Hash function

RA-MIRI QT Curs 2020-2021

Data Structures: Reminder

Given a universe \mathcal{U}, a dynamic set of records, where each record:

- Array
- Linked List (and variations)
- Stack (LIFO): Supports push and pop
- Queue (FIFO): Supports enqueue and dequeue
- Deque: Supports push, pop, enqueue and dequeue
- Heaps: Supports insertions, deletions, find Max and MIN
- Hashing

Recall Dynamic Data Structures

DICTIONARY

Data structure for maintaining $\mathcal{S} \subset \mathcal{U}$ together with operations:

- Search $(\mathcal{S}, k):$ decide if $k \in \mathcal{S}$
- Insert $(\mathcal{S}, k): \mathcal{S}:=\mathcal{S} \cup\{k\}$
- Delete $(\mathcal{S}, k): \mathcal{S}:=\mathcal{S} \backslash\{k\}$

PRIORITY QUEUE

Data structure for maintaining $\mathcal{S} \subset \mathcal{U}$ together with operations:

- Insert $(\mathcal{S}, k): \mathcal{S}:=\mathcal{S} \cup\{k\}$
- Maximum (\mathcal{S}): Returns element of \mathcal{S} with largest k
- Extract-Maximum (\mathcal{S}) : Returns and erase from \mathcal{S} the element of \mathcal{S} with largest k

Priority Queue

Linked Lists:

- INSERT: O(n)
- EXTRACT-MAX: O(1)

Heaps:

- INSERT: $O(\lg n)$
- EXTRACT-MAX: $O(\lg n)$

Using a Heap is a good compromise between fast insertion and slow extraction.

String Matching

Abstract

Dear Mr. von Neumann: With the greatest sorrow I have learned of your illness. The news came to me as quite unexpected. Morgensterm already last summer told me of a bout of weakness you once had, butat that time he thought that this was not of any greater significance. As I hear, in the last months you have undergone a radical treatment and I am happy that this treatment was successfill as desired, and that you are now doing better. I hope and wish for you that your condition will soon improve even more and that the newest medical discoveries, if possible, will lead to a complete recovery.

Since you now, as I hear, are feeling stronger, I would like to allow myself to write you about a mathematical problem, of which your opinion would very much interest me: One can obviously easily construct T Turing machine, which for every formula F in first order predicate logic and every natural number n, allows one to decide if there is a proof of F of length n (length $=$ number of symbols). Let $\psi(\mathrm{F}, \mathrm{n})$ be the number of steps the machine requires for this and let $\varphi(\mathrm{n})=\operatorname{maxF} \psi(\mathrm{F}, \mathrm{n})$. The question is how fast $\varphi(\mathrm{n})$ grows for an गptimal machine. One can show that $\varphi(n) \geq k \cdot n$. If there really were a machine with $\varphi(n)-k \cdot n\left(\right.$ or even $\left.\sim k \cdot n n^{2}\right)$, this would have consequences of the greatest importance. Namely, it would obviously mean that in spite of the undecidability of the Entscheidungsproblem, the mental work of a mathematician conceming Yes-or-No questions could be completely replaced by a machine. After all, one would simply have to choose the natural number n so large that when the machine does not deliver a result, it makes no sense to think more about the problem. Now it seems to me, however, to be completely within the realm of possibility that $\varphi(n)$ yrows that slowly. Since it seems that $\varphi(\mathrm{n}) \geq \mathrm{k} \cdot \mathrm{n}$ is the only estimation which one can obtain by a generalization of the proof of the undecidability of the Entscheidungsproblemand after all $\varphi(\mathrm{n})-\mathrm{k} \cdot \mathrm{n}\left(0 \mathrm{r} \sim \mathrm{k} \cdot \mathrm{n}^{2}\right)$ only means that the number of steps as opposed to trial and error can be reduced from N to $\log N\left(o r(\log N)^{2}\right)$. However, such strong redactions appear in other finite problems, for example in the computation of the quadratic residue symbol using repeated applieation of fhe law of reciprocity. It would be interesting to know, for instance, the situation conceming the determination of primality of a number कnd how strongly in general the number of steps in finite sombinatorial problems can be reduced with respect to sixple exhaustive searfh. I do not know if you haveheard that "Post's problem", whether there are degres of unsolvability among problems of the form (3 y) $p(y, x)$, where φ is recursive, has been solved in the positive sense by a very young man by the name of Richard Friedberg. The solution is very elegant. Unfortunately, Friedberg does not intend to study mathematics, but rather medicine (apparently under the influence of his lather). By the way, what do you think of the attempts to build the foundations of analysis on ramified type theory, which have recently Jained momentum? You are probably aware that Paul Lorenzen has pushed ahead with this approach to the theory of Lebesgues measure. However, I believe that in impotant parts of analysis non- eliminable impredicative proof methods do appear. I would be very happy to hear something from you personally. Please let me know if there is something that I can do for you. With my best greetings and wishes, as well to your wife, Sincerelyyours,

