Counting different items in a stream

QT Curs 2020-2021

RA-MIRI Data streams

Image: A matrix and a matrix

문 🕨 🗉 문

⊡ ► <

æ

∢ 臣 ≯

 Distinct elements problem: Given a stream s, output |{j | f_j > 0}|.
 where f_i is the frequency of the j in the stream s

- Distinct elements problem: Given a stream s, output |{j | f_j > 0}|.
 where f_i is the frequency of the j in the stream s
- In order to solve the problem using sublinear space, we need to use probabilistic algorithms/data structure and some adequate notion of approximation.

RA-MIRI Data streams

ヘロト 人間 とくほど 人間とう

æ

- Let $\mathcal{A}(s)$ denote the output of a randomized streaming algorithm \mathcal{A} on input s; note that this is a random variable.
- Let $\Phi(s)$ be the function that \mathcal{A} is supposed to compute.

- Let $\mathcal{A}(s)$ denote the output of a randomized streaming algorithm \mathcal{A} on input s; note that this is a random variable.
- Let Φ(s) be the function that A is supposed to compute.
- \mathcal{A} is a (ϵ, δ) -approximation to Φ if we have

$$\Pr\left[\left|\frac{\mathcal{A}(s)}{\Phi(s)}-1\right|>\epsilon
ight]\leq\delta.$$

- Let A(s) denote the output of a randomized streaming algorithm A on input s; note that this is a random variable.
- Let Φ(s) be the function that A is supposed to compute.
- \mathcal{A} is a (ϵ, δ) -approximation to Φ if we have

$$\Pr\left[\left|\frac{\mathcal{A}(s)}{\Phi(s)}-1\right|>\epsilon
ight]\leq\delta.$$

• \mathcal{A} is a (ϵ, δ) -additive approximation to Φ if we have

$$\Pr\left[\left|\mathcal{A}(s) - \Phi(s)\right| > \epsilon\right] \leq \delta.$$

- Let A(s) denote the output of a randomized streaming algorithm A on input s; note that this is a random variable.
- Let Φ(s) be the function that A is supposed to compute.
- \mathcal{A} is a (ϵ, δ) -approximation to Φ if we have

$$\Pr\left[\left|\frac{\mathcal{A}(s)}{\Phi(s)}-1\right|>\epsilon\right]\leq\delta.$$

• \mathcal{A} is a (ϵ, δ) -additive approximation to Φ if we have

$$\Pr\left[\left|\mathcal{A}(s) - \Phi(s)\right| > \epsilon\right] \leq \delta.$$

When δ = 0, A must be deterministic.
 When ε = 0, A must be an exact algorithm.

⊡ ► <

æ

∢ 臣 ≯

 For an integer p > 0, let zeros(p) be the number of zeros at the end of the binary representation of p.

 For an integer p > 0, let zeros(p) be the number of zeros at the end of the binary representation of p.

$$\operatorname{zeros}(p) = \max\{i \mid 2^i \text{ divides } p\}.$$

 For an integer p > 0, let zeros(p) be the number of zeros at the end of the binary representation of p.

$$\operatorname{zeros}(p) = \max\{i \mid 2^i \text{ divides } p\}.$$

- Algorithm:
 - 1: **procedure** COUNT-DIF(stream *s*)
 - 2: Choose a random hash function $h: [n] \rightarrow [n]$ form a universal family

3: int
$$z = 0$$

5:
$$j = s.read()$$

6: **if**
$$zeros(h(j)) > z$$
 then

7:
$$z = \operatorname{zeros}(h(j))$$

 For an integer p > 0, let zeros(p) be the number of zeros at the end of the binary representation of p.

$$\operatorname{zeros}(p) = \max\{i \mid 2^i \text{ divides } p\}.$$

- Algorithm:
 - 1: **procedure** COUNT-DIF(stream *s*)
 - 2: Choose a random hash function $h: [n] \rightarrow [n]$ form a universal family
 - 3: int z = 0
 - 4: while not s.end() do
 - 5: j = s.read()
 - 6: **if** $\operatorname{zeros}(h(j)) > z$ **then**
 - 7: $z = \operatorname{zeros}(h(j))$
 - 8: Return $2^{z+\frac{1}{2}}$
- Assuming that there are d distinct elements, the algorithm computes max zeros(h(j)) as a good approximation of log d.

• 1 pass, $O(\log n + \log \log n)$ memory and O(1) time per item.

