
Bloom filters and Cuckoo hashing

RA-MIRI QT Curs 2020-2021

Bloom filters and Cuckoo hashing

Bloom filter

Given a set of elements S , we want a Data structure for supporting
insertions and querying about membership in S .

In particular we wish a DS s.t.

minimizes the use of memory,

can check membership as fast as possible.

Burton Bloom: The Bloom filter data structure. Comm. ACM,
July 1970.
A hash data structure where each register in the table is one bit

Bloom filters and Cuckoo hashing

Query on a list of e-mails

We have a set S of 109 e-mail addresses, where the typical e-mail
address is 20 bites. Therefore it does not seem reasonable to store
S in main memory. We can spare 1 Gigabyte of memory, which is
approximately 109 bytes or 8× 109 bites. How can put S in main
memory to query it?

Bloom filters and Cuckoo hashing

Definition Bloom filter

Create a one bit hash table T [0, . . . ,m− 1], and a hash function h.
Initially all m bits are set to 0.

Giving a set S = {x1, . . . , xn} define a hashing function h : S → T .
For every xi ∈ S , h(xi)→ T [j] and T [j] := 1.
Given a set S a function h() and a table T [m]:

Insert (x)
h(x)→ i
if T [i] == 0 then
T [i] = 1

end if

inS(y)
h(x)→ i
if T [i] == 1 then

return Yes
else

return No
end if

Notice: once we have hashed S into T we can erase S .

Bloom filters and Cuckoo hashing

False positives

w

x y z u

1 1 1 10 0 0 0 0 0 0 0 0 0 0

S

T

w

Bloom filter needs O(m) space and answers membership queries in
Θ(1).

Inconvenience: Do not support removal and may have false
positive.

In a query y ∈ S?, a Bloom filter always will report correctly if
indeed y ∈ S (h(y)→ T [i] with T [i] = 1),
but if y 6∈ S it may be the case that h(y)→ T [i] with T [i] = 1,
which is called a False positive.

How large is the error of having a false positive?

Bloom filters and Cuckoo hashing

Probability of having a false positives

Let |S | = n, we constructed a BF (h,T [m]) with all elements in S .
If we query about y ∈ S?, with y 6∈ S , and h(y)→ T [i], what is
the probability that T [i] = 1?

After all the elements of S are hashed into the Bloom filter, the
probability that a specific T [i] = 0 is (1− 1

m)n = e−n/m

(recall that: e = limx→∞(1 + 1
x)x , e−1 = limx→∞(1− 1

x)x)

Therefore, for a y 6∈ S , the probability of false positive π:

π = Pr [h(y)→ T [i] |where T [i] = 1] = 1−(1− 1

m
)n ∼ 1−e−n/m.

To minimise π, want to maximize e−n/m

⇒ n
m has to be small, i.e, m >> n.

For ex.: if m = 100n, π = 0.0095; If m = n, π = 0.632 and if
m = n/10, π = 0.9999

Bloom filters and Cuckoo hashing

Alternative: Amplify

Take k different functions {h1, h2, . . . , hk} in the same 2-universal
set of functions.

Ex. Bloom filter with 3 hash functions: h1, h2, h3.

0

a c eb d

1 111 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0000

When making a query about if y ∈ S , compute h1(y), . . . ht(y), if
one of them is 0 we certainty y 6∈ S , else (if all the k hashing go to
bits with value 1) y ∈ S with some probability.
After hashing the n elements k times to T , for an specific T [i]:

p = Pr [T [i] = 0] = (1− 1

m
)kn = e−kn/m.

The probability f of a false positive:

f =
(

1− e−kn/m
)k

= (1− p)k

Bloom filters and Cuckoo hashing

Asymptotic estimations for k and m

To minimize the probability of having a false positive: dp
dk = 0

Let f (k) = ln p then f (k) = k ln(1− e−kn/m)

⇒ f ′(k) = ln(1− e−kn/m) + kne−kn/m

m(1−e−kn/m)

Making f ′(k) = 0, we get

kopt =
m

n

1

2
ln 2 =

9

13

m

n

The probability of having a false positive for kopt is

p0 = (1− e
9
13

m
n

n
m)

9
13

m
n ∼ (

1

2
)

9m
13n = 0.619223

m
n .

