
Hash function

RA-MIRI QT Curs 2020-2021

Data Structures: Reminder

Given a universe U , a dynamic set of records, where each record:

k

Satellit Data

Key

Record

I Array

I Linked List (and variations)

I Stack (LIFO): Supports push and pop

I Queue (FIFO): Supports enqueue and dequeue

I Deque: Supports push, pop, enqueue and dequeue

I Heaps: Supports insertions, deletions, find Max and MIN

I Hashing

Recall Dynamic Data Structures

DICTIONARY
Data structure for maintaining S ⊂ U together with operations:

I Search (S, k): decide if k ∈ S
I Insert (S, k): S := S ∪ {k}
I Delete (S, k): S := S\{k}

PRIORITY QUEUE
Data structure for maintaining S ⊂ U together with operations:

I Insert (S, k): S := S ∪ {k}
I Maximum (S): Returns element of S with largest k

I Extract-Maximum (S): Returns and erase from S the element
of S with largest k

Priority Queue

Linked Lists:

I INSERT: O(n)

I EXTRACT-MAX: O(1)

Heaps:

I INSERT: O(lg n)

I EXTRACT-MAX: O(lg n)

Using a Heap is a good compromise between fast insertion and
slow extraction.

String Matching

Search: primality of a number

Given a text, find a
subtext
• Given two texts, find
common subtexts
(plagiarism)
• Given two genomes,
find common subchains
(consecutive characters)

Document similarity

Finding similar
documents in the WWW
• Proliferation of almost
identical documents
• Approximately 30% of
the pages on the web
are (near) duplicates.
• Another way to find
plagiarism

Hashing functions

Data Structure that supports dictionary operations on an universe
of numerical keys.

Notice the number of possible keys
represented as 64-bit integers is
263 = 18446744073709551616.
Tradeoff time/space
Define a hashing table T [0, . . . ,m − 1]
a hashing function h : U → T [0, . . . ,m− 1] Hans P. Luhn

(1896-1964)

CollisionS
U

h

T

Simple uniform hashing function.

A good hashing function must have the property that ∀k ∈ U ,
h(k) must have the same probability of ending in any T [i].

Given a hashing table T with m slots, we want to store n = |S|
keys, as maximum.

Important measure: load factor α = n/m, the average number of
keys per slot.

The performance of hashing depends on how well h distributes the
keys on the m slots: h is simple uniform if it hash any key with
equal probability into any slot, independently of where other keys
go.

How to choose h?

Advice: For an exhaustive treaty on Hashing: D. Knuth, Vol. 3 of
The Art of computing programming

h depends on the type of key:
• If k ∈ R, 0 ≤ k ≤ 1 we can use h(k) = bmkc.

• If k ∈ R, s ≤ k ≤ t scale by 1/(t − s), and use the previous
methode: h(k/(t − s)) = bmk/(t − s)c.

The division method

Choose m prime and as far as possible from a power,

h(k) = k mod m .

Fast (Θ(1)) to compute in most languages (k%m)!

Be aware: if m = 2r the hash does not
depend on all the bits of K

If r = 6 with k = 1011000111 011010︸ ︷︷ ︸
=h(k)

(45530 mod 64 = 858 mod 64)

• In some applications, the keys may be very large, for instance
with alphanumeric keys, which must be converted to ascii:

Example: averylongkey is
converted via ascii:
97 · 12811 + 118 · 12810+
101 · 1289 + 114 · 1288

+121 · 1287 + 108 · 1266

+111 · 1285 + 110 · 1284

+103 · 1283 + 107 · 1282

+101 ·1281 + 121 ·1280 = n

which has 84-bits!

