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Balls and Bins

Basic Model: Given n balls, we throw each one independently and
uniformly into a set of m bins.

Pr [ball i → bin j ] =
1

m
.

m bins

n balls

Probability space: Ω = {(b1, b2, . . . , bn)} where bi ∈ {1, . . . ,m}
denotes the index of the bin containing ball i-th. ball: |Ω| = mn.
For any w ∈ Ω,Pr [w ] = ( 1

m )n



Balls and Bins as a model

Balls and Bins models are very useful in different areas of
computer science. For ex.:

I The hashing data structure: the keys are the balls and the
slots in the array are the bins.

I Many situations in routing in nets: the balls represent the
connectivity requirements and the bins the paths in the
network

I Load balancing randomized algorithms, the balls are the jobs
and the bins are the servers.

Recall that, as an application of Chernoff bounds, we proved that
for n balls (jobs) and m bins (servers), under a uniform and
independent distribution of jobs to servers, for n >> m, the
probability the load of a server deviates from the expected load,
was 1/m3.



General rules for the analysis of Balls & Bins

n balls to m bins.

I Xj is the random variable counting the number of balls into
bin-j . Then Xj ∈ B(n, 1

m ).

I As we know: X1, . . .Xm are not independent.

I The average load in a bin is µ = E [Xj ] = n/m.
I Rule of thumb to do the analysis:

I If n >> m, (µ large) use Chernoff bounds,
I if n = m, (µ ∈ Θ(1)), use the Poisson approximation.

Recall that for very small x ,
ex ∼ 1 + x
e−x ∼ 1− x .



The Poisson Distribution

Recall that for X ∈ B(n, p), for large n and small p, we can have a

good approximation: Pr [X = k] = e−λλk

k! , where
λ = E [X ] = µ = pn.

For any λ ∈ R+, a r.v. X is said to have a Poisson P(λ)

distribution, if its PMF is pX (k) = e−λλk

k! , for any k = 0, 1, 2, 3, . . .

Poisson is one of the most ”natural” distributions: number of
typos, number of rain drops in a square meter of roof, etc..



The Poisson Distribution: Basic Properties

Assume that Y ∈ P(λ) approximates X ∈ B(n, p), then as
E [X ] = np seems natural that E [Y ] = np = λ and as
Var [X ] = np(1− p) = λ(1− p) and as p is small Var [X ] ∼ λ and
Var [Y ] = λ. Formally, If Y ∈ P(λ):

• E [Y ] = λ.

E [Y ] =
∞∑
k=0

k
e−λλk

k!
= e−λ(λ+

2λ2

2!
+

3λ2

3!
· · · )

= e−λλ(1 + λ+
2λ2

2!
+

3λ2

3!
· · · ) = e−λλeλ



Variance of Poisson r.v.

• Var [Y ] = λ.
To prove it, instead of computing E

[
X 2
]

we compute
E [X (X − 1)].
Notice Var [X ] = E

[
X 2
]
−E [X ]2 = E [X (X − 1)] +E [X ]−E [X ]2.

E [X (X − 1)] =
∞∑
x=0

x(x − 1)
λxe−λ

x!
=
∞∑
x=2

λ2λx−2e−λ

(x − 2)!

= e−λλ2
∞∑
x=2

λx−2

(x − 2)!
=︸︷︷︸

y=x−2

e−λλ2
∞∑
y=0

λy

(y)!

= e−λλ2eλ

So, Var [X ] = λ2 + λ− λ2



Sum of Poisson r. v.

Lemma If Y ∈ P(λ) and Z ∈ P(λ′) are independent, then
Y + Z ∈ P(λ+ λ′).
Proof

Pr [Y + Z = j ] =

j∑
k=0

Pr [(Y = k) ∩ (Z = j − k)] =

j∑
k=0

e−λe−λ
′
λkλ′j−k

k!(j − k)!

=
e−(λ+λ′)

j!

j∑
k=0

j!

k!(j − k)!
λkλ′j−k =

e−(λ+λ′)

j!

j∑
k=0

(
j

k

)
λk(λ′)j−k

=
e−(λ+λ′) × (λ+ λ′)j

j!
⇒ (Y + Z) ∈ P(λ+ λ′) 2



Basic facts

Recall Xj counts the number of balls in the j-th bin.

I Probability all n balls fell in the same bin: ( 1
m )n.