- 1 pass, $O(\log n + \log \log n)$ memory and O(1) time per item.
- For $j \in [n]$ and $r \ge 0$, let $X_{r,j}$ be the indicator r.v. for $\operatorname{zeros}(h(j)) \ge r$.
- Let $Y_r = \sum_{j \mid f_j > 0} X_{r,j}$.
- Let *t* denote the final value of *z*.

- 1 pass, $O(\log n + \log \log n)$ memory and O(1) time per item.
- For $j \in [n]$ and $r \ge 0$, let $X_{r,j}$ be the indicator r.v. for $\operatorname{zeros}(h(j)) \ge r$.
- Let $Y_r = \sum_{j \mid f_j > 0} X_{r,j}$.
- Let *t* denote the final value of *z*.
- $Y_r > 0$ iff $t \ge r$, or equivalently $Y_r = 0$ iff $t \le r 1$.

- 1 pass, $O(\log n + \log \log n)$ memory and O(1) time per item.
- For $j \in [n]$ and $r \ge 0$, let $X_{r,j}$ be the indicator r.v. for $\operatorname{zeros}(h(j)) \ge r$.
- Let $Y_r = \sum_{j \mid f_j > 0} X_{r,j}$.
- Let *t* denote the final value of *z*.
- $Y_r > 0$ iff $t \ge r$, or equivalently $Y_r = 0$ iff $t \le r 1$.

• Since *h*(*j*) is uniformly distributed over the log *n*-bit strings,

$$E[X_{r,j}] = \Pr[\operatorname{zeros}(h(j)) \ge r] = \Pr[2^r \text{ divides } h(j)] = \frac{1}{2^r}$$

$$E[X_{r,j}] = Pr[\operatorname{zeros}(h(j)) \ge r] = Pr[2^r \text{ divides } h(j)] = \frac{1}{2^r}.$$

> < 回 > < 三 >

∢ 臣 ▶

$$E[X_{r,j}] = \Pr[\operatorname{zeros}(h(j)) \ge r] = \Pr[2^r \text{ divides } h(j)] = \frac{1}{2^r}.$$

$$E[Y_r] = \sum_{j|f_j>0} E[X_{r,j}] = \frac{d}{2^r}$$

▶ ▲圖▶ ▲圖▶ ▲圖▶

$$E[X_{r,j}] = \Pr[\operatorname{zeros}(h(j)) \ge r] = \Pr[2^r \text{ divides } h(j)] = \frac{1}{2^r}.$$

$$E[Y_r] = \sum_{j|f_j>0} E[X_{r,j}] = \frac{d}{2^r}$$

• Random variables Y_r are pairwise independent, as they come from a universal hash family.

$$Var[Y_r] = \sum_{j|f_j>0} Var[X_{r,j}] \le \sum_{j|f_j>0} E[X_{r,j}^2] = \sum_{j|f_j>0} E[X_{r,j}] = \frac{d}{2r}$$

•
$$E[Y_r] = Var[Y_r] = d/2^r$$

• Using Markov's and Chebyshev's inequalities,

$$Pr[Y_r > 0] = Pr[Y_r \ge 1] \le \frac{E[Y_r]}{1} = \frac{d}{2^r}.$$

$$Pr[Y_r = 0] = Pr[|Y_r - E[Y_r]| \ge \frac{d}{2^r}] \le \frac{Var[Y_r]}{(d/2^r)^2} \le \frac{2^r}{d}.$$

•
$$Pr[Y_r > 0] \leq \frac{d}{2^r}$$
 and $Pr[Y_r = 0] \leq \frac{2^r}{d}$.

⊡ ► <

-≣->

• $Pr[Y_r > 0] \leq \frac{d}{2^r}$ and $Pr[Y_r = 0] \leq \frac{2^r}{d}$.

• Let \hat{d} be the estimate of d, $\hat{d} = 2^{t+\frac{1}{2}}$.

