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Balls and Bins

Basic Model: Given n balls, we throw each one independently and
uniformly into a set of m bins.
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Probability space: Q = {(b1, bo, ..., bs)} where b; € {1,...,m}
denotes the index of the bin containing ball j-th. ball: |Q| = m".
For any w € Q,Pr[w] = (%)"



Balls and Bins as a model

Balls and Bins models are very useful in different areas of
computer science. For ex.:

P The hashing data structure: the keys are the balls and the
slots in the array are the bins.

» Many situations in routing in nets: the balls represent the
connectivity requirements and the bins the paths in the
network

P Load balancing randomized algorithms, the balls are the jobs
and the bins are the servers.

Recall that, as an application of Chernoff bounds, we proved that
for n balls (jobs) and m bins (servers), under a uniform and
independent distribution of jobs to servers, for n >> m, the

probability the load of a server deviates from the expected load,
was 1/m3.



General rules for the analysis of Balls & Bins

n balls to m bins.
» X is the random variable counting the number of balls into
bin-j. Then X; € B(n, ).
> As we know: Xi,... Xy, are not independent.
» The average load in a binis = E[Xj] = n/m.
» Rule of thumb to do the analysis:

> If n >> m, (u large) use Chernoff bounds,
» if n=m, (u € ©O(1)), use the Poisson approximation.

Recall that for very small x,
e ~1+4+x
e X ~1-—x.




The Poisson Distribution

Recall that for X € B(n, p), for large n and small p, we can have a
good approximation: Pr[X = k| = %, where
A=E[X]=p=pn.

For any A € RT, a r.v. X is said to have a Poisson P())
distribution, if its PMF is px(k) = # forany k=0,1,2,3,...

Poisson is one of the most "natural” distributions: number of
typos, number of rain drops in a square meter of roof, etc..



The Poisson Distribution: Basic Properties

Assume that Y € P()\) approximates X € B(n, p), then as

E [X] = np seems natural that E[Y] = np = X and as

Var [X] = np(1 — p) = A\(1 — p) and as p is small Var [X] ~ A and
Var[Y] = A. Formally, If Y € P()\):
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Variance of Poisson r.v.

e Var [Y] =\

To prove it, instead of computing E [X?] we compute

E[X(X — 1)].

Notice Var [X] = E [X?] — E[X]* = E[X(X — 1)] + E[X] - E[X]*.
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So, Var [X] = A2 + X — \?



Sum of Poisson r. v.

Lemma If Y € P()\) and Z € P(X') are independent, then
Y+ZePA+N).

Proof
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Basic facts

Recall X counts the number of balls in the j-th bin.

> Probability all n balls fell in the same bin: ().

» Probability that bin j is empty:
PriXj=0=(1-L1)"~em=e"

» Let Y be number of empty bins, E[Y]?.
For 1 <j < m, let Y be and the r.v.defined as Y; = 1 iff
bin j is empty, 0 otherwise. Then,
E[Y] =22 E[Yj] =320, Pr[X; = 0] = m(1—1/m)". So,
the expected number of empty bins is

E[Y]~ me™.



Probability the j-th bin contains 1 ball

We can assume that m and n are large, (so p = 1/m is small),
A=n/m=0(1)
Exact computation: Pr[X; = 1] = (])(1/m)}(1 — 1/m)"1,

where ('1’) number choices exactly 1 ball goes into bin j,

(1 —1/m)"~1: remaining balls do not go to bin j.
PrX = 1] = 2(1—1/m)"(1 — 1/m)*

Poisson approximation: Taking A = £ and (1 —1/m)" ~ e~ and
noticing (1 —1/m) — 1:

Pr(X; = 1] ~ Xe ™.

For n = 3000 and m = 1000, A = 3, the exact value of
Pr[X; = 1] = 0.149286 and the Poisson approximation is 0.149361.



Probability the j-th bin contains exactly r balls

We can assume that m and n are large, n,m > r,
Exact computation: Pr[X; = r] = (7)(1/m) (1 —1/m)"".
Poisson approximation:

(1-1/m)""=(1-1/m)"(1—-1/m)~"=e* 17"
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For n = 4000 and m = 2000, A = 2, and r = 100, the exact value

of Pr[X; = r] = 5.54572 x 107130 and the approximation is
1.83826 x 107130



Probability that at least one bin has a collision

Pr[at least 1 bin has more than 1 ball | =
1 — Pr[every bin j has X; < 1].

If k — 1 balls went to kK — 1 different bins. Then,

k—1
Pr[The kth. ball goes into a non-empty bin] = —

k—1
Pr [The kth. ball goes into an empty bin] = (1 — T)

n—1

. n—1
-1 ,
Pr [every bin j haszgl]:H(l—lm )NHef’/m
i=1 i=1

n—1 . 1 n—1 . n(n—1) 2
= e_ Zi:l I/m = e_ﬁ i=1 ! = e_ 2m ~ e_2nim

n2
Therefore, Pr[at least 1 bin i has X; > 1] ~ 1 — e™2m.