Bloom filters and Cuckoo hashing

Optimizing k

Given n and m we want to find the optimal value of k to minimize
the probability of a false positive f (k) = (1− e−kn/m)k

Define g(k) = ln f (k) = k ln(1− e−kn/m). Minimizing f is
equivalent to minimizing g .

To minimize the probability of having a false positive: dg(k)
dk = 0

⇒ dg(k)
dk = ln(1− e−kn/m) + kne−kn/m

m(1−e−kn/m)
= 0,

⇒ when n,m are given, to minimize f is ko = (ln 2)mn .

In this case the false positive probability fo = 0.6185m/n.

Bloom filters allow a constant probability of false positive, m = cn
for small constant c, i.e. m grows linear wrt n.

For ex.: if c = 2 and k = 6 the false positive probability is around
2%.

Bloom filters and Cuckoo hashing

Practical issues

On the other hand although the results shown before are
asymptotic, there also work for practical values of n.
(Fig 3 in Takoma, Rothnberg, Lagerpetz: Theory and Practice of
Bloom Filters for Distributed Systems) Gives the probability of false
positive (y) wrt to n (x), and as function of m, with k = ln 2 n

m .

Bloom filters and Cuckoo hashing

Further applications of Bloom filters

Bloom filters are useful when a set of keys is used and space is
important.

The Google Chrome web browser used to use a Bloom filter to
identify malicious URLs. Any URL was first checked against a
local Bloom filter, and only if the Bloom filter returned a
positive result was a full check of the URL performed (and the
user warned, if that too returned a positive result)

Packet routing: Bloom filters provide a means to speed up or
simplify packet routing protocols.

IP Tracebook

Useful tool for measurement infrastructures used to create
data summaries in routers or other network devices.

A. Broder, M. Mitzenmacher: Network applications of Bloom
filters: A survey. Internet Mathematics, 1,4: 485-509, 2005

Bloom filters and Cuckoo hashing

Cuckoo Hashing

Pagh, Rodler: Cuckoo Hashing. ESA-2001
Cuckoo hashing is a hashing technique where:

Lookups are Θ(1) worst-case.

Deletions are Θ(1) worst-case.

Insertions are O(1) in expectation.

Bloom filters and Cuckoo hashing

Cuckoo Hashing

We have two hash tables T1,T2 with size m each and two
hash functions h1 for T1 and h2 for T2.

Can use for instance h1(k) = k mod m and
h2(k) = dk/me mod m

Every element k ∈ U can be only in two positions: at h1(k) in
T1 or at h2(k) in T2.

Lookups take Θ(1) because we only need to check 2 positions.

Deletions take Θ(1) because we only need to check 2
positions.

To insert k ∈ U , try h1(k), if the slot is empty put k there, if
the slot contains k ′, kick out the k ′, k stay there, and k ′

repeats the behavior of k on T2.

Repeat this process, bouncing between tables, until all
elements stabilize.

Bloom filters and Cuckoo hashing

Cuckoo Hashing: Long cycles of insertion

One complication is that the cuckoo may loop for ever. The
probability of such an event is small. In such a case choose an
upper bound in the number of slot exchanges, and if it exceeds, do
a rehash: choose new functions and start .

Example: We have {x , y ,w , z , u}
h1(x) = 2; h1(y) = 2; h1(w) = 4; h1(z) = 4, h1(u) = 4
h2(x) = 1; h2(y) = 1; h2(w) = 2; h2(z) = 0, h2(u) = 2

z0

1

2

3

4

5

y

z

w

u

x
0

1

2

3

4

5

y w

x

u

Bloom filters and Cuckoo hashing

Cuckoo Hashing: Long cycles of insertion

What happens if
h1(x) = 2; h1(y) = 2; h1(w) = 4; h1(z) = 4, h1(u) = 4
h2(x) = 1; h2(y) = 1; h2(w) = 2; h2(z) = 0, h2(u) = 2?

x
0

1

2

3

4

5

y

z

w

u

If insertion gets into a cycle, we perform a rehash: choose new
h1, h2 and insert all elements back into the table.

