Counting different items in a stream

QT Curs 2020-2021

Counting the number of distinct elements

Counting the number of distinct elements

- Distinct elements problem: Given a stream s, output $\left|\left\{j \mid f_{j}>0\right\}\right|$. where f_{j} is the frequency of the j in the stream s

Counting the number of distinct elements

- Distinct elements problem: Given a stream s, output $\left|\left\{j \mid f_{j}>0\right\}\right|$. where f_{j} is the frequency of the j in the stream s
- In order to solve the problem using sublinear space, we need to use probabilistic algorithms/data structure and some adequate notion of approximation.

An (ϵ, δ)-approximation

An (ϵ, δ)-approximation

- Let $\mathcal{A}(s)$ denote the output of a randomized streaming algorithm \mathcal{A} on input s; note that this is a random variable.
- Let $\Phi(s)$ be the function that \mathcal{A} is supposed to compute.

An (ϵ, δ)-approximation

- Let $\mathcal{A}(s)$ denote the output of a randomized streaming algorithm \mathcal{A} on input s; note that this is a random variable.
- Let $\Phi(s)$ be the function that \mathcal{A} is supposed to compute.
- \mathcal{A} is a (ϵ, δ)-approximation to Φ if we have

$$
\operatorname{Pr}\left[\left|\frac{\mathcal{A}(s)}{\Phi(s)}-1\right|>\epsilon\right] \leq \delta
$$

An (ϵ, δ)-approximation

- Let $\mathcal{A}(s)$ denote the output of a randomized streaming algorithm \mathcal{A} on input s; note that this is a random variable.
- Let $\Phi(s)$ be the function that \mathcal{A} is supposed to compute.
- \mathcal{A} is a (ϵ, δ)-approximation to Φ if we have

$$
\operatorname{Pr}\left[\left|\frac{\mathcal{A}(s)}{\Phi(s)}-1\right|>\epsilon\right] \leq \delta
$$

- \mathcal{A} is a (ϵ, δ)-additive approximation to Φ if we have

$$
\operatorname{Pr}[|\mathcal{A}(s)-\Phi(s)|>\epsilon] \leq \delta
$$

An (ϵ, δ)-approximation

- Let $\mathcal{A}(s)$ denote the output of a randomized streaming algorithm \mathcal{A} on input s; note that this is a random variable.
- Let $\Phi(s)$ be the function that \mathcal{A} is supposed to compute.
- \mathcal{A} is a (ϵ, δ)-approximation to Φ if we have

$$
\operatorname{Pr}\left[\left|\frac{\mathcal{A}(s)}{\Phi(s)}-1\right|>\epsilon\right] \leq \delta
$$

- \mathcal{A} is a (ϵ, δ)-additive approximation to Φ if we have

$$
\operatorname{Pr}[|\mathcal{A}(s)-\Phi(s)|>\epsilon] \leq \delta
$$

- When $\delta=0, \mathcal{A}$ must be deterministic.

When $\epsilon=0, \mathcal{A}$ must be an exact algorithm.

Counting the number of distinct elements

Counting the number of distinct elements

- For an integer $p>0$, let zeros (p) be the number of zeros at the end of the binary representation of p.

Counting the number of distinct elements

- For an integer $p>0$, let zeros (p) be the number of zeros at the end of the binary representation of p.

$$
\operatorname{zeros}(p)=\max \left\{i \mid 2^{i} \text { divides } p\right\}
$$

Counting the number of distinct elements

- For an integer $p>0$, let zeros (p) be the number of zeros at the end of the binary representation of p.

$$
\operatorname{zeros}(p)=\max \left\{i \mid 2^{i} \text { divides } p\right\} .
$$

- Algorithm:

1: procedure Count-Dif(stream s)
2: Choose a random hash function $h:[n] \rightarrow[n]$ form a universal family
3: \quad int $z=0$
4: while not s.end() do
5: $\quad j=\operatorname{s.read}()$
6: \quad if $\operatorname{zeros}(h(j))>z$ then
7: $\quad z=\operatorname{zeros}(h(j))$
8: \quad Return $2^{z+\frac{1}{2}}$