Given a text, find a

subtext

- Given two texts, find common subtexts (plagiarism)
- Given two genomes, find common subchains (consecutive characters)

Search: primality of a number

Document similarity

Ek Eat yew Hetay beohnats Loods bep

 new windowl

OOC-1D: ALCHOOO15
COLL-MS: Keyne MS. 26, E.001r
M5-TITLE: On Murday March 2d or Tuerday March 3 1605/6, A
Londoner acquainted wh Mr Boyle
FOLTO[[Ir]]FOiso On Murnlay Marlis 2le er Tuarday Marchis 3 1695/6, Londoner scquainted with Mr. Eoyle \&s Or Dickisson making with © twas not neces sary that the © \oplus should be purified but the orle or bpirit might be taken as vold in chipps
without so much sa nectifyirg it. That the fire doee not
destroy the life of the Oyle or Spirt in distillingt from
the ADD[[red hot]/ADD Vitriol. That two or three pounds of Cyle or Spirit will not aftord above half an ounce of DEL[[bp]]loEL. fixt. Galt \& that the oyle affords more fixt oal then the spirt. That the white opirit is in appearantce like rain water todichus deacerked it to him was germine that the white apirit must be eectified seven timee from its faex without reparseing any legm from it, \& that in rectifyirg, it
will endure ary beat without losing its life. That the rensining matter for extracting the soul must $A D D[[$ not $]] A D D$ be cakined to a
red heert, but ecaly well dryed, least the soul fly away.
That for extracting the soul the epirit must be digested
on this mastter not two months but only till it appear well
coleared with the extracted soul. Thast when you drawn
off the spirit from the soul you ruust leave the giol
not thick DEL[.[but]]DEL like honey or butter but thinner then oyle 10 that you may pour it clean at of your glass
when too dry is therefore tio safest to err on that hen
\times Find: 25

[new window]

TOC-ID: ALCHOOH14

COLL-MS: Schaffner Sexies IV Box 3 Folder 10, fooly
MS-TITLEE 1. A Londoner acquairmed wh Mr Boyle ifl Dr Dickirzon
FOLIO[[19]] Folio

1. Londoner acquainted with D Dr beyle \& Dy Diekinkesh, affimed that in the work with © twas not novess ary that the © should be paritied, but the Oyle or
 \rrbracket ADD. Thast two or thre pound
vil not atterd dove $1 / 2$ an punce of salt \& that the Oyle holds mcre
balt then the piriti: ADD[[3a]]ADD That the white tpirit DEI[was]DEL is in appearance like rain
(water, orly oweet $\&$ frogrart $B x$ that DEL[[the]]DEL DE Twiedesi ': epirit as cescribed
it to him was getraine, ADD[[3c]]ADD That the white spirt unust be reatified 7
times
forn it faox with at veparating any llegn from it. That the remaizirg naster for extracting the soul $\mathrm{DE}[[\mid \mathrm{d} d] \mathrm{DFI}$ must not be calcined to a red heat

hat

cnly well dried last the soul fly sway. Thast the spirit must be digeted IEL[(not to daye]]DEL ont this naster (not DEL[[40 disye]]DEL two monthe but only) till it appea.
well coloured with the entracted soul ADD $[[5] / \mathrm{ADD}$ That DEL[[the $]] \mathrm{DEL}$ when all the roul is
extracted the remaining maiter murt be put in a crucible DEL[[under a] DEI covered with s muttle or hollow cip of iron like DFI[[the]]DEL a bowl iwverted \& a fre made $\operatorname{ADD}[[$ reound $]]$ ADD about them for an hour, which cannot earily
teto hat. The
te to hot. Then the salt extracted with the enirit of the matter calcined gain \&s extracted again as before $3 E 1[$ till no ADD[more]]ADD sall $]]$ DE1 \& onentill the
nore all can be extracted ADD[[4 4]ADD That when you draw off the spirit forn the

Finding similar documents in the WWW

- Proliferation of almost identical documents
- Approximately 30% of the pages on the web are (near) duplicates.
- Another way to find plagiarism

Hashing functions

Data Structure that supports dictionary operations on an universe of numerical keys.

