Balls and Bins

RA-MIRI QT Curs 2020-2021

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Balls and Bins

Basic Model: Given n balls, we throw each one independently and uniformly into a set of m bins.

 $\Pr\left[\text{ball } i \rightarrow \text{ bin } j\right] = \frac{1}{m}.$

Probability space: $\Omega = \{(b_1, b_2, \dots, b_n)\}$ where $b_i \in \{1, \dots, m\}$ denotes the index of the bin containing ball *i*-th. ball: $|\Omega| = m^n$. For any $w \in \Omega$, $\Pr[w] = (\frac{1}{m})^n$

Balls and Bins as a model

Balls and Bins models are very useful in different areas of computer science. For ex.:

- The hashing data structure: the keys are the balls and the slots in the array are the bins.
- Many situations in routing in nets: the balls represent the connectivity requirements and the bins the paths in the network
- Load balancing randomized algorithms, the balls are the jobs and the bins are the servers.

Recall that, as an application of Chernoff bounds, we proved that for *n* balls (jobs) and *m* bins (servers), under a uniform and independent distribution of jobs to servers, for n >> m, the probability the load of a server deviates from the expected load, was $1/m^3$.

General rules for the analysis of Balls & Bins

n balls to m bins.

- X_j is the random variable counting the number of balls into bin-j. Then X_j ∈ B(n, ¹/_m).
- As we know: X_1, \ldots, X_m are not independent.
- The average load in a bin is $\mu = \mathbf{E}[X_j] = n/m$.
- Rule of thumb to do the analysis:
 - If n >> m, (μ large) use Chernoff bounds,
 - if n = m, $(\mu \in \Theta(1))$, use the Poisson approximation.

Recall that for very small x, $e^x \sim 1 + x$ $e^{-x} \sim 1 - x$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Poisson Distribution

Recall that for $X \in B(n, p)$, for large n and small p, we can have a good approximation: $\Pr[X = k] = \frac{e^{-\lambda}\lambda^k}{k!}$, where $\lambda = \mathbf{E}[X] = \mu = pn$.

For any $\lambda \in \mathbb{R}^+$, a r.v. X is said to have a Poisson $P(\lambda)$ distribution, if its PMF is $p_X(k) = \frac{e^{-\lambda}\lambda^k}{k!}$, for any k = 0, 1, 2, 3, ...

Poisson is one of the most "natural" distributions: number of typos, number of rain drops in a square meter of roof, etc..

The Poisson Distribution: Basic Properties

Assume that $Y \in P(\lambda)$ approximates $X \in B(n, p)$, then as $\mathbf{E}[X] = np$ seems natural that $\mathbf{E}[Y] = np = \lambda$ and as $\mathbf{Var}[X] = np(1-p) = \lambda(1-p)$ and as p is small $\mathbf{Var}[X] \sim \lambda$ and $\mathbf{Var}[Y] = \lambda$. Formally, If $Y \in P(\lambda)$:

•
$$\mathbf{E}[Y] = \lambda.$$

$$\mathbf{E}[Y] = \sum_{k=0}^{\infty} k \frac{e^{-\lambda} \lambda^k}{k!} = e^{-\lambda} \left(\lambda + \frac{2\lambda^2}{2!} + \frac{3\lambda^2}{3!} \cdots\right)$$
$$= e^{-\lambda} \lambda \left(1 + \lambda + \frac{2\lambda^2}{2!} + \frac{3\lambda^2}{3!} \cdots\right) = e^{-\lambda} \lambda e^{\lambda}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Variance of Poisson r.v.

• Var $[Y] = \lambda$. To prove it, instead of computing $\mathbf{E}[X^2]$ we compute $\mathbf{E}[X(X-1)]$. Notice Var $[X] = \mathbf{E}[X^2] - \mathbf{E}[X]^2 = \mathbf{E}[X(X-1)] + \mathbf{E}[X] - \mathbf{E}[X]^2$.

$$\mathbf{E}[X(X-1)] = \sum_{x=0}^{\infty} x(x-1) \frac{\lambda^x e^{-\lambda}}{x!} = \sum_{x=2}^{\infty} \frac{\lambda^2 \lambda^{x-2} e^{-\lambda}}{(x-2)!}$$
$$= e^{-\lambda} \lambda^2 \sum_{x=2}^{\infty} \frac{\lambda^{x-2}}{(x-2)!} \underbrace{=}_{y=x-2} e^{-\lambda} \lambda^2 \sum_{y=0}^{\infty} \frac{\lambda^y}{(y)!}$$
$$= e^{-\lambda} \lambda^2 e^{\lambda}$$

So, Var $[X] = \lambda^2 + \lambda - \lambda^2$

Sum of Poisson r. v.