I Probability that bin j is empty:
Pr [Xj = 0] = (1− 1

m )n ∼ e−
n
m = e−λ.

I Let Y be number of empty bins, E [Y ]?.
For 1 ≤ j ≤ m, let Yj be and the r.v.defined as Yj = 1 iff
bin j is empty, 0 otherwise. Then,
E [Y ] =

∑m
j=1 E [Yj ] =

∑m
j=1 Pr [Xj = 0] = m(1− 1/m)n. So,

the expected number of empty bins is

E [Y ] ∼ me−λ.



Probability the j-th bin contains 1 ball

We can assume that m and n are large, (so p = 1/m is small),
λ = n/m = Θ(1)
Exact computation: Pr [Xj = 1] =

(n
1

)
(1/m)1(1− 1/m)n−1,

where
(n
1

)
number choices exactly 1 ball goes into bin j ,

(1− 1/m)n−1: remaining balls do not go to bin j .
Pr [Xj = 1] = n

m (1− 1/m)n(1− 1/m)−1

Poisson approximation: Taking λ = n
m and (1− 1/m)n ∼ e−λ and

noticing (1− 1/m)→ 1:

Pr [Xj = 1] ∼ λe−λ.

For n = 3000 and m = 1000, λ = 3, the exact value of
Pr [Xi = 1] = 0.149286 and the Poisson approximation is 0.149361.



Probability the j-th bin contains exactly r balls

We can assume that m and n are large, n,m > r ,
Exact computation: Pr [Xj = r ] =

(n
r

)
(1/m)r (1− 1/m)n−r .

Poisson approximation:
(1− 1/m)n−r = (1− 1/m)n(1− 1/m)−r = e−λ · 1−r(

n

r

)
(1/m)r =

1

r !

(
n

m

n − 1

m
· · · n − r + 1

m

)
=

1

r !
λ(1− 1

n
) · · ·λ(1− r + 1

n
) = λr

Pr [Xj = r ] ∼ λre−λ

r !

For n = 4000 and m = 2000, λ = 2, and r = 100, the exact value
of Pr [Xi = r ] = 5.54572× 10−130 and the approximation is
1.83826× 10−130



Probability that at least one bin has a collision

Pr [at least 1 bin has more than 1 ball ] =
1− Pr [every bin j has Xj ≤ 1] .

If k − 1 balls went to k − 1 different bins. Then,

Pr [The kth. ball goes into a non-empty bin] =
k − 1

m

Pr [The kth. ball goes into an empty bin] = (1− k − 1

m
)

Pr [every bin j has Xj ≤ 1] =
n−1∏
i=1

(1− i − 1

m
) ∼

n−1∏
i=1

e−i/m

= e−
∑n−1

i=1 i/m = e−
1
m

∑n−1
i=1 i = e−

n(n−1)
2m ∼ e−

n2

2m

Therefore, Pr [at least 1 bin i has Xi > 1] ∼ 1− e−
n2

2m .



Birthday problem

How many students should be in a class in order to have that, with
probability > 1/2, at least 2 have the same birthday

This is the same problem as above, with m = 365:

We need e−
n2

2m ≤ 1
2 ⇒

n2

2m ≤ ln 2 ∼ 0.69

⇒ n =
√

2m ln 2. If m = 365 then n = 22.49.

Therefore, if there are more than 23 students in a class, with
probability greater than 1/2, more than 2 students will have the
same birthday



Coupon Collector’s problem

Abraham de Moivre (VIIc.)
How many balls do we need to throw to assure that w.h.p. every
bin contains ≥ 1 balls

I Let Y a r.v. counting the number of balls we have to throw
until having no empty bins

I For i ∈ [m], let Yi = # balls thrown since the moment in
which i − 1 bins are not empty and a ball fells into an empty
bin. So

I Y1 = 1 and Y =
∑m

i=1 Yi .

I Pr [a new ball going into non-empty bin] = i−1
m .

I Pr [a new ball going into an empty bin] = 1− i−1
m .



Coupon Collector’s problem: E [Y ]

Yi = # of balls we have to throw to hit an empty bin having i − 1
non-empty

Pr [Yi = k] =

(
i − 1

m

)k−1

1− i − 1

m︸ ︷︷ ︸
pi

 .

Therefore Yi ∈ G (pi ) and E [Yi ] = m
m+i+1 .