Notice the number of possible keys represented as 64-bit integers is
$2^{63}=18446744073709551616$.
Tradeoff time/space
Define a hashing table $T[0, \ldots, m-1]$
a hashing function $h: \mathcal{U} \rightarrow T[0, \ldots, m-1]$

Hans P. Luhn
(1896-1964)

Simple uniform hashing function.

A good hashing function must have the property that $\forall k \in \mathcal{U}$, $h(k)$ must have the same probability of ending in any $T[i]$.

Given a hashing table T with m slots, we want to store $n=|\mathcal{S}|$ keys, as maximum.

Important measure: load factor $\alpha=n / m$, the average number of keys per slot.

The performance of hashing depends on how well h distributes the keys on the m slots: h is simple uniform if it hash any key with equal probability into any slot, independently of where other keys go.

How to choose h ?

Advice: For an exhaustive treaty on Hashing: D. Knuth, Vol. 3 of The Art of computing programming

h depends on the type of key:

- If $k \in \mathbb{R}, 0 \leq k \leq 1$ we can use $h(k)=\lfloor m k\rfloor$.
- If $k \in \mathbb{R}, s \leq k \leq t$ scale by $1 /(t-s)$, and use the previous methode: $h(k /(t-s))=\lfloor m k /(t-s)\rfloor$.

The division method

Choose m prime and as far as possible from a power,

$$
h(k)=k \bmod m
$$

Fast $(\Theta(1))$ to compute in most languages $(k \% m)$!
Be aware: if $m=2^{r}$ the hash does not depend on all the bits of K

If $r=6$ with $k=1011000111 \underbrace{011010}_{=h(k)}$
$(45530 \bmod 64=858 \bmod 64)$

- In some applications, the keys may be very large, for instance with alphanumeric keys, which must be converted to ascii:

Example: averylongkey is converted via ascii: $97 \cdot 128^{11}+118 \cdot 128^{10}+$ $101 \cdot 128^{9}+114 \cdot 128^{8}$ $+121 \cdot 128^{7}+108 \cdot 126^{6}$
$+111 \cdot 128^{5}+110 \cdot 128^{4}$
$+103 \cdot 128^{3}+107 \cdot 128^{2}$
$+101 \cdot 128^{1}+121 \cdot 128^{0}=n$

which has 84-bits!

Recall mod arithmetic: for $a, b, m \in \mathbb{Z}$, $(a+b) \bmod m=(a \bmod m+b \bmod m) \bmod m$
$(a \cdot b) \bmod m=((a \bmod m) \cdot(b \bmod m)) \bmod m$
$a(b+c) \bmod m=a b \bmod m+a c \bmod m$
If $a \in \mathbb{Z}_{m}(a \bmod m) \bmod m=a \bmod m$
Horner's rule: Given a specific value x_{0} and a polynomial $A(x)=\sum_{i=0}^{n} a_{i} x^{i}=a_{0}+a_{1} X+\cdots+a_{n} x^{n}$ to evaluate $A\left(x_{0}\right)$ in $\Theta(n)$ steps:

$$
A\left(x_{0}\right)=a_{0}+x_{0}\left(a_{1}+x_{0}\left(a_{2}+\cdots+x_{0}\left(a_{n-1}+a_{n} x_{0}\right)\right)\right)
$$

How to deal with large n

For large n, to compute $h=n \bmod m$, we can use mod arithmetic + Horner's method:
$((()((()(97 \cdot 128+118) \cdot 128+101) \cdot 128+114) \cdot 128+121)$
$\cdot 128+111) \cdot 128+110) \cdot 128+103) \cdot 128+107)$
$\cdot 128+101) \cdot 128+121 \bmod m$
$=(((((((((\underbrace{97 \cdot 128+118 \bmod m)} \cdot 128) \bmod m+101) \cdot \ldots))))))$

Collision resolution: Separate chaining

For each table address, construct a linked list of the items whose keys hash to that address.

