Bloom filters and Cuckoo hashing

RA-MIRI QT Curs 2020-2021

Bloom filters and Cuckoo hashing

Bloom filter

Given a set of elements S, we want a Data structure for supporting
insertions and querying about membership in S.
In particular we wish a DS s.t.

@ minimizes the use of memory,

@ can check membership as fast as possible.

Burton Bloom: The Bloom filter data structure. Comm. ACM,
July 1970.
A hash data structure where each register in the table is one bit

Bloom filters and Cuckoo hashing

Query on a list of e-mails

We have a set S of 10 e-mail addresses, where the typical e-mail

address is 20 bites. Therefore it does not seem reasonable to store
S in main memory. We can spare 1 Gigabyte of memory, which is

approximately 10° bytes or 8 x 10° bites. How can put S in main

memory to query it?

Bloom filters and Cuckoo hashing

Definition Bloom filter

Create a one bit hash table T[0,...,m— 1], and a hash function h.
Initially all m bits are set to 0.

Giving a set S = {x1, ..., xn} define a hashing function h: S — T.
For every x; € S, h(x;) — T[j] and T[j] := 1.
Given a set S a function h() and a table T[m]:

inS(y)
Insert (x) h(x) —i
h(x) — i if T[i]==1 then
if T[[]==0 then return Yes
Tli=1 else
end if return No
end if

Notice: once we have hashed S into T we can erase S.

Bloom filters and Cuckoo hashing

False positives

[oJoftfoJofrjojofifJoJoftfofofo] T

Bloom filter needs O(m) space and answers membership queries in

o(1).

Inconvenience: Do not support removal and may have false
positive.

In a query y € 57, a Bloom filter always will report correctly if
indeed y € S (h(y) — T[i] with T[i] =1),

but if y € S it may be the case that h(y) — T[i] with T[i] =1,
which is called a False positive.

How large is the error of having a false positive?

Bloom filters and Cuckoo hashing

Probability of having a false positives

Let |S| = n, we constructed a BF (h, T[m]) with all elements in S.
If we query about y € §?, with y ¢ S, and h(y) — T[i], what is
the probability that T[i] = 17

After all the elements of S are hashed into the Bloom filter, the
probability that a specific T[i] =0is (1 —)" = e="/m

(recall that: e = limy_00(1 + %)X e ! = limy_oo(l — %)X)

Therefore, for a y € S, the probability of false positive 7:

= Pr[h(y) — T[i] | where T[i] = 1] = 1_(1_%)" ~loen/m,

To minimise 7, want to maximize e—n/m

= - has to be small, i.e, m >> n.

For ex.: if m = 100n, 7 = 0.0095; If m = n, 7 = 0.632 and if
m = n/10,7 = 0.9999

Bloom filters and Cuckoo hashing

Alternative: Amplify

Take k different functions {hy, ha, ..., hc} in the same 2-universal
set of functions.

Ex. Bloom filter with 3 hash functions: h1, hy, h3.
a. C d

— "bx /i/

— S
[olofol {olo[o[ol 1[o[olfol el sTol [olol] [ol1]olol [ololo]

When making a query about if y € S, compute h1(y),... ht(y), if
one of them is 0 we certainty y ¢ S, else (if all the k hashing go to
bits with value 1) y € S with some probability.

After hashing the n elements k times to T, for an specific T[i]:

p=Pr[T[] =0 = (1)" =et/m

The probability f of a false positive:
k
f= (1 — efk”/m> =(1- p)k

Asymptotic estimations for kK and m

To minimize the probability of having a false positive: % =0
Let £(k) = In p then (k) = kIn(1 — e=k7/m)
—kn/m ne—kn/m
if’(k)zln(l—e kn/)+W
Making f'(k) = 0, we get

9 m
Kopt = —fln2— e

The probability of having a false positive for kop is

Qm

1. 9m m
T~ (5)5 = 06192237,

Bloom filters and Cuckoo hashing

Optimizing k

Given n and m we want to find the optimal value of k to minimize
the probability of a false positive f(k) = (1 — e~kn/m)k

Define g(k) = Inf(k) = kIn(1 — e~*"/™). Minimizing f is
equivalent to minimizing g.

