# Bloom filters and Cuckoo hashing 

RA-MIRI QT Curs 2020-2021

## Bloom filter

Given a set of elements $S$, we want a Data structure for supporting insertions and querying about membership in $S$.

In particular we wish a DS s.t.

- minimizes the use of memory,
- can check membership as fast as possible.

Burton Bloom: The Bloom filter data structure. Comm. ACM, July 1970.
A hash data structure where each register in the table is one bit

## Query on a list of e-mails

We have a set $S$ of $10^{9}$ e-mail addresses, where the typical e-mail address is 20 bites. Therefore it does not seem reasonable to store $S$ in main memory. We can spare 1 Gigabyte of memory, which is approximately $10^{9}$ bytes or $8 \times 10^{9}$ bites. How can put $S$ in main memory to query it?

## Definition Bloom filter

Create a one bit hash table $T[0, \ldots, m-1]$, and a hash function $h$. Initially all $m$ bits are set to 0 .

Giving a set $S=\left\{x_{1}, \ldots, x_{n}\right\}$ define a hashing function $h: S \rightarrow T$. For every $x_{i} \in S, h\left(x_{i}\right) \rightarrow T[j]$ and $T[j]:=1$.
Given a set $S$ a function $h()$ and a table $T[m]$ :

Insert ( $x$ )
$h(x) \rightarrow i$
if $T[i]==0$ then
$T[i]=1$
end if

```
inS(y)
h(x) >i
if T[i]==1 then
        return Yes
else
    return No
end if
```

Notice: once we have hashed $S$ into $T$ we can erase $S$.


Bloom filter needs $O(m)$ space and answers membership queries in $\Theta(1)$.

Inconvenience: Do not support removal and may have false positive.

In a query $y \in S$ ?, a Bloom filter always will report correctly if indeed $y \in S(h(y) \rightarrow T[i]$ with $T[i]=1)$, but if $y \notin S$ it may be the case that $h(y) \rightarrow T[i]$ with $T[i]=1$, which is called a False positive.

How large is the error of having a false positive?

## Probability of having a false positives

Let $|S|=n$, we constructed a $\mathrm{BF}(h, T[m])$ with all elements in $S$. If we query about $y \in S$ ?, with $y \notin S$, and $h(y) \rightarrow T[i]$, what is the probability that $T[i]=1$ ?

After all the elements of $S$ are hashed into the Bloom filter, the probability that a specific $T[i]=0$ is $\left(1-\frac{1}{m}\right)^{n}=e^{-n / m}$
(recall that: $e=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}, e^{-1}=\lim _{x \rightarrow \infty}\left(1-\frac{1}{x}\right)^{x}$ )
Therefore, for a $y \notin S$, the probability of false positive $\pi$ :
$\pi=\operatorname{Pr}[h(y) \rightarrow T[i] \mid$ where $T[i]=1]=1-\left(1-\frac{1}{m}\right)^{n} \sim 1-e^{-n / m}$.

To minimise $\pi$, want to maximize $e^{-n / m}$
$\Rightarrow \frac{n}{m}$ has to be small, i.e, $m \gg n$.
For ex.: if $m=100 n, \pi=0.0095$; If $m=n, \pi=0.632$ and if
$m=n / 10, \pi=0.9999$

## Alternative: Amplify

Take $k$ different functions $\left\{h_{1}, h_{2}, \ldots, h_{k}\right\}$ in the same 2-universal set of functions.

Ex. Bloom filter with 3 hash functions: $h_{1}, h_{2}, h_{3}$.


When making a query about if $y \in S$, compute $h_{1}(y), \ldots h_{t}(y)$, if one of them is 0 we certainty $y \notin S$, else (if all the $k$ hashing go to bits with value 1) $y \in S$ with some probability.
After hashing the $n$ elements $k$ times to $T$, for an specific $T[i]$ :

$$
p=\operatorname{Pr}[T[i]=0]=\left(1-\frac{1}{m}\right)^{k n}=e^{-k n / m} .
$$

The probability $f$ of a false positive:

$$
f=\left(1-e^{-k n / m}\right)^{k}=(1-p)^{k}
$$

## Asymptotic estimations for $k$ and $m$

To minimize the probability of having a false positive: $\frac{\mathrm{d} p}{\mathrm{~d} k}=0$
Let $f(k)=\ln p$ then $f(k)=k \ln \left(1-e^{-k n / m}\right)$
$\Rightarrow f^{\prime}(k)=\ln \left(1-e^{-k n / m}\right)+\frac{k n e^{-k n / m}}{m\left(1-e^{-k n / m}\right)}$
Making $f^{\prime}(k)=0$, we get

$$
k_{\mathrm{opt}}=\frac{m}{n} \frac{1}{2} \ln 2=\frac{9}{13} \frac{m}{n}
$$

The probability of having a false positive for $k_{\text {opt }}$ is

$$
p_{0}=\left(1-e^{\frac{9}{13} \frac{m}{n} \frac{n}{m}}\right)^{\frac{9}{13} \frac{m}{n}} \sim\left(\frac{1}{2}\right)^{\frac{9 m}{13 n}}=0.619223^{\frac{m}{n}} .
$$