- Every key goes to the same slot
- Time to explore the list $=$ length of the list

Cost of average analysis of chaining

The cost of the dictionary operations using hashing:

- Insertion of a new key: $\Theta(1)$.
- Search of a key: O (length of the list)
- Deletion of a key: O (length of the list).

Under the hypothesis that h is simply uniform hashing, each key x is equally likely to be hashed to any slot of T, independently of where other keys are hashed

Therefore, the expected number of keys falling into $T[i]$ is $\alpha=n / m$.

Cost of search

For an unsuccessful search (x is not in T) therefore we have to explore the all list at $h(x) \rightarrow T[i]$ with an the expected time to search the list at $T[i]$ is $O(1+\alpha)$.
(α of searching the list and $\Theta(1)$ of computing $h(x)$ and going to slot $T[i])$

For an successful search search, we can obtain the same bound, (most of the cases we would have to search a fraction of the list until finding the x element.)

Therefore we have the following result: Under the assumption of simple uniform hashing, in a hash table with chaining, an unsuccessful and successful search takes time $\Theta\left(1+\frac{n}{m}\right)$ on the average.
Notice that if $n=\theta(m)$ then $\alpha=O(1)$ and search time is $\Theta(1)$.

Universal hashing: Motivation

For every deterministic hash function, there is a set of bad instances.

An adversary can arrange the keys so your function hashes most of them to the same slot.

Create a set \mathcal{H} of hash functions on \mathcal{U} and choose a hashing function at random and independently of the keys.

Must be careful once we choose one particular hashing function for a given key, we always use the same function to deal with the key.

Universal hashing

Let \mathcal{U} be the universe of keys and let \mathcal{H} be a collection of hashing functions with hashing table $T[0, \ldots, m-1], \mathcal{H}$ is universal if $\forall x, y \in \mathcal{U}, x \neq y$, then

$$
|\{h \in \mathcal{H} \mid h(x)=h(y)\}| \leq \frac{|\mathcal{H}|}{m} .
$$

In an equivalent way, \mathcal{H} is universal if $\forall x, y \in \mathcal{U}, x \neq y$, and for any h chosen uniformly from \mathcal{H}, we have

$$
\operatorname{Pr}[h(x)=h(y)] \leq \frac{1}{m}
$$

Universality gives good average-case behaviour

Theorem
If we pick a u.a.r. h from a universal \mathcal{H} and build a table using and hash n keys to T with size m, for any given key x let Z_{x} be a random variable counting the number of collisions with others keys y in T.
$\mathbf{E}[\#$ collisions $] \leq n / m$.

Construction of a universal family: \mathcal{H}

To construct a family \mathcal{H} for $N=\max \{\mathcal{U}\}$ and $T[0, \ldots, m-1]$:

- $\mathcal{H}=\emptyset$.
- Choose a prime $p, N \leq p \leq 2 N$. Then $\mathcal{U} \subset \mathbb{Z}_{p}=\{0,1, \ldots, p-1\}$.
- Choose independently and u.a.r. $a \in \mathbb{Z}_{p}^{+}$and $b \in \mathbb{Z}_{p}$. Given a key x define $h_{a, b}(x)=(\underbrace{(a x+b) \bmod p}_{g_{a, b}(x)}) \bmod m$.
- $\mathcal{H}=\left\{h_{a, b} \mid a, b \in \mathbb{Z}_{p}, a \neq 0\right\}$.

Example: $p=17, m=6$ we have $\mathcal{H}_{17,6}=\left\{h_{a, b}: a \in \mathbb{Z}_{p}^{+}, b \in \mathbb{Z}_{p}\right\}$ if $x=8, a=3, b=4$ then
$h_{3,4}(8)=((3 \cdot 8+4) \bmod 17) \bmod 6=5$

Properties of \mathcal{H}

1. $h_{a b}: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{m}$.
2. $|\mathcal{H}|=p(p-1)$. (We can select a in $p-1$ ways and b in p ways)
3. Specifying an $h \in \mathcal{H}$ requires $O(\lg p)=O(\lg N)$ bits.
4. To choose $h \in \mathcal{H}$ select a, b independently and u.a.r. from \mathbb{Z}_{p}^{+} and \mathbb{Z}_{p}.
5. Evaluating $h(x)$ is fast.

Theorem
The family \mathcal{H} is universal.

For the proof:
Chapter 11 of Cormen. Leiserson, Rivest, Stein: An introduction to Algorithms

