Balls and Bins

RA-MIRI QT Curs 2020-2021

Balls and Bins

Basic Model: Given n balls, we throw each one independently and uniformly into a set of m bins.

$$
\operatorname{Pr}[\text { ball } i \rightarrow \operatorname{bin} j]=\frac{1}{m}
$$

Probability space: $\Omega=\left\{\left(b_{1}, b_{2}, \ldots, b_{n}\right)\right\}$ where $b_{i} \in\{1, \ldots, m\}$ denotes the index of the bin containing ball i-th. ball: $|\Omega|=m^{n}$. For any $w \in \Omega, \operatorname{Pr}[w]=\left(\frac{1}{m}\right)^{n}$

Balls and Bins as a model

Balls and Bins models are very useful in different areas of computer science. For ex.:

- The hashing data structure: the keys are the balls and the slots in the array are the bins.
- Many situations in routing in nets: the balls represent the connectivity requirements and the bins the paths in the network
- Load balancing randomized algorithms, the balls are the jobs and the bins are the servers.

Recall that, as an application of Chernoff bounds, we proved that for n balls (jobs) and m bins (servers), under a uniform and independent distribution of jobs to servers, for $n \gg m$, the probability the load of a server deviates from the expected load, was $1 / m^{3}$.

General rules for the analysis of Balls \& Bins

n balls to m bins.

- X_{j} is the random variable counting the number of balls into bin- j. Then $X_{j} \in B\left(n, \frac{1}{m}\right)$.
- As we know: $X_{1}, \ldots X_{m}$ are not independent.
- The average load in a bin is $\mu=\mathbf{E}\left[X_{j}\right]=n / m$.
- Rule of thumb to do the analysis:
- If $n \gg m$, (μ large) use Chernoff bounds,
- if $n=m,(\mu \in \Theta(1))$, use the Poisson approximation.

Recall that for very small x,
$e^{x} \sim 1+x$
$e^{-x} \sim 1-x$.

The Poisson Distribution

Recall that for $X \in B(n, p)$, for large n and small p, we can have a good approximation: $\operatorname{Pr}[X=k]=\frac{e^{-\lambda} \lambda^{k}}{k!}$, where $\lambda=\mathbf{E}[X]=\mu=p n$.

For any $\lambda \in \mathbb{R}^{+}$, a r.v. X is said to have a Poisson $P(\lambda)$ distribution, if its PMF is $p_{X}(k)=\frac{e^{-\lambda} \lambda^{k}}{k!}$, for any $k=0,1,2,3, \ldots$

Poisson is one of the most " natural" distributions: number of typos, number of rain drops in a square meter of roof, etc..

The Poisson Distribution: Basic Properties

Assume that $Y \in P(\lambda)$ approximates $X \in B(n, p)$, then as $\mathbf{E}[X]=n p$ seems natural that $\mathbf{E}[Y]=n p=\lambda$ and as $\operatorname{Var}[X]=n p(1-p)=\lambda(1-p)$ and as p is small $\operatorname{Var}[X] \sim \lambda$ and $\operatorname{Var}[Y]=\lambda$. Formally, If $Y \in P(\lambda)$:

- $\quad \mathbf{E}[Y]=\lambda$.

$$
\begin{aligned}
\mathbf{E}[Y] & =\sum_{k=0}^{\infty} k \frac{e^{-\lambda} \lambda^{k}}{k!}=e^{-\lambda}\left(\lambda+\frac{2 \lambda^{2}}{2!}+\frac{3 \lambda^{2}}{3!} \cdots\right) \\
& =e^{-\lambda} \lambda\left(1+\lambda+\frac{2 \lambda^{2}}{2!}+\frac{3 \lambda^{2}}{3!} \cdots\right)=e^{-\lambda} \lambda e^{\lambda}
\end{aligned}
$$

Variance of Poisson r.v.

- $\operatorname{Var}[Y]=\lambda$.

To prove it, instead of computing $\mathbf{E}\left[X^{2}\right]$ we compute $\mathbf{E}[X(X-1)]$.
Notice $\operatorname{Var}[X]=\mathbf{E}\left[X^{2}\right]-\mathbf{E}[X]^{2}=\mathbf{E}[X(X-1)]+\mathbf{E}[X]-\mathbf{E}[X]^{2}$.

$$
\begin{aligned}
\mathbf{E}[X(X-1)] & =\sum_{x=0}^{\infty} x(x-1) \frac{\lambda^{x} e^{-\lambda}}{x!}=\sum_{x=2}^{\infty} \frac{\lambda^{2} \lambda^{x-2} e^{-\lambda}}{(x-2)!} \\
& =e^{-\lambda} \lambda^{2} \sum_{x=2}^{\infty} \frac{\lambda^{x-2}}{(x-2)!} \underbrace{=}_{y=x-2} e^{-\lambda} \lambda^{2} \sum_{y=0}^{\infty} \frac{\lambda^{y}}{(y)!} \\
& =e^{-\lambda} \lambda^{2} e^{\lambda}
\end{aligned}
$$

So, $\operatorname{Var}[X]=\lambda^{2}+\lambda-\lambda^{2}$

Sum of Poisson r. v.

