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Counting the number of distinct elements

Distinct elements problem: Given a stream s, output
|{j | fj > 0}|.
where fj is the frequency of the j in the stream s

In order to solve the problem using sublinear space, we need
to use probabilistic algorithms/data structure and some
adequate notion of approximation.
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An (ε, δ)-approximation

Let A(s) denote the output of a randomized streaming
algorithm A on input s; note that this is a random variable.

Let Φ(s) be the function that A is supposed to compute.

A is a (ε, δ)-approximation to Φ if we have

Pr

[∣∣∣∣A(s)

Φ(s)
− 1

∣∣∣∣ > ε

]
≤ δ.

A is a (ε, δ)-additive approximation to Φ if we have

Pr [|A(s)− Φ(s)| > ε] ≤ δ.

When δ = 0, A must be deterministic.
When ε = 0, A must be an exact algorithm.
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Counting the number of distinct elements

For an integer p > 0, let zeros(p) be the number of zeros at
the end of the binary representation of p.

zeros(p) = max{i | 2i divides p}.

Algorithm:
1: procedure Count-Dif(stream s)
2: Choose a random hash function h : [n]→ [n] form a

universal family
3: int z = 0
4: while not s.end() do
5: j = s.read()
6: if zeros(h(j)) > z then
7: z = zeros(h(j))

8: Return 2z+ 1
2

Assuming that there are d distinct elements, the algorithm
computes max zeros(h(j)) as a good approximation of log d .
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Counting the number of distinct elements: Quality

1 pass, O(log n + log log n) memory and O(1) time per item.

For j ∈ [n] and r ≥ 0, let Xr ,j be the indicator r.v. for
zeros(h(j)) ≥ r .

Let Yr =
∑

j |fj>0 Xr ,j .

Let t denote the final value of z .

Yr > 0 iff t ≥ r , or equivalently Yr = 0 iff t ≤ r − 1.

Since h(j) is uniformly distributed over the log n-bit strings,

E [Xr ,j ] = Pr [zeros(h(j)) ≥ r ] = Pr [2r divides h(j)] =
1

2r
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Counting the number of distinct elements: Quality

E [Xr ,j ] = Pr [zeros(h(j)) ≥ r ] = Pr [2r divides h(j)] =
1

2r
.

E [Yr ] =
∑
j |fj>0

E [Xr ,j ] =
d

2r

Random variables Yr are pairwise independent, as they come
from a universal hash family.

Var [Yr ] =
∑
j |fj>0

Var [Xr ,j ] ≤
∑
j |fj>0

E [X 2
r ,j ] =

∑
j |fj>0

E [Xr ,j ] =
d

2r
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Counting the number of distinct elements: Quality

E [Yr ] = Var [Yr ] = d/2r

Using Markov’s and Chebyshev’s inequalities,

Pr [Yr > 0] = Pr [Yr ≥ 1] ≤ E [Yr ]

1
=

d

2r
.

Pr [Yr = 0] = Pr [|Yr − E [Yr ]| ≥ d

2r
] ≤ Var [Yr ]

(d/2r )2
≤ 2r

d
.
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Counting the number of distinct elements: Quality

Pr [Yr > 0] ≤ d
2r and Pr [Yr = 0] ≤ 2r

d .

Let d̂ be the estimate of d , d̂ = 2t+ 1
2 .

Let a be the smallest integer so that 2a+ 1
2 ≥ 3d ,

Pr [d̂ ≥ 3d ] = Pr [t ≥ a] = Pr [Ya = 0] ≤ d

2a
≤
√

2

3
.

Let b be the largest integer so that 2b+ 1
2 ≤ 3d ,

Pr [d̂ ≤ 3d ] = Pr [t ≤ b] = Pr [Yb+1 = 0] ≤ 2b+1

d
≤
√

2

3
.
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Counting the number of distinct elements: Quality

Pr [d̂ ≥ 3d ] ≤
√

2
3 and Pr [d̂ ≤ 3d ] ≤

√
2

3 .

Thus the algorithm provides a (2,
√

2
3 )-approximation.

How to improve the quality of the approximation?

Usual technique: run k several independent copies of the
algorithm and take the best information from them, in this
case, the median of the k answers.
If the median exceed 3d at least k/2 of the runs do.

By standard Chernoff bounds, the median exceed 3d with
probability 2−Ω(k) and the median is below 3d with probability
2−Ω(k).

Choosing k = Θ(log(1/δ)), we can make the sum to be at
most δ. So we get a (2, δ)-approximation. However, the used
memory is now O(log(1/δ) log n).
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