Bloom filters and Cuckoo hashing

Cuckoo Hashing: An example

We wish to hash the set of keys:(20, 50, 53, 75, 100, 67, 105, 3, 36, 39, 6)
using h1(k) = k mod 11 and h2(k) = b k

11
c mod 11.

h1 h2
20 9 1
50 6 4
53 9 4
75 9 6
100 1 9
67 1 6
105 6 9
3 3 0
36 3 3
39 6 3
6 6 0

20

0

1

4

3

2

5

7

6

8

9

0

1

4

3

2

5

7

6

8

9

0

1

4

3

2

5

7

6

8

9

50

53

100

10 10

T1 T2

75

Bloom filters and Cuckoo hashing

Cuckoo Hashing: An example

h1 h2
20 9 1
50 6 4
53 9 4
75 9 6

100 1 9
67 1 6

105 6 9
3 3 0

36 3 3
39 6 3
6 6 0

105

0

1

4

3

2

5

7

6

8

9

0

1

4

3

2

5

7

6

8

9

0

1

4

3

2

5

7

6

8

9 100

67

75

20

53

50

Bloom filters and Cuckoo hashing

Cuckoo Hashing: An example

h1 h2
20 9 1
50 6 4
53 9 4
75 9 6

100 1 9
67 1 6

105 6 9
3 3 0

36 3 3
39 6 3
6 6 0

36

0

1

4

3

2

5

7

6

8

9

0

1

4

3

2

5

7

6

8

9

0

1

4

3

2

5

7

6

8

9

75

100

67

50

20

53

105

3

Bloom filters and Cuckoo hashing

Cuckoo Hashing: An example

h1 h2
20 9 1
50 6 4
53 9 4
75 9 6

100 1 9
67 1 6

105 6 9
3 3 0

36 3 3
39 6 3
6 6 0

36

0

1

4

3

2

5

7

6

8

9

0

1

4

3

2

5

7

6

8

9

0

1

4

3

2

5

7

6

8

9

20

105

39

100

67

75

53

50

39

3

With 6 we have to rehash!!!

Bloom filters and Cuckoo hashing

Complexity

Cuckoo hashing has a complexity:

Search an element x: constant worst case complexity (x only
can be in the 2 positions h1(x) or in h2(x))

Delete an element: constant worst case complexity (look at
the 2 positions and erase the element)

Inserte an element: expected constant complexity.

Bloom filters and Cuckoo hashing

Analyzing Cuckoo Hashing

Cuckoo hashing is tricky to analyze:

Elements move around and can be in one of two different
places.
The sequence of displacements can jump chaotically over the
table.

The framework for analyzing cuckoo hashing requires analysis
on random bipartite graphs and random graph processes.

Bloom filters and Cuckoo hashing

Analyzing Cuckoo Hashing

The cuckoo graph is a bipartite graph derived from a cuckoo
hash table.

Each table slot is a node.

Each element x is an edge from (h1(x), h2(x))

Bloom filters and Cuckoo hashing

Analyzing Cuckoo Hashing

An insertion traces a path through the cuckoo graph.

An insertion of x succeeds iff the connected component
containing edge x contains at most one cycle.

Bloom filters and Cuckoo hashing

Analyzing Cuckoo Hashing

Analyze the probability that a connected component has more
than one cycle.

Under the assumption that no connected component has more
than one cycle, analyze the expected cost of an insertion.
The cost of inserting x into a cuckoo hash table is
proportional to the size of the CC containing x .

Bloom filters and Cuckoo hashing

Analyzing Cuckoo Hashing

Theorem

If m = (1 + ε)n, for some ε > 0, the probability that the cuckoo
graph contains a connected component with more than one cycle
is O(1/m).

Theorem

If m ≥ (1 + ε)n, for any ε > 0, the expected number of nodes in a
connected component of the cuckoo graph is at most 1 + 1/ε.

So, expectec time of insertion is O(1)

Bloom filters and Cuckoo hashing

Analyzing Cuckoo Hashing

The time for insertion is 1 + 1/ε.
The expected cost of a single rehash, assuming that it
succeeds, is O(m + n/ε).

As a rehash succeeds with probability 1− O(1/m), on
expectation, only 1/(1− O(1/m)) = O(1) rehashes are
necessary.

The expected cost due to rehash is O(m + n/ε).

Bloom filters and Cuckoo hashing