Lemma If $Y \in P(\lambda)$ and $Z \in P\left(\lambda^{\prime}\right)$ are independent, then $Y+Z \in P\left(\lambda+\lambda^{\prime}\right)$.
Proof

$$
\begin{aligned}
\operatorname{Pr}[Y+Z=j] & =\sum_{k=0}^{j} \operatorname{Pr}[(Y=k) \cap(Z=j-k)]=\sum_{k=0}^{j} \frac{e^{-\lambda} e^{-\lambda^{\prime}} \lambda^{k} \lambda^{\prime j-k}}{k!(j-k)!} \\
& =\frac{e^{-\left(\lambda+\lambda^{\prime}\right)}}{j!} \sum_{k=0}^{j} \frac{j!}{k!(j-k)!} \lambda^{k} \lambda^{\prime j-k}=\frac{e^{-\left(\lambda+\lambda^{\prime}\right)}}{j!} \sum_{k=0}^{j}\binom{j}{k} \lambda^{k}\left(\lambda^{\prime}\right)^{j-k} \\
& =\frac{e^{-\left(\lambda+\lambda^{\prime}\right)} \times\left(\lambda+\lambda^{\prime}\right)^{j}}{j!} \Rightarrow(Y+Z) \in P\left(\lambda+\lambda^{\prime}\right)
\end{aligned}
$$

Basic facts

Recall X_{j} counts the number of balls in the j-th bin.

- Probability all n balls fell in the same bin: $\left(\frac{1}{m}\right)^{n}$.
- Probability that bin j is empty:

$$
\operatorname{Pr}\left[X_{j}=0\right]=\left(1-\frac{1}{m}\right)^{n} \sim e^{-\frac{n}{m}}=e^{-\lambda} .
$$

- Let Y be number of empty bins, $\mathbf{E}[Y]$?.

For $1 \leq j \leq m$, let Y_{j} be and the r.v.defined as $Y_{j}=1$ iff bin j is empty, 0 otherwise. Then, $\mathbf{E}[Y]=\sum_{j=1}^{m} \mathbf{E}\left[Y_{j}\right]=\sum_{j=1}^{m} \operatorname{Pr}\left[X_{j}=0\right]=m(1-1 / m)^{n}$. So, the expected number of empty bins is

$$
\mathbf{E}[Y] \sim m e^{-\lambda} .
$$

Probability the j-th bin contains 1 ball

We can assume that m and n are large, (so $p=1 / m$ is small),
$\lambda=n / m=\Theta(1)$
Exact computation: $\operatorname{Pr}\left[X_{j}=1\right]=\binom{n}{1}(1 / m)^{1}(1-1 / m)^{n-1}$, where $\binom{n}{1}$ number choices exactly 1 ball goes into bin j,
$(1-1 / m)^{n-1}$: remaining balls do not go to bin j. $\operatorname{Pr}\left[X_{j}=1\right]=\frac{n}{m}(1-1 / m)^{n}(1-1 / m)^{-1}$
Poisson approximation: Taking $\lambda=\frac{n}{m}$ and $(1-1 / m)^{n} \sim e^{-\lambda}$ and noticing $(1-1 / m) \rightarrow 1$:

$$
\operatorname{Pr}\left[X_{j}=1\right] \sim \lambda e^{-\lambda}
$$

For $n=3000$ and $m=1000, \lambda=3$, the exact value of $\operatorname{Pr}\left[X_{i}=1\right]=0.149286$ and the Poisson approximation is 0.149361 .

Probability the j-th bin contains exactly r balls

We can assume that m and n are large, $n, m>r$,
Exact computation: $\operatorname{Pr}\left[X_{j}=r\right]=\binom{n}{r}(1 / m)^{r}(1-1 / m)^{n-r}$.
Poisson approximation:
$(1-1 / m)^{n-r}=(1-1 / m)^{n}(1-1 / m)^{-r}=e^{-\lambda} \cdot 1^{-r}$

$$
\begin{aligned}
\binom{n}{r}(1 / m)^{r}= & \frac{1}{r!}\left(\frac{n}{m} \frac{n-1}{m} \cdots \frac{n-r+1}{m}\right) \\
= & \frac{1}{r!} \lambda\left(1-\frac{1}{n}\right) \cdots \lambda\left(1-\frac{r+1}{n}\right)=\lambda^{r} \\
& \operatorname{Pr}\left[X_{j}=r\right] \sim \frac{\lambda^{r} e^{-\lambda}}{r!}
\end{aligned}
$$