Lemma If $Y \in P(\lambda)$ and $Z \in P(\lambda')$ are independent, then $Y + Z \in P(\lambda + \lambda')$. Proof

$$\Pr[Y + Z = j] = \sum_{k=0}^{j} \Pr[(Y = k) \cap (Z = j - k)] = \sum_{k=0}^{j} \frac{e^{-\lambda} e^{-\lambda'} \lambda^{k} \lambda'^{j-k}}{k! (j - k)!}$$
$$= \frac{e^{-(\lambda + \lambda')}}{j!} \sum_{k=0}^{j} \frac{j!}{k! (j - k)!} \lambda^{k} \lambda'^{j-k} = \frac{e^{-(\lambda + \lambda')}}{j!} \sum_{k=0}^{j} {j \choose k} \lambda^{k} (\lambda')^{j-k}$$
$$= \frac{e^{-(\lambda + \lambda')} \times (\lambda + \lambda')^{j}}{j!} \Rightarrow (Y + Z) \in P(\lambda + \lambda') \qquad \Box$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Basic facts

Recall X_j counts the number of balls in the *j*-th bin.

- Probability all *n* balls fell in the same bin: $(\frac{1}{m})^n$.
- Probability that bin *j* is empty: $\Pr[X_j = 0] = (1 - \frac{1}{m})^n \sim e^{-\frac{n}{m}} = e^{-\lambda}.$
- Let Y be number of empty bins, E[Y]?. For 1 ≤ j ≤ m, let Y_j be and the r.v.defined as Y_j = 1 iff bin j is empty, 0 otherwise. Then,
 E[Y] = ∑_{j=1}^m E[Y_j] = ∑_{j=1}^m Pr[X_j = 0] = m(1 - 1/m)ⁿ. So, the expected number of empty bins is

$$\mathbf{E}[Y] \sim m e^{-\lambda}.$$

Probability the *j*-th bin contains 1 ball

We can assume that *m* and *n* are large, (so p = 1/m is small), $\lambda = n/m = \Theta(1)$ Exact computation: $\Pr[X_j = 1] = \binom{n}{1}(1/m)^1(1-1/m)^{n-1}$, where $\binom{n}{1}$ number choices exactly 1 ball goes into bin *j*, $(1-1/m)^{n-1}$: remaining balls do not go to bin *j*. $\Pr[X_j = 1] = \frac{n}{m}(1-1/m)^n(1-1/m)^{-1}$ Poisson approximation: Taking $\lambda = \frac{n}{m}$ and $(1-1/m)^n \sim e^{-\lambda}$ and noticing $(1-1/m) \rightarrow 1$:

$$\Pr\left[X_j=1\right] \sim \lambda e^{-\lambda}.$$

For n = 3000 and m = 1000, $\lambda = 3$, the exact value of **Pr** $[X_i = 1] = 0.149286$ and the Poisson approximation is 0.149361.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Probability the *j*-th bin contains exactly *r* balls

We can assume that *m* and *n* are large, n, m > r, Exact computation: $\Pr[X_j = r] = \binom{n}{r}(1/m)^r(1-1/m)^{n-r}$.

Poisson approximation:

 $(1-1/m)^{n-r} = (1-1/m)^n (1-1/m)^{-r} = e^{-\lambda} \cdot 1^{-r}$

$$\binom{n}{r}(1/m)^r = \frac{1}{r!} \left(\frac{n}{m} \frac{n-1}{m} \cdots \frac{n-r+1}{m}\right)$$
$$= \frac{1}{r!} \lambda (1-\frac{1}{n}) \cdots \lambda (1-\frac{r+1}{n}) = \lambda^r$$

$$\Pr\left[X_j=r\right]\sim \frac{\lambda^r e^{-\lambda}}{r!}$$

For n = 4000 and m = 2000, $\lambda = 2$, and r = 100, the exact value of **Pr** $[X_i = r] = 5.54572 \times 10^{-130}$ and the approximation is 1.83826×10^{-130}