N . . o dg(k)
To minimize the probability of having a false positive: <= =0
= 46l — in(1 — e~hn/m) 4 e T — g,
= when n, m are given, to minimize f is k, = (In2)™.
In this case the false positive probability f, = 0.6185™/".

Bloom filters allow a constant probability of false positive, m = cn
for small constant c, i.e. m grows linear wrt n.

For ex.: if ¢ =2 and k = 6 the false positive probability is around
2%.

Bloom filters and Cuckoo hashing

Practical issues

On the other hand although the results shown before are
asymptotic, there also work for practical values of n.

(Fig 3 in Takoma, Rothnberg, Lagerpetz: Theory and Practice of
Bloom Filters for Distributed Systems) Gives the probability of false
positive (y) wrt to n (x), and as function of m, with k =In2.

0 10000 100000 10406 1e+07 10408 10«09

Bloom filters and Cuckoo hashing

Further applications of Bloom filters

Bloom filters are useful when a set of keys is used and space is
important.

@ The Google Chrome web browser used to use a Bloom filter to
identify malicious URLs. Any URL was first checked against a
local Bloom filter, and only if the Bloom filter returned a
positive result was a full check of the URL performed (and the
user warned, if that too returned a positive result)

@ Packet routing: Bloom filters provide a means to speed up or
simplify packet routing protocols.

o |IP Tracebook
@ Useful tool for measurement infrastructures used to create
data summaries in routers or other network devices.

A. Broder, M. Mitzenmacher: Network applications of Bloom
filters: A survey. Internet Mathematics, 1,4: 485-509, 2005

Bloom filters and Cuckoo hashing

Cuckoo Hashing

Pagh, Rodler: Cuckoo Hashing. ESA-2001
Cuckoo hashing is a hashing technique where:

@ Lookups are ©(1) worst-case.
@ Deletions are O(1) worst-case.

@ Insertions are O(1) in expectation.

Bloom filters and Cuckoo hashing

Cuckoo Hashing

@ We have two hash tables T7, T, with size m each and two
hash functions h; for T1 and hy for T>.

e Can use for instance hi(k) = k mod m and
ha(k) = [k/m] mod m

@ Every element k € U can be only in two positions: at hi(k) in
Ty or at ha(k) in To.

@ Lookups take ©(1) because we only need to check 2 positions.

@ Deletions take ©(1) because we only need to check 2
positions.

e To insert k € U, try hi(k), if the slot is empty put k there, if
the slot contains k', kick out the k’, k stay there, and k’
repeats the behavior of k on T5.

@ Repeat this process, bouncing between tables, until all
elements stabilize.

Bloom filters and Cuckoo hashing

Cuckoo Hashing: Long cycles of insertion

One complication is that the cuckoo may loop for ever. The
probability of such an event is small. In such a case choose an
upper bound in the number of slot exchanges, and if it exceeds, do
a rehash: choose new functions and start .

Example: We have {x,y,w, z, u}
hi(x) =2;hi(y) = 2; hi(w) = 4; h1(z) = 4, h1(u) = 4
ha(x) =1; ha(y) = 1; ha(w) = 2; ho(2) = 0, hp(u) =2

0 0
1 J 1
2|y P 20y
3 3
4 z\/ 4 u
5 ‘u 5

Bloom filters and Cuckoo hashing

Cuckoo Hashing: Long cycles of insertion

What happens if

hi(x) =2;hi(y) = 2; hi(w) = 4; h1(z) = 4, h1(u) = 4
ha(x) = 1; ha(y) = 1; ha(w) = 2; ha(2) = 0, ho(u) = 27

0

1 |

2|y .

3 g

4 AN

5 u

If insertion gets into a cycle, we perform a rehash: choose new
h1, hy and insert all elements back into the table.