Counting the number of distinct elements

- For an integer $p>0$, let zeros (p) be the number of zeros at the end of the binary representation of p.

$$
\operatorname{zeros}(p)=\max \left\{i \mid 2^{i} \text { divides } p\right\} .
$$

- Algorithm:

1: procedure Count-Dif(stream s)
2: Choose a random hash function $h:[n] \rightarrow[n]$ form a universal family
3: \quad int $z=0$
4: while not s.end() do
5: $\quad j=\operatorname{s.read}()$
6: \quad if $\operatorname{zeros}(h(j))>z$ then
7: $\quad z=\operatorname{zeros}(h(j))$
8: Return $2^{z+\frac{1}{2}}$

- Assuming that there are d distinct elements, the algorithm computes maxzeros $(h(j))$ as a good approximation of $\log d$.

Counting the number of distinct elements: Quality

- 1 pass, $O(\log n+\log \log n)$ memory and $O(1)$ time per item.

Counting the number of distinct elements: Quality

- 1 pass, $O(\log n+\log \log n)$ memory and $O(1)$ time per item.
- For $j \in[n]$ and $r \geq 0$, let $X_{r, j}$ be the indicator r.v. for $\operatorname{zeros}(h(j)) \geq r$.
- Let $Y_{r}=\sum_{j \mid f_{j}>0} X_{r, j}$.
- Let t denote the final value of z.

Counting the number of distinct elements: Quality

- 1 pass, $O(\log n+\log \log n)$ memory and $O(1)$ time per item.
- For $j \in[n]$ and $r \geq 0$, let $X_{r, j}$ be the indicator r.v. for $\operatorname{zeros}(h(j)) \geq r$.
- Let $Y_{r}=\sum_{j \mid f_{j}>0} X_{r, j}$.
- Let t denote the final value of z.
- $Y_{r}>0$ iff $t \geq r$, or equivalently $Y_{r}=0$ iff $t \leq r-1$.

Counting the number of distinct elements: Quality

- 1 pass, $O(\log n+\log \log n)$ memory and $O(1)$ time per item.
- For $j \in[n]$ and $r \geq 0$, let $X_{r, j}$ be the indicator r.v. for $\operatorname{zeros}(h(j)) \geq r$.
- Let $Y_{r}=\sum_{j \mid f_{j}>0} X_{r, j}$.
- Let t denote the final value of z.
- $Y_{r}>0$ iff $t \geq r$, or equivalently $Y_{r}=0$ iff $t \leq r-1$.
- Since $h(j)$ is uniformly distributed over the $\log n$-bit strings,

$$
E\left[X_{r, j}\right]=\operatorname{Pr}[\text { zeros }(h(j)) \geq r]=\operatorname{Pr}\left[2^{r} \text { divides } h(j)\right]=\frac{1}{2^{r}}
$$

Counting the number of distinct elements: Quality

$$
E\left[X_{r, j}\right]=\operatorname{Pr}[\operatorname{zeros}(h(j)) \geq r]=\operatorname{Pr}\left[2^{r} \text { divides } h(j)\right]=\frac{1}{2^{r}}
$$

Counting the number of distinct elements: Quality

$$
\begin{gathered}
E\left[X_{r, j}\right]=\operatorname{Pr}[\text { zeros }(h(j)) \geq r]=\operatorname{Pr}\left[2^{r} \text { divides } h(j)\right]=\frac{1}{2^{r}} . \\
E\left[Y_{r}\right]=\sum_{j \mid f_{j}>0} E\left[X_{r, j}\right]=\frac{d}{2^{r}}
\end{gathered}
$$

Counting the number of distinct elements: Quality

$$
\begin{gathered}
E\left[X_{r, j}\right]=\operatorname{Pr}[\text { zeros }(h(j)) \geq r]=\operatorname{Pr}\left[2^{r} \text { divides } h(j)\right]=\frac{1}{2^{r}} . \\
E\left[Y_{r}\right]=\sum_{j \mid f_{j}>0} E\left[X_{r, j}\right]=\frac{d}{2^{r}}
\end{gathered}
$$