・ロト・日本・モート モー シタウ

Probability that at least one bin has a collision

 $\begin{aligned} & \mathbf{Pr} \left[\text{at least 1 bin has more than 1 ball } \right] = \\ & 1 - \mathbf{Pr} \left[\text{every bin } j \text{ has } X_j \leq 1 \right]. \end{aligned}$

If k - 1 balls went to k - 1 different bins. Then,

Pr [The *k*th. ball goes into a non-empty bin] = $\frac{k-1}{m}$ **Pr** [The *k*th. ball goes into an empty bin] = $(1 - \frac{k-1}{m})$

$$\begin{aligned} & \mathbf{Pr} \left[\text{every bin } j \ \text{ has } X_j \leq 1 \right] = \prod_{i=1}^{n-1} \left(1 - \frac{i-1}{m} \right) \sim \prod_{i=1}^{n-1} e^{-i/m} \\ & = e^{-\sum_{i=1}^{n-1} i/m} = e^{-\frac{1}{m} \sum_{i=1}^{n-1} i} = e^{-\frac{n(n-1)}{2m}} \sim e^{-\frac{n^2}{2m}} \end{aligned}$$

Therefore, **Pr** [at least 1 bin *i* has $X_i > 1$] $\sim 1 - e^{-\frac{n^2}{2m}}$.

・ロト・西ト・モート 一日・ 今々で

Birthday problem

How many students should be in a class in order to have that, with probability > 1/2, at least 2 have the same birthday

This is the same problem as above, with m = 365:

We need
$$e^{-\frac{n^2}{2m}} \leq \frac{1}{2} \Rightarrow \frac{n^2}{2m} \leq \ln 2 \sim 0.69$$

 $\Rightarrow n = \sqrt{2m \ln 2}$. If $m = 365$ then $n = 22.49$.

Therefore, if there are more than 23 students in a class, with probability greater than 1/2, more than 2 students will have the same birthday

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Coupon Collector's problem

Abraham de Moivre (VIIc.)

How many balls do we need to throw to assure that w.h.p. every bin contains ≥ 1 balls

- Let Y a r.v. counting the number of balls we have to throw until having no empty bins
- For i ∈ [m], let Y_i = # balls thrown since the moment in which i − 1 bins are not empty and a ball fells into an empty bin. So

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- $Y_1 = 1$ and $Y = \sum_{i=1}^m Y_i$.
- **Pr** [a new ball going into non-empty bin] = $\frac{i-1}{m}$.
- **Pr** [a new ball going into an empty bin] = $1 \frac{i-1}{m}$.

Coupon Collector's problem: $\mathbf{E}[Y]$

 $Y_i = \#$ of balls we have to throw to hit an empty bin having i - 1 non-empty

$$\Pr\left[Y_i = k\right] = \left(\frac{i-1}{m}\right)^{k-1} \left(\underbrace{1 - \frac{i-1}{m}}_{p_i}\right)$$

Therefore $Y_i \in G(p_i)$ and $\mathbf{E}[Y_i] = \frac{m}{m+i+1}$.

$$\mathbf{E}[Y] = \sum_{i=1}^{m} \mathbf{E}[Y_i] = \sum_{i=1}^{m} \frac{m}{m-i+1} = m \sum_{j=1}^{m} \frac{1}{j} = m(\ln m + o(1)).$$

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ 三臣 - のへで

٠

Coupon Collector's problem: Concentration

Let $\mathbf{E}[Y] = O(m \ln m) \sim cm \ln m$ for constant c > 1

- For any bin j, define the event A^r_j: bin j is empty after the first r throws.
- ▶ Notice events $A_1^r, A_2^r, \ldots A_m^r$ are not independent.

•
$$\Pr\left[A_j^r\right] = (1 - \frac{1}{m})^r \sim e^{-r/m}$$

• For
$$r = cm \ln m \Rightarrow \Pr\left[A_j^{cm \ln m}\right] \le e^{-cm \ln m/m} = m^{-c}$$
.