E [Y ] =
m∑
i=1

E [Yi ] =
m∑
i=1

m

m − i + 1
= m

m∑
j=1

1

j
= m(lnm + o(1)).



Coupon Collector’s problem: Concentration

Let E [Y ] = O(m lnm) ∼ cm lnm for constant c > 1

I For any bin j , define the event Ar
j :

bin j is empty after the first r throws.

I Notice events Ar
1,A

r
2, . . .A

r
m are not independent.

I Pr
[
Ar
j

]
= (1− 1

m )r ∼ e−r/m

I For r = cm lnm⇒ Pr
[
Acm lnm
j

]
≤ e−cm lnm/m = m−c .

I Let W be a r.v. counting the number of balls needed to make
that every bin has load ≥ 1.

Pr [W > cm lgm] = Pr
[
∪mi=1A

cm lnm
j

]
≤︸︷︷︸
UB

m∑
j=1

Pr
[
Acm lnm
j

]

≤
m∑
j=1

m−c = m1−c .



Coupon Collector’s problem: Concentration Bounds

I The previous bound using UB is more tight than the one using
Chebyshev or Chernoff on random variable Y .
(See homework)

I In Section 5.4.1 of MU book, there is a sharper bound for the
Coupon collector’s, using the Poisson approximation.



Maximum Load

This is a particular case of the job and servers with sharper bounds

Theorem If we throw n balls independently and uniformly into

m = n bins, then the maximum load of a bin is at most
(

4 lg n
lg lg n

)
,

with probability ≤ 1− 1
n , i.e., w.h.p.

Recall that, if for any bin 1 ≤ j ≤ n, Xj = is a r.v. with its load.

We know {Xj} are not independent and E [Xj ] = n/n = 1.

To show the above bound we use the following two inequalities:(
N

K

)K

≤
(
N

K

)
≤
(
Ne

K

)K

. (1)

Let N > e. If K ≥ 2 lnN

ln lnN
then KK ≥ N. (2)



Max-load: Proof Upper Bound

For 1 ≤ k ≤ n, Pr [Xj ≥ k] ≤
(n
k

)
1
nk
≤ (nek )k 1

nk
≤ ( e

k )k .

We want to prove that for k ≥ 2 ln n
ln ln n ⇒ Pr

[
Xj ≥ 2 ln n

ln ln n

]
≤ 1

n2
.

i.e. Pr [Xj ≥ k] ≤ ( e
k )k≤ 1

n2
⇒ ( e

k )
k
e ≥ n

2
e

Taking ln: k
e ≥

2 ln(n2/e)

ln ln(n
2
e )

= 4 ln n
e ln( 2

e
ln n)
⇒ k ≥ 4 ln n

ln( 2
e
ln n)

We proved that if k ≥ 4 ln(n)
ln(2/e) ln ln(n) then Pr [Xj ≥ k] ≤ 1

n2
.

Then, using U-B
Pr [∃i ∈ [n] |Xj ≥ k] ≤

∑n
i=1 Pr [Xj ≥ k] ≤ n

n2
= 1

n .



Further considerations on Max-load

1. The same proof could be extended to the case of n balls and
m bins, with the constrain n < m lnm.

2. We can obtain the same result by using Chernoff’s bounds.
(Nice exercise!)

3. In fact, the result could be extended to prove the Lower
Bound: that w.h.p. the max-load is Ω( ln n

ln ln(n)) balls. One easy
way to prove the lower bound is using Chebyshev’s bound.

4. That result yields: Throwing n balls to n bins, w.h.p. we have
a max-load of Θ( ln n

ln ln(n)).

5. We can obtain sharper bounds for max-load, using strong
inequalities (Azuma-Hoeffding) or the Poisson approximation.



Poisson approximation

1. A difficulty with the exact (binomial) B & B model is that
random variables could be dependent (for ex. bin’s load).

2. We have seen how to approximate the expressions arising from
the exact computations by a Poisson, if p is small and n is
large.

3. However, under the right conditions, we can approach the
whole solution to the problem by using Poisson r.v. instead of
Binomial. In the binomial case we have exactly n balls with
probability p = 1/m, in the Poisson case we have an intensity
λ = n/m, where n is the expected number of balls being used.

4. The Poisson case is to use independent Poisson random
variables. It can be shown, under certain conditions, that the
approach gives a good approximation to the solution. See for
ex. section 5.4 in MU.