- $Pr[Y_r > 0] \leq \frac{d}{2^r}$ and $Pr[Y_r = 0] \leq \frac{2^r}{d}$.
- Let \hat{d} be the estimate of d, $\hat{d} = 2^{t+\frac{1}{2}}$.
- Let *a* be the smallest integer so that $2^{a+\frac{1}{2}} \ge 3d$,

$$Pr[\hat{d} \geq 3d] = Pr[t \geq a] = Pr[Y_a = 0] \leq \frac{d}{2^a} \leq \frac{\sqrt{2}}{3}.$$

- $Pr[Y_r > 0] \leq \frac{d}{2^r}$ and $Pr[Y_r = 0] \leq \frac{2^r}{d}$.
- Let \hat{d} be the estimate of d, $\hat{d} = 2^{t+\frac{1}{2}}$.
- Let *a* be the smallest integer so that $2^{a+\frac{1}{2}} \ge 3d$,

$$Pr[\hat{d} \geq 3d] = Pr[t \geq a] = Pr[Y_a = 0] \leq \frac{d}{2^a} \leq \frac{\sqrt{2}}{3}.$$

• Let b be the largest integer so that $2^{b+\frac{1}{2}} \leq 3d$,

$$Pr[\hat{d} \le 3d] = Pr[t \le b] = Pr[Y_{b+1} = 0] \le \frac{2^{b+1}}{d} \le \frac{\sqrt{2}}{3}.$$

•
$$Pr[\hat{d} \ge 3d] \le \frac{\sqrt{2}}{3}$$
 and $Pr[\hat{d} \le 3d] \le \frac{\sqrt{2}}{3}$.

• Thus the algorithm provides a $(2, \frac{\sqrt{2}}{3})$ -approximation.

•
$$Pr[\hat{d} \ge 3d] \le \frac{\sqrt{2}}{3}$$
 and $Pr[\hat{d} \le 3d] \le \frac{\sqrt{2}}{3}$.

- Thus the algorithm provides a $(2, \frac{\sqrt{2}}{3})$ -approximation.
- How to improve the quality of the approximation?

•
$$Pr[\hat{d} \ge 3d] \le \frac{\sqrt{2}}{3}$$
 and $Pr[\hat{d} \le 3d] \le \frac{\sqrt{2}}{3}$.

- Thus the algorithm provides a $(2, \frac{\sqrt{2}}{3})$ -approximation.
- How to improve the quality of the approximation?
- Usual technique: run k several independent copies of the algorithm and take the best information from them, in this case,

•
$$Pr[\hat{d} \ge 3d] \le \frac{\sqrt{2}}{3}$$
 and $Pr[\hat{d} \le 3d] \le \frac{\sqrt{2}}{3}$.

- Thus the algorithm provides a $(2, \frac{\sqrt{2}}{3})$ -approximation.
- How to improve the quality of the approximation?
- Usual technique: run k several independent copies of the algorithm and take the best information from them, in this case, the median of the k answers.

•
$$Pr[\hat{d} \ge 3d] \le \frac{\sqrt{2}}{3}$$
 and $Pr[\hat{d} \le 3d] \le \frac{\sqrt{2}}{3}$.

- Thus the algorithm provides a $(2, \frac{\sqrt{2}}{3})$ -approximation.
- How to improve the quality of the approximation?
- Usual technique: run k several independent copies of the algorithm and take the best information from them, in this case, the median of the k answers.

If the median exceed 3d at least k/2 of the runs do.

•
$$Pr[\hat{d} \ge 3d] \le \frac{\sqrt{2}}{3}$$
 and $Pr[\hat{d} \le 3d] \le \frac{\sqrt{2}}{3}$.

- Thus the algorithm provides a $(2, \frac{\sqrt{2}}{3})$ -approximation.
- How to improve the quality of the approximation?
- Usual technique: run k several independent copies of the algorithm and take the best information from them, in this case, the median of the k answers.
 If the median exceed 3d at least k/2 of the runs do.
- By standard Chernoff bounds, the median exceed 3d with probability $2^{-\Omega(k)}$ and the median is below 3d with probability $2^{-\Omega(k)}$.

•
$$Pr[\hat{d} \ge 3d] \le \frac{\sqrt{2}}{3}$$
 and $Pr[\hat{d} \le 3d] \le \frac{\sqrt{2}}{3}$.

- Thus the algorithm provides a $(2, \frac{\sqrt{2}}{3})$ -approximation.
- How to improve the quality of the approximation?
- Usual technique: run k several independent copies of the algorithm and take the best information from them, in this case, the median of the k answers.
 If the median exceed 3d at least k/2 of the runs do.
- By standard Chernoff bounds, the median exceed 3d with probability $2^{-\Omega(k)}$ and the median is below 3d with probability $2^{-\Omega(k)}$.
- Choosing k = Θ(log(1/δ)), we can make the sum to be at most δ. So we get a (2, δ)-approximation. However, the used memory is now O(log(1/δ) log n).

・ロト ・四ト ・ヨト ・ヨト