Birthday problem

How many students should be in a class in order to have that, with
probability > 1/2, at least 2 have the same birthday

This is the same problem as above, with m = 365:

We need e~ 2m< :>2 <In2~ 0.69
= n=v2mln?2. Ifm_365 then n = 22.49.

Therefore, if there are more than 23 students in a class, with
probability greater than 1/2, more than 2 students will have the
same birthday



Coupon Collector's problem

Abraham de Moivre (Vllc.)
How many balls do we need to throw to assure that w.h.p. every
bin contains > 1 balls

>

>
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Let Y a r.v. counting the number of balls we have to throw
until having no empty bins

For i € [m], let Y; = # balls thrown since the moment in
which 7 — 1 bins are not empty and a ball fells into an empty
bin. So

Yi=1land Y =3 T",V
Pr [a new ball going into non-empty bin] = %

Pr[a new ball going into an empty bin] =1 — —.



Coupon Collector’s problem: E[Y]

Y; = # of balls we have to throw to hit an empty bin having i — 1
non-empty

i~ 1\ 1
Pr[Y,-:k]:<lm> 1!

Therefore Y; € G(p;) and E[Y]] = ﬁ

E[Y]=) E[V]=) ——=m>
i=1 i=1



Coupon Collector's problem: Concentration

Let E[Y] = O(mInm) ~ cmIn m for constant ¢ > 1

» For any bin j, define the event Ajf:
bin j is empty after the first r throws.

» Notice events A7, A, ... A}, are not independent.
> Pr [Aﬂ =(1- %)r ~ e r/m
» For r =cminm = Pr [AJ?’"'”’"] < e=eminm/m — m—c,

> Let W be a r.v. counting the number of balls needed to make
that every bin has load > 1.

Pr[W > cmlg m] = Pr [Ulr'llAfmlnm] \S/ipr [Afm'nm]
uB J=1

m
< § :mfc — mlfc
j=1



Coupon Collector's problem: Concentration Bounds

» The previous bound using UB is more tight than the one using
Chebyshev or Chernoff on random variable Y.
(See homework)

» In Section 5.4.1 of MU book, there is a sharper bound for the
Coupon collector’s, using the Poisson approximation.



Maximum Load

This is a particular case of the job and servers with sharper bounds

Theorem If we throw n balls independently and uniformly into

m = n bins, then the maximum load of a bin is at most (é'lgg’;),

with probability <1 — % i.e., w.h.p.

Recall that, if for any bin 1 < j < n, X; = is a r.v. with its load.

We know {X;} are not independent and E[Xj] = n/n = 1.

To show the above bound we use the following two inequalities:

(0) < (=(%)

K
> N.
InInNthenK >N

Let N> e If K>




Max-load: Proof Upper Bound

For 1< k<n Pr[X;>kl < (})L < (%)L < (9
2
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We want to prove that for k > ;

=

ie. PriX; > k] < (9)k< 4 = (%)
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Taking In: e = Inln(n%) B eIn(%Inn) = k= In(%lnn)

We proved that if k > m then Pr[X; > k] < %

Then, using U-B
Pr(3i € [n]| X > k] < S0, PriX; > k] < & = L.



Further considerations on Max-load

1. The same proof could be extended to the case of n balls and
m bins, with the constrain n < mInm.

2. We can obtain the same result by using Chernoff's bounds.
(Nice exercise!)

3. In fact, the result could be extended to prove the Lower

Bound: that w.h.p. the max-load is Q(lnm’n)) balls. One easy

way to prove the lower bound is using Chebyshev’s bound.

4. That result yields: Throwing n balls to n bins, w.h.p. we have

a max-load of @(ln'ﬂﬁ)

5. We can obtain sharper bounds for max-load, using strong
inequalities (Azuma-Hoeffding) or the Poisson approximation.



Poisson approximation

1. A difficulty with the exact (binomial) B & B model is that
random variables could be dependent (for ex. bin's load).

2. We have seen how to approximate the expressions arising from
the exact computations by a Poisson, if p is small and n is
large.

3. However, under the right conditions, we can approach the
whole solution to the problem by using Poisson r.v. instead of
Binomial. In the binomial case we have exactly n balls with
probability p = 1/m, in the Poisson case we have an intensity
A = n/m, where n is the expected number of balls being used.

4. The Poisson case is to use independent Poisson random
variables. It can be shown, under certain conditions, that the
approach gives a good approximation to the solution. See for
ex. section 5.4 in MU.