For $n=4000$ and $m=2000, \lambda=2$, and $r=100$, the exact value of $\operatorname{Pr}\left[X_{i}=r\right]=5.54572 \times 10^{-130}$ and the approximation is 1.83826×10^{-130}

Probability that at least one bin has a collision

$\operatorname{Pr}[$ at least 1 bin has more than 1 ball] $=$
$1-\operatorname{Pr}\left[\right.$ every bin j has $\left.X_{j} \leq 1\right]$.
If $k-1$ balls went to $k-1$ different bins. Then,
$\operatorname{Pr}[$ The k th. ball goes into a non-empty $\operatorname{bin}]=\frac{k-1}{m}$
$\operatorname{Pr}\left[\right.$ The k th. ball goes into an empty bin] $=\left(1-\frac{k-1}{m}\right)$

$$
\begin{aligned}
& \operatorname{Pr}\left[\text { every bin } j \text { has } X_{j} \leq 1\right]=\prod_{i=1}^{n-1}\left(1-\frac{i-1}{m}\right) \sim \prod_{i=1}^{n-1} e^{-i / m} \\
& =e^{-\sum_{i=1}^{n-1} i / m}=e^{-\frac{1}{m} \sum_{i=1}^{n-1} i}=e^{-\frac{n(n-1)}{2 m}} \sim e^{-\frac{n^{2}}{2 m}}
\end{aligned}
$$

Therefore, $\operatorname{Pr}\left[\right.$ at least 1 bin i has $\left.X_{i}>1\right] \sim 1-e^{-\frac{n^{2}}{2 m}}$.

Birthday problem

How many students should be in a class in order to have that, with probability $>1 / 2$, at least 2 have the same birthday

This is the same problem as above, with $m=365$:
We need $e^{-\frac{n^{2}}{2 m}} \leq \frac{1}{2} \Rightarrow \frac{n^{2}}{2 m} \leq \ln 2 \sim 0.69$
$\Rightarrow n=\sqrt{2 m \ln 2}$. If $m=365$ then $n=22.49$.
Therefore, if there are more than 23 students in a class, with probability greater than $1 / 2$, more than 2 students will have the same birthday

Coupon Collector's problem

Abraham de Moivre (VIIc.)
How many balls do we need to throw to assure that w.h.p. every bin contains ≥ 1 balls

- Let Y a r.v. counting the number of balls we have to throw until having no empty bins
- For $i \in[m]$, let $Y_{i}=\#$ balls thrown since the moment in which $i-1$ bins are not empty and a ball fells into an empty bin. So
- $Y_{1}=1$ and $Y=\sum_{i=1}^{m} Y_{i}$.
- $\operatorname{Pr}\left[\right.$ a new ball going into non-empty bin] $=\frac{i-1}{m}$.
- $\operatorname{Pr}\left[\right.$ a new ball going into an empty bin] $=1-\frac{i-1}{m}$.

Coupon Collector's problem: $\mathbf{E}[Y]$

$Y_{i}=\#$ of balls we have to throw to hit an empty bin having $i-1$ non-empty

$$
\operatorname{Pr}\left[Y_{i}=k\right]=\left(\frac{i-1}{m}\right)^{k-1}(\underbrace{1-\frac{i-1}{m}}_{p_{i}})
$$

Therefore $Y_{i} \in G\left(p_{i}\right)$ and $\mathbf{E}\left[Y_{i}\right]=\frac{m}{m+i+1}$.

$$
\mathbf{E}[Y]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i}\right]=\sum_{i=1}^{m} \frac{m}{m-i+1}=m \sum_{j=1}^{m} \frac{1}{j}=m(\ln m+o(1))
$$

Coupon Collector's problem: Concentration

Let $\mathbf{E}[Y]=O(m \ln m) \sim c m \ln m$ for constant $c>1$

- For any bin j, define the event A_{j}^{r} : bin j is empty after the first r throws.
- Notice events $A_{1}^{r}, A_{2}^{r}, \ldots A_{m}^{r}$ are not independent.
- $\operatorname{Pr}\left[A_{j}^{r}\right]=\left(1-\frac{1}{m}\right)^{r} \sim e^{-r / m}$
- For $r=c m \ln m \Rightarrow \operatorname{Pr}\left[A_{j}^{c m \ln m}\right] \leq e^{-c m \ln m / m}=m^{-c}$.
- Let W be a r.v. counting the number of balls needed to make that every bin has load ≥ 1.

$$
\begin{aligned}
\operatorname{Pr}[W>c m \lg m] & =\operatorname{Pr}\left[\cup_{i=1}^{m} A_{j}^{c m \ln m}\right] \underbrace{\leq}_{U B} \sum_{j=1}^{m} \operatorname{Pr}\left[A_{j}^{c m \ln m}\right] \\
& \leq \sum_{j=1}^{m} m^{-c}=m^{1-c}
\end{aligned}
$$

Coupon Collector's problem: Concentration Bounds

- The previous bound using UB is more tight than the one using Chebyshev or Chernoff on random variable Y. (See homework)
- In Section 5.4.1 of MU book, there is a sharper bound for the Coupon collector's, using the Poisson approximation.