Bloom filters and Cuckoo hashing

Cuckoo Hashing: An example

We wish to hash the set of keys:(20, 50,53, 75, 100, 67, 105, 3, 36, 39, 6)
using hi(k) = k mod 11 and h(k) = |&] mod 11.

I m h 0 0
2019 1 1 | 100 120
50 6 4 2 2
53 9 4 3 3
19 0 4 4 | 53
100 | 1 9
67 1 6 g 50 g
105 6 9 7 7
3 3 0 8 8
36 |3 3 9 75 9
39 |6 3 10 10
6 6 0
T, T,

Bloom filters and Cuckoo hashing

Cuckoo Hashing: An example

hy hy
20 | 9 1 0 0
0)60 4 1 | 67 120
53 9 4) 2
75 9 6 3 3
1001 9 4 4 50
67 | 1 6 5 5
05| 6 9 6 | 105 6 75
3 3 0 g g
36 | 3 3
6 |6 0

Bloom filters and Cuckoo hashing

Cuckoo Hashing: An example

hy ho
2019 1 0 0 3
50 16 4 1 67 1 20
53 | 9 4 2 2
7519 6 3 36 3
100 1 9 4 4 50
67 | 1 6 5 5
105 6 9 6 | 105 6 75
3 13 0 7 7
8 8
36 | 3 3 9 9
w6 3 53 100
6 |6 0

Bloom filters and Cuckoo hashing

Cuckoo Hashing: An example

h
AL ——
ol R I 00| 1] 20
7519 6 2 2
1001 1 o 3 36 3 = 39 |
67 1 1 6 4 4 |53 |
05| 6 9 > D
303 0 6 15050~ 6 267

7 7
6|3 3
39 |6 3 8 8
6 6 0 9 75 9 L 105 |

With 6 we have to rehash!!!

Bloom filters and Cuckoo hashing

Complexity

Cuckoo hashing has a complexity:

@ Search an element x: constant worst case complexity (x only
can be in the 2 positions hi(x) or in hy(x))

@ Delete an element: constant worst case complexity (look at
the 2 positions and erase the element)

@ Inserte an element: expected constant complexity.

Bloom filters and Cuckoo hashing

Analyzing Cuckoo Hashing

@ Cuckoo hashing is tricky to analyze:
o Elements move around and can be in one of two different
places.
o The sequence of displacements can jump chaotically over the
table.
@ The framework for analyzing cuckoo hashing requires analysis
on random bipartite graphs and random graph processes.

Bloom filters and Cuckoo hashing

Analyzing Cuckoo Hashing

@ The cuckoo graph is a bipartite graph derived from a cuckoo
hash table.

@ Each table slot is a node.

@ Each element x is an edge from (hi(x), ha(x))

Bloom filters and Cuckoo hashing

Analyzing Cuckoo Hashing

@ An insertion traces a path through the cuckoo graph.

@ An insertion of x succeeds iff the connected component
containing edge x contains at most one cycle.

Bloom filters and Cuckoo hashing

Analyzing Cuckoo Hashing

@ Analyze the probability that a connected component has more
than one cycle.

@ Under the assumption that no connected component has more
than one cycle, analyze the expected cost of an insertion.
The cost of inserting x into a cuckoo hash table is
proportional to the size of the CC containing x.

Bloom filters and Cuckoo hashing

Analyzing Cuckoo Hashing

If m = (1+ €)n, for some € > 0, the probability that the cuckoo
graph contains a connected component with more than one cycle

is O(1/m).

v
Theorem

If m> (1+ €)n, for any e > 0, the expected number of nodes in a
connected component of the cuckoo graph is at most 1 + 1/e.

So, expectec time of insertion is O(1)

Bloom filters and Cuckoo hashing

Analyzing Cuckoo Hashing

@ The time for insertion is 1 + 1/e.
The expected cost of a single rehash, assuming that it
succeeds, is O(m+ n/e).

@ As a rehash succeeds with probability 1 — O(1/m), on
expectation, only 1/(1 — O(1/m)) = O(1) rehashes are
necessary.

@ The expected cost due to rehash is O(m + n/e).

Bloom filters and Cuckoo hashing