Recall mod arithmetic : for a, b,m ∈ Z,
(a + b) mod m = (a mod m + b mod m) mod m
(a · b) mod m = ((a mod m) · (b mod m)) mod m
a(b + c) mod m = ab mod m + ac mod m
If a ∈ Zm (a mod m) mod m = a mod m

Horner’s rule: Given a specific value x0 and a polynomial
A(x) =

∑n
i=0 aix

i = a0 + a1X + · · ·+ anx
n to evaluate A(x0) in

Θ(n) steps:

A(x0) = a0 + x0(a1 + x0(a2 + · · ·+ x0(an−1 + anx0)))

How to deal with large n

For large n, to compute h = n mod m, we can use mod arithmetic
+ Horner’s method:

((((((((((97 · 128 + 118) · 128 + 101) · 128 + 114) · 128 + 121)

· 128 + 111) · 128 + 110) · 128 + 103) · 128 + 107)

· 128 + 101) · 128 + 121 mod m

= ((((((((((97 · 128 + 118 mod m)︸ ︷︷ ︸ ·128) mod m + 101)︸ ︷︷ ︸ · . . .))))))

Collision resolution: Separate chaining

For each table address, construct a linked list of the items whose
keys hash to that address.

I Every key goes to the same slot

I Time to explore the list =
length of the list

h(20)=h(27)=h(8)=i

27 820
i

Cost of average analysis of chaining

The cost of the dictionary operations using hashing:

I Insertion of a new key: Θ(1).

I Search of a key: O(length of the list)

I Deletion of a key: O(length of the list).

Under the hypothesis that h is simply uniform hashing, each key x
is equally likely to be hashed to any slot of T , independently of
where other keys are hashed

Therefore, the expected number of keys falling into T [i] is
α = n/m.

Cost of search

For an unsuccessful search (x is not in T) therefore we have to
explore the all list at h(x)→ T [i] with an the expected time to
search the list at T [i] is O(1 + α).
(α of searching the list and Θ(1) of computing h(x) and going to
slot T [i])

For an successful search search, we can obtain the same bound,
(most of the cases we would have to search a fraction of the list
until finding the x element.)

Therefore we have the following result: Under the assumption of
simple uniform hashing, in a hash table with chaining, an
unsuccessful and successful search takes time Θ(1 + n

m) on the
average.

Notice that if n = θ(m) then α = O(1) and search time is Θ(1).

Universal hashing: Motivation

For every deterministic hash function, there is a set of bad
instances.

An adversary can arrange the keys so your function hashes most of
them to the same slot.

Create a set H of hash functions on U and choose a hashing
function at random and independently of the keys.

Must be careful once we choose one particular hashing function for
a given key, we always use the same function to deal with the key.

Universal hashing

Let U be the universe of keys and let H be a collection of hashing
functions with hashing table T [0, . . . ,m − 1], H is universal if
∀x , y ∈ U , x 6= y , then

|{h ∈ H | h(x) = h(y)}| ≤ |H|
m
.

In an equivalent way, H is universal if ∀x , y ∈ U , x 6= y , and for
any h chosen uniformly from H, we have

Pr [h(x) = h(y)] ≤ 1

m
.

Universality gives good average-case behaviour

Theorem
If we pick a u.a.r. h from a universal H and build a table using and
hash n keys to T with size m, for any given key x let Zx be a
random variable counting the number of collisions with others keys
y in T .

E [#collisions] ≤ n/m.

Construction of a universal family: H

To construct a family H for N = max{U} and T [0, . . . ,m − 1]:

I H = ∅.
I Choose a prime p, N ≤ p ≤ 2N. Then
U ⊂ Zp = {0, 1, . . . , p − 1}.

I Choose independently and u.a.r. a ∈ Z+
p and b ∈ Zp. Given a

key x define ha,b(x) = ((ax + b) mod p︸ ︷︷ ︸
ga,b(x)

) mod m.

I H = {ha,b|a, b ∈ Zp, a 6= 0}.

Example: p = 17,m = 6 we have H17,6 = {ha,b : a ∈ Z+
p , b ∈ Zp}

if x = 8, a = 3, b = 4 then
h3,4(8) = ((3 · 8 + 4) mod 17) mod 6 = 5

Properties of H

1. hab : Zp → Zm.

2. |H| = p(p − 1). (We can select a in p − 1 ways and b in p
ways)

3. Specifying an h ∈ H requires O(lg p) = O(lgN) bits.

4. To choose h ∈ H select a, b independently and u.a.r. from Z+
p

and Zp.

5. Evaluating h(x) is fast.

Theorem
The family H is universal.

For the proof:
Chapter 11 of Cormen. Leiserson, Rivest, Stein: An introduction
to Algorithms