- Random variables Y_{r} are pairwise independent, as they come from a universal hash family.

$$
\operatorname{Var}\left[Y_{r}\right]=\sum_{j \mid f_{j}>0} \operatorname{Var}\left[X_{r, j}\right] \leq \sum_{j \mid f_{j}>0} E\left[X_{r, j}^{2}\right]=\sum_{j \mid f_{j}>0} E\left[X_{r, j}\right]=\frac{d}{2^{r}}
$$

Counting the number of distinct elements: Quality

- $E\left[Y_{r}\right]=\operatorname{Var}\left[Y_{r}\right]=d / 2^{r}$
- Using Markov's and Chebyshev's inequalities,

$$
\begin{gathered}
\operatorname{Pr}\left[Y_{r}>0\right]=\operatorname{Pr}\left[Y_{r} \geq 1\right] \leq \frac{E\left[Y_{r}\right]}{1}=\frac{d}{2^{r}} . \\
\operatorname{Pr}\left[Y_{r}=0\right]=\operatorname{Pr}\left[\left|Y_{r}-E\left[Y_{r}\right]\right| \geq \frac{d}{2^{r}}\right] \leq \frac{\operatorname{Var}\left[Y_{r}\right]}{\left(d / 2^{r}\right)^{2}} \leq \frac{2^{r}}{d} .
\end{gathered}
$$

Counting the number of distinct elements: Quality

- $\operatorname{Pr}\left[Y_{r}>0\right] \leq \frac{d}{2^{r}}$ and $\operatorname{Pr}\left[Y_{r}=0\right] \leq \frac{2^{r}}{d}$.

Counting the number of distinct elements: Quality

- $\operatorname{Pr}\left[Y_{r}>0\right] \leq \frac{d}{2^{r}}$ and $\operatorname{Pr}\left[Y_{r}=0\right] \leq \frac{2^{r}}{d}$.
- Let \hat{d} be the estimate of $d, \hat{d}=2^{t+\frac{1}{2}}$.

Counting the number of distinct elements: Quality

- $\operatorname{Pr}\left[Y_{r}>0\right] \leq \frac{d}{2^{r}}$ and $\operatorname{Pr}\left[Y_{r}=0\right] \leq \frac{2^{r}}{d}$.
- Let \hat{d} be the estimate of $d, \hat{d}=2^{t+\frac{1}{2}}$.
- Let a be the smallest integer so that $2^{a+\frac{1}{2}} \geq 3 d$,

$$
\operatorname{Pr}[\hat{d} \geq 3 d]=\operatorname{Pr}[t \geq a]=\operatorname{Pr}\left[Y_{a}=0\right] \leq \frac{d}{2^{a}} \leq \frac{\sqrt{2}}{3}
$$

Counting the number of distinct elements: Quality

- $\operatorname{Pr}\left[Y_{r}>0\right] \leq \frac{d}{2^{r}}$ and $\operatorname{Pr}\left[Y_{r}=0\right] \leq \frac{2^{r}}{d}$.
- Let \hat{d} be the estimate of $d, \hat{d}=2^{t+\frac{1}{2}}$.
- Let a be the smallest integer so that $2^{a+\frac{1}{2}} \geq 3 d$,

$$
\operatorname{Pr}[\hat{d} \geq 3 d]=\operatorname{Pr}[t \geq a]=\operatorname{Pr}\left[Y_{a}=0\right] \leq \frac{d}{2^{a}} \leq \frac{\sqrt{2}}{3}
$$

- Let b be the largest integer so that $2^{b+\frac{1}{2}} \leq 3 d$,

$$
\operatorname{Pr}[\hat{d} \leq 3 d]=\operatorname{Pr}[t \leq b]=\operatorname{Pr}\left[Y_{b+1}=0\right] \leq \frac{2^{b+1}}{d} \leq \frac{\sqrt{2}}{3}
$$

Counting the number of distinct elements: Quality

- $\operatorname{Pr}[\hat{d} \geq 3 d] \leq \frac{\sqrt{2}}{3}$ and $\operatorname{Pr}[\hat{d} \leq 3 d] \leq \frac{\sqrt{2}}{3}$.
- Thus the algorithm provides a $\left(2, \frac{\sqrt{2}}{3}\right)$-approximation.