## Optimizing $k$

Given $n$ and $m$ we want to find the optimal value of $k$ to minimize the probability of a false positive $f(k)=\left(1-e^{-k n / m}\right)^{k}$
Define $g(k)=\ln f(k)=k \ln \left(1-e^{-k n / m}\right)$. Minimizing $f$ is equivalent to minimizing $g$.
To minimize the probability of having a false positive: $\frac{\mathrm{d} g(k)}{\mathrm{d} k}=0$
$\Rightarrow \frac{\mathrm{d} g(k)}{\mathrm{d} k}=\ln \left(1-e^{-k n / m}\right)+\frac{k n e^{-k n / m}}{m\left(1-e^{-k n / m}\right)}=0$,
$\Rightarrow$ when $n, m$ are given, to minimize $f$ is $k_{o}=(\ln 2) \frac{m}{n}$.
In this case the false positive probability $f_{o}=0.6185^{\mathrm{m} / \mathrm{n}}$.
Bloom filters allow a constant probability of false positive, $m=c n$ for small constant $c$, i.e. $m$ grows linear wrt $n$.
For ex.: if $c=2$ and $k=6$ the false positive probability is around 2\%.

On the other hand although the results shown before are asymptotic, there also work for practical values of $n$.
(Fig 3 in Takoma, Rothnberg, Lagerpetz: Theory and Practice of Bloom Filters for Distributed Systems) Gives the probability of false positive (y) wrt to $n(x)$, and as function of $m$, with $k=\ln 2 \frac{n}{m}$.


## Further applications of Bloom filters

Bloom filters are useful when a set of keys is used and space is important.

- The Google Chrome web browser used to use a Bloom filter to identify malicious URLs. Any URL was first checked against a local Bloom filter, and only if the Bloom filter returned a positive result was a full check of the URL performed (and the user warned, if that too returned a positive result)
- Packet routing: Bloom filters provide a means to speed up or simplify packet routing protocols.
- IP Tracebook
- Useful tool for measurement infrastructures used to create data summaries in routers or other network devices.
A. Broder, M. Mitzenmacher: Network applications of Bloom filters: A survey. Internet Mathematics, 1,4: 485-509, 2005


## Cuckoo Hashing

Pagh, Rodler: Cuckoo Hashing. ESA-2001
Cuckoo hashing is a hashing technique where:

- Lookups are $\Theta(1)$ worst-case.
- Deletions are $\Theta(1)$ worst-case.
- Insertions are $O(1)$ in expectation.



## Cuckoo Hashing

- We have two hash tables $T_{1}, T_{2}$ with size $m$ each and two hash functions $h_{1}$ for $T_{1}$ and $h_{2}$ for $T_{2}$.
- Can use for instance $h_{1}(k)=k \bmod m$ and $h_{2}(k)=\lceil k / m\rceil \bmod m$
- Every element $k \in \mathcal{U}$ can be only in two positions: at $h_{1}(k)$ in $T_{1}$ or at $h_{2}(k)$ in $T_{2}$.
- Lookups take $\Theta(1)$ because we only need to check 2 positions.
- Deletions take $\Theta(1)$ because we only need to check 2 positions.
- To insert $k \in \mathcal{U}$, try $h_{1}(k)$, if the slot is empty put $k$ there, if the slot contains $k^{\prime}$, kick out the $k^{\prime}, k$ stay there, and $k^{\prime}$ repeats the behavior of $k$ on $T_{2}$.
- Repeat this process, bouncing between tables, until all elements stabilize.


## Cuckoo Hashing: Long cycles of insertion

One complication is that the cuckoo may loop for ever. The probability of such an event is small. In such a case choose an upper bound in the number of slot exchanges, and if it exceeds, do a rehash: choose new functions and start.

Example: We have $\{x, y, w, z, u\}$ $h_{1}(x)=2 ; h_{1}(y)=2 ; h_{1}(w)=4 ; h_{1}(z)=4, h_{1}(u)=4$ $h_{2}(x)=1 ; h_{2}(y)=1 ; h_{2}(w)=2 ; h_{2}(z)=0, h_{2}(u)=2$


| 0 |  |
| :---: | :---: |
| 1 |  |
| 2 | y |
| 3 |  |
| 4 | u |
| 5 |  |


| $Z$ |
| :---: |
| $X$ |
| $W$ |
|  |
|  |
|  |

## Cuckoo Hashing: Long cycles of insertion

What happens if

$$
\begin{aligned}
& h_{1}(x)=2 ; h_{1}(y)=2 ; h_{1}(w)=4 ; h_{1}(z)=4, h_{1}(u)=4 \\
& h_{2}(x)=1 ; h_{2}(y)=1 ; h_{2}(w)=2 ; h_{2}(z)=0, h_{2}(u)=2 ?
\end{aligned}
$$



If insertion gets into a cycle, we perform a rehash: choose new $h_{1}, h_{2}$ and insert all elements back into the table.