► Let W be a r.v. counting the number of balls needed to make that every bin has load ≥ 1.

$$\Pr\left[W > cm \lg m\right] = \Pr\left[\bigcup_{i=1}^{m} A_j^{cm \ln m}\right] \underbrace{\leq}_{UB} \sum_{j=1}^{m} \Pr\left[A_j^{cm \ln m}\right]$$
$$\leq \sum_{i=1}^{m} m^{-c} = m^{1-c}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Coupon Collector's problem: Concentration Bounds

- The previous bound using UB is more tight than the one using Chebyshev or Chernoff on random variable Y. (See homework)
- In Section 5.4.1 of MU book, there is a sharper bound for the Coupon collector's, using the Poisson approximation.

Maximum Load

This is a particular case of the job and servers with sharper bounds

Theorem If we throw *n* balls independently and uniformly into m = n bins, then the maximum load of a bin is at most $\left(\frac{4 \lg n}{\lg \lg n}\right)$, with probability $\leq 1 - \frac{1}{n}$, i.e., w.h.p.

Recall that, if for any bin $1 \le j \le n$, $X_j =$ is a r.v. with its load.

We know $\{X_j\}$ are not independent and $\mathbf{E}[X_j] = n/n = 1$.

To show the above bound we use the following two inequalities:

$$\left(\frac{N}{K}\right)^{K} \leq \binom{N}{K} \leq \left(\frac{Ne}{K}\right)^{K}.$$
(1)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let
$$N > e$$
. If $K \ge \frac{2 \ln N}{\ln \ln N}$ then $K^K \ge N$. (2)

Max-load: Proof Upper Bound

For
$$1 \le k \le n$$
, $\Pr[X_j \ge k] \le {n \choose k} \frac{1}{n^k} \le {\frac{ne}{k}}^k \frac{1}{n^k} \le {\frac{e}{k}}^k$.
We want to prove that for $k \ge \frac{2 \ln n}{\ln \ln n} \Rightarrow \Pr[X_j \ge \frac{2 \ln n}{\ln \ln n}] \le \frac{1}{n^2}$.
i.e. $\Pr[X_j \ge k] \le {\frac{e}{k}}^k \le \frac{1}{n^2} \Rightarrow {\frac{e}{k}}^k \ge n^{\frac{2}{e}}$

Taking In:
$$\frac{k}{e} \ge \frac{2\ln(n^{2/e})}{\ln\ln(n^{\frac{2}{e}})} = \frac{4\ln n}{e\ln(\frac{2}{e}\ln n)} \Rightarrow k \ge \frac{4\ln n}{\ln(\frac{2}{e}\ln n)}$$

We proved that if $k \geq \frac{4 \ln(n)}{\ln(2/e) \ln \ln(n)}$ then $\Pr[X_j \geq k] \leq \frac{1}{n^2}$.

Then, using U-B $\Pr[\exists i \in [n] | X_j \ge k] \le \sum_{i=1}^n \Pr[X_j \ge k] \le \frac{n}{n^2} = \frac{1}{n}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Further considerations on Max-load

- 1. The same proof could be extended to the case of n balls and m bins, with the constrain $n < m \ln m$.
- We can obtain the same result by using Chernoff's bounds. (Nice exercise!)
- 3. In fact, the result could be extended to prove the Lower Bound: that w.h.p. the max-load is $\Omega(\frac{\ln n}{\ln \ln(n)})$ balls. One easy way to prove the lower bound is using Chebyshev's bound.
- That result yields: Throwing n balls to n bins, w.h.p. we have a max-load of Θ(ln n ln ln(n)).
- 5. We can obtain sharper bounds for max-load, using strong inequalities (Azuma-Hoeffding) or the Poisson approximation.

Poisson approximation

- 1. A difficulty with the exact (binomial) B & B model is that random variables could be dependent (for ex. bin's load).
- 2. We have seen how to approximate the expressions arising from the exact computations by a Poisson, if *p* is small and *n* is large.
- 3. However, under the right conditions, we can approach the whole solution to the problem by using Poisson r.v. instead of Binomial. In the binomial case we have exactly *n* balls with probability p = 1/m, in the Poisson case we have an intensity $\lambda = n/m$, where *n* is the expected number of balls being used.
- 4. The Poisson case is to use independent Poisson random variables. It can be shown, under certain conditions, that the approach gives a good approximation to the solution. See for ex. section 5.4 in MU.