Maximum Load

This is a particular case of the job and servers with sharper bounds
Theorem If we throw n balls independently and uniformly into $m=n$ bins, then the maximum load of a bin is at most $\left(\frac{4 \lg n}{\lg \lg n}\right)$, with probability $\leq 1-\frac{1}{n}$, i.e., w.h.p.
Recall that, if for any bin $1 \leq j \leq n, X_{j}=$ is a r.v. with its load.
We know $\left\{X_{j}\right\}$ are not independent and $\mathbf{E}\left[X_{j}\right]=n / n=1$.
To show the above bound we use the following two inequalities:

$$
\begin{gather*}
\left(\frac{N}{K}\right)^{K} \leq\binom{ N}{K} \leq\left(\frac{N e}{K}\right)^{K} \tag{1}\\
\text { Let } N>e \text { e. If } K \geq \frac{2 \ln N}{\ln \ln N} \text { then } K^{K} \geq N . \tag{2}
\end{gather*}
$$

Max-load: Proof Upper Bound

For $1 \leq k \leq n, \operatorname{Pr}\left[X_{j} \geq k\right] \leq\binom{ n}{k} \frac{1}{n^{k}} \leq\left(\frac{n e}{k}\right)^{k} \frac{1}{n^{k}} \leq\left(\frac{e}{k}\right)^{k}$.
We want to prove that for $k \geq \frac{2 \ln n}{\ln \ln n} \Rightarrow \operatorname{Pr}\left[X_{j} \geq \frac{2 \ln n}{\ln \ln n}\right] \leq \frac{1}{n^{2}}$.
i.e. $\operatorname{Pr}\left[X_{j} \geq k\right] \leq\left(\frac{e}{k}\right)^{k} \leq \frac{1}{n^{2}} \Rightarrow\left(\frac{e}{k}\right)^{\frac{k}{e}} \geq n^{\frac{2}{e}}$

Taking $\ln : \frac{k}{e} \geq \frac{2 \ln \left(n^{2} / e\right)}{\ln \ln \left(n^{\frac{2}{e}}\right)}=\frac{4 \ln n}{e \ln \left(\frac{2}{e} \ln n\right)} \Rightarrow k \geq \frac{4 \ln n}{\ln \left(\frac{2}{e} \ln n\right)}$
We proved that if $k \geq \frac{4 \ln (n)}{\ln (2 / e) \ln \ln (n)}$ then $\operatorname{Pr}\left[X_{j} \geq k\right] \leq \frac{1}{n^{2}}$.
Then, using U-B
$\operatorname{Pr}\left[\exists i \in[n] \mid X_{j} \geq k\right] \leq \sum_{i=1}^{n} \operatorname{Pr}\left[X_{j} \geq k\right] \leq \frac{n}{n^{2}}=\frac{1}{n}$.

Further considerations on Max-load

1. The same proof could be extended to the case of n balls and m bins, with the constrain $n<m \ln m$.
2. We can obtain the same result by using Chernoff's bounds. (Nice exercise!)
3. In fact, the result could be extended to prove the Lower Bound: that w.h.p. the max-load is $\Omega\left(\frac{\ln n}{\ln \ln (n)}\right)$ balls. One easy way to prove the lower bound is using Chebyshev's bound.
4. That result yields: Throwing n balls to n bins, w.h.p. we have a max-load of $\Theta\left(\frac{\ln n}{\ln \ln (n)}\right)$.
5. We can obtain sharper bounds for max-load, using strong inequalities (Azuma-Hoeffding) or the Poisson approximation.

Poisson approximation

1. A difficulty with the exact (binomial) B \& B model is that random variables could be dependent (for ex. bin's load).
2. We have seen how to approximate the expressions arising from the exact computations by a Poisson, if p is small and n is large.
3. However, under the right conditions, we can approach the whole solution to the problem by using Poisson r.v. instead of Binomial. In the binomial case we have exactly n balls with probability $p=1 / m$, in the Poisson case we have an intensity $\lambda=n / m$, where n is the expected number of balls being used.
4. The Poisson case is to use independent Poisson random variables. It can be shown, under certain conditions, that the approach gives a good approximation to the solution. See for ex. section 5.4 in MU.