Counting the number of distinct elements: Quality

- $\operatorname{Pr}[\hat{d} \geq 3 d] \leq \frac{\sqrt{2}}{3}$ and $\operatorname{Pr}[\hat{d} \leq 3 d] \leq \frac{\sqrt{2}}{3}$.
- Thus the algorithm provides a $\left(2, \frac{\sqrt{2}}{3}\right)$-approximation.
- How to improve the quality of the approximation?

Counting the number of distinct elements: Quality

- $\operatorname{Pr}[\hat{d} \geq 3 d] \leq \frac{\sqrt{2}}{3}$ and $\operatorname{Pr}[\hat{d} \leq 3 d] \leq \frac{\sqrt{2}}{3}$.
- Thus the algorithm provides a $\left(2, \frac{\sqrt{2}}{3}\right)$-approximation.
- How to improve the quality of the approximation?
- Usual technique: run k several independent copies of the algorithm and take the best information from them, in this case,

Counting the number of distinct elements: Quality

- $\operatorname{Pr}[\hat{d} \geq 3 d] \leq \frac{\sqrt{2}}{3}$ and $\operatorname{Pr}[\hat{d} \leq 3 d] \leq \frac{\sqrt{2}}{3}$.
- Thus the algorithm provides a $\left(2, \frac{\sqrt{2}}{3}\right)$-approximation.
- How to improve the quality of the approximation?
- Usual technique: run k several independent copies of the algorithm and take the best information from them, in this case, the median of the k answers.

Counting the number of distinct elements: Quality

- $\operatorname{Pr}[\hat{d} \geq 3 d] \leq \frac{\sqrt{2}}{3}$ and $\operatorname{Pr}[\hat{d} \leq 3 d] \leq \frac{\sqrt{2}}{3}$.
- Thus the algorithm provides a $\left(2, \frac{\sqrt{2}}{3}\right)$-approximation.
- How to improve the quality of the approximation?
- Usual technique: run k several independent copies of the algorithm and take the best information from them, in this case, the median of the k answers.
If the median exceed $3 d$ at least $k / 2$ of the runs do.

Counting the number of distinct elements: Quality

- $\operatorname{Pr}[\hat{d} \geq 3 d] \leq \frac{\sqrt{2}}{3}$ and $\operatorname{Pr}[\hat{d} \leq 3 d] \leq \frac{\sqrt{2}}{3}$.
- Thus the algorithm provides a $\left(2, \frac{\sqrt{2}}{3}\right)$-approximation.
- How to improve the quality of the approximation?
- Usual technique: run k several independent copies of the algorithm and take the best information from them, in this case, the median of the k answers. If the median exceed $3 d$ at least $k / 2$ of the runs do.
- By standard Chernoff bounds, the median exceed $3 d$ with probability $2^{-\Omega(k)}$ and the median is below $3 d$ with probability $2^{-\Omega(k)}$.

Counting the number of distinct elements: Quality

- $\operatorname{Pr}[\hat{d} \geq 3 d] \leq \frac{\sqrt{2}}{3}$ and $\operatorname{Pr}[\hat{d} \leq 3 d] \leq \frac{\sqrt{2}}{3}$.
- Thus the algorithm provides a $\left(2, \frac{\sqrt{2}}{3}\right)$-approximation.
- How to improve the quality of the approximation?
- Usual technique: run k several independent copies of the algorithm and take the best information from them, in this case, the median of the k answers.
If the median exceed $3 d$ at least $k / 2$ of the runs do.
- By standard Chernoff bounds, the median exceed $3 d$ with probability $2^{-\Omega(k)}$ and the median is below $3 d$ with probability $2^{-\Omega(k)}$.
- Choosing $k=\Theta(\log (1 / \delta))$, we can make the sum to be at most δ. So we get a $(2, \delta)$-approximation. However, the used memory is now $O(\log (1 / \delta) \log n)$.