## Cuckoo Hashing: An example

We wish to hash the set of keys: $(20,50,53,75,100,67,105,3,36,39,6)$ using $h_{1}(k)=k \bmod 11$ and $h_{2}(k)=\left\lfloor\frac{k}{11}\right\rfloor \bmod 11$.

|  | $h_{1}$ | $h_{2}$ |
| :---: | :---: | :---: |
| 20 | 9 | 1 |
| 50 | 6 | 4 |
| 53 | 9 | 4 |
| 75 | 9 | 6 |
| 100 | 1 | 9 |
| 67 | 1 | 6 |
| 105 | 6 | 9 |
| 3 | 3 | 0 |
| 36 | 3 | 3 |
| 39 | 6 | 3 |
| 6 | 6 | 0 |


| 0 |  |
| :---: | :---: |
| 1 | 100 |
| 2 |  |
| 4 |  |
| 5 |  |
| 6 | 50 |
| 8 |  |
| 9 | 75 |
| 10 |  |
|  | $\mathrm{T}_{1}$ |


$\mathrm{T}_{2}$

## Cuckoo Hashing: An example

|  | $h_{1}$ | $h_{2}$ |
| :---: | :---: | :---: |
| 20 | 9 | 1 |
| 50 | 6 | 4 |
| 53 | 9 | 4 |
| 75 | 9 | 6 |
| 100 | 1 | 9 |
| 67 | 1 | 6 |
| 105 | 6 | 9 |
| 3 | 3 | 0 |
| 36 | 3 | 3 |
| 39 | 6 | 3 |
| 6 | 6 | 0 |



## Cuckoo Hashing: An example

|  | $h_{1}$ | $h_{2}$ |
| :---: | :---: | :---: |
| 20 | 9 | 1 |
| 50 | 6 | 4 |
| 53 | 9 | 4 |
| 75 | 9 | 6 |
| 100 | 1 | 9 |
| 67 | 1 | 6 |
| 105 | 6 | 9 |
| 3 | 3 | 0 |
| 36 | 3 | 3 |
| 39 | 6 | 3 |
| 6 | 6 | 0 |



## Cuckoo Hashing: An example

|  | $h_{1}$ | $h_{2}$ |
| :---: | :---: | :---: |
| 20 | 9 | 1 |
| 50 | 6 | 4 |
| 53 | 9 | 4 |
| 75 | 9 | 6 |
| 100 | 1 | 9 |
| 67 | 1 | 6 |
| 105 | 6 | 9 |
| 3 | 3 | 0 |
| 36 | 3 | 3 |
| 39 | 6 | 3 |
| 6 | 6 | 0 |



With 6 we have to rehash!!!

## Complexity

Cuckoo hashing has a complexity:

- Search an element x: constant worst case complexity (x only can be in the 2 positions $h_{1}(x)$ or in $h_{2}(x)$ )
- Delete an element: constant worst case complexity (look at the 2 positions and erase the element)
- Inserte an element: expected constant complexity.


## Analyzing Cuckoo Hashing

- Cuckoo hashing is tricky to analyze:
- Elements move around and can be in one of two different places.
- The sequence of displacements can jump chaotically over the table.
- The framework for analyzing cuckoo hashing requires analysis on random bipartite graphs and random graph processes.


## Analyzing Cuckoo Hashing

- The cuckoo graph is a bipartite graph derived from a cuckoo hash table.
- Each table slot is a node.
- Each element $x$ is an edge from $\left(h_{1}(x), h_{2}(x)\right)$


## Analyzing Cuckoo Hashing

- An insertion traces a path through the cuckoo graph.
- An insertion of $x$ succeeds iff the connected component containing edge $x$ contains at most one cycle.


## Analyzing Cuckoo Hashing

- Analyze the probability that a connected component has more than one cycle.
- Under the assumption that no connected component has more than one cycle, analyze the expected cost of an insertion. The cost of inserting $x$ into a cuckoo hash table is proportional to the size of the CC containing $x$.


## Analyzing Cuckoo Hashing

## Theorem

If $m=(1+\epsilon) n$, for some $\epsilon>0$, the probability that the cuckoo graph contains a connected component with more than one cycle is $O(1 / \mathrm{m})$.

## Theorem

If $m \geq(1+\epsilon) n$, for any $\epsilon>0$, the expected number of nodes in a connected component of the cuckoo graph is at most $1+1 / \epsilon$.

So, expectec time of insertion is $O(1)$

## Analyzing Cuckoo Hashing

- The time for insertion is $1+1 / \epsilon$.

The expected cost of a single rehash, assuming that it succeeds, is $O(m+n / \epsilon)$.

- As a rehash succeeds with probability $1-O(1 / m)$, on expectation, only $1 /(1-O(1 / m))=O(1)$ rehashes are necessary.
- The expected cost due to rehash is $O(m+n / \epsilon)$.

