
Probabilistic Tools in Algorithms

RA-MIRI QT Curs 2020-2021

What is probability?

Probability: useful technique to simulate and explain real world.
Any english speaking person understands the words likely and
unlikely.

But in everyday life, do we consciously think in terms of
probability?

What is probability?

As far as we know, many phenomena in nature seem to be
generated by random choices, but it is difficult to simulate truly
unpredictable random experiments:

Flipping a coin or tossing a dice are deterministic experiments;
Given the initial angle of the coin, the spin, humidity, etc. we can
predict the outcome of flipping a coin.

In the same way, in todays computers, the random generator
functions are deterministic programs, which simulates randomness.
What is denoted pseudorandom generators.

Probability and computers

The most basic method is the linear congruential generator: from a
seed integer x0 ∈ Z+, produce a sequence of pseudo-random values

xn+1 = (a x0 + b) mod m,

for a, b constants and m a large integer.

In C/C++ rand(), m is a 32-bit integer, a = 22695477, b = 1

A computer deterministically generates pseudorandom numbers.

How would you generate a vector with a sequence of
pseudorandom bits?

for (i = 0; i < n; i + +) do
values[i]=rand() % 2;
printf(”%d”, values[i]);

Some applications of probability in CS

I Algorithm design: Making algorithms run faster by
introducing probability choices, against ”bad” inputs.

I Data structure: when implementing most of the used data
structures, e.g. dictionaries, the use of probability helps to
speed up search and reduce space.

I Learning theory: in learning theory one assumes the data is
generated according to specific probability distributions.

I Studying and design mechanisms for large complex networks:
The design of algorithms for Internet, WWW, Facebook, etc,
is based in the design realistic probabilistic models for those
huge networks.

Some applications of probability in CS

I Data science: To design efficient algorithm for huge data set,
usually we do keep a relevant sample, rather than keep all the
data.

I Cryptography: Randomness and number theory, are essential
for cryptography and crypto-hashing.

I Data compression: improving data compression algorithms
passes through analysing and modelling the underlying
probability distribution of the data, and evaluating its
information-theoretic contets.

I Modelling and analysing the spread of particular infections:
Probabilistic ad-hoc graph models and techniques, have play
an important role in helping to stop or mitigated massive
infections, including e-infections.

Randomization and algorithmis: Probabilistic analysis

Given a deterministic algorithm, it happens that a few ”instances”
may bias the complexity outcome of the algorithm, which for most
of the instances seem to work well, for ex. Quicksort.
In this cases, we can perform a probabilistic analysis of the
deterministic algorithm as follows:
Fix a probability distribution on the set of inputs, parametrized by
input size. Often the distribution is the uniform, but not always.
We see the number of steps as a random variable T (n) and
compute its expected value µ = E [T (n)].
We also need to prove concentration, i.e. with high probability, for
most of the imputs, T (n) is near µ.

Randomization and algorithmis: Randomized algorithms
We can design a randomized algorithms, where the algorithm takes
random choices and continues the computation according to the
output of the random choices.
In this case, we may have to perform a probabilistic analysis of the
complexity.
There are two main types of probabilistic algorithms:

I Monte-Carlo: Always halt in finite time, but may output the
wrong answer. If the answer is binary (yes/not) the error can
be in one direction, one-side error, or the error could be in
both answers two-side error. In Monte-Carlo algorithms it is
important to bound the error probability.

I Las Vegas: The output is always correct but the running time
may be unbounded.

It is easy to convert a Las Vegas algorithm into a Monte-Carlo,
how?. The contrary is not always true.

In this course we will be working mainly with Monte-Carlo
algorithms.

A randomized sorting algorithm

What do you know about QuickSort?

I General deterministic sorting algorithm

I Runs in time O(n2)

I Average time O(n log n) when the input follows the uniform
distribution.

We want to keep the input deterministic and devise a randomized
algorithm that sorts in expected O(n log n) time.

A randomized sorting algorithm

Input a vector A[n]
Compute a uniform random permutation of [n] in B
Rearrange A according to B
Run Quicksort on A

The algorithm reaches our goal, if we can compute a random
permutation within the right time.

Generating a permutation uniformly at random

A permutation Π over [n] defines a re-ordering of the elements,
formally a bijective function π : [n]→ n.

The number of different permutations is n!.

Considering the experiment of generating a uniformly random
permutation, we get the probability space Ω = {π1, π2, . . . , πn!},
i.e. |Ω| = n!.

Generating a permutation uniformly at random (u.a.r) means, for
each n, generate a particular permutation π with probability

1

|Ω|
=

1

n!
.

Randomized algorithm to generate u.a.r. a permutation

Fisher-Yates Algorithm (also known as Knuth’s algorithm)

Random-Perm (n)
for i = 0 to n − 1 do
π[i] = i

for i = n − 1 to 1 do
choose j = Rand(i + 1)
Interchange π[j] and π[i]

Rand(i) provides a random number in [0, i).

Fisher-Yates algorithm

I The algorithm considers the items in the array one at a time
from the end and swaps each element with an element in the
array from that point to the beginning. This has cost O(n)

I Notice that each element has an equal probability, of 1/n, of
being chosen as the last element in the array (including the
element that starts out in that position).

I Applying this analysis recursively, we see that the output
permutation has probability

1

n

1

n − 1
. . .

1

2
=

1

n!

I That is, each permutation is equally likely.

Lemma Random-Perm (n) produces a u.a.r. permutation of [n] in
Θ(n) steps.

