
probability 2~ %(k) and the median is below 3d with probability
2—Q(k).

@ Choosing k = O(log(1/d)), we can make the sum to be at
most ¢. So we get a (2, d)-approximation. However, the used
memory is now O(log(1/9)log n).

RA-MIRI Data streams

