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FPT-reductions

o Let (L, k) and (L', ') be two parameterized problems (on the
same alphabet ¥)
@ A FPT-reduction from (L, k) to (L', ') is a mapping
R:YX* — X* where
o VxeX*xeLiff R(x)el’
o There is an FPT-algorithm with respect to x computing R (in

f(1(x))p(Ix]))
e There is a computable function g : N — N such that
Vx € Tk (R(x)) < g(r(x))

o We note (L, x) <t (I’ k") when there is a FPT-reduction
from (L, x) to (L, K")
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FPT-reductions

FPT is closed under FPT-reductions

@ We have to show that
If (L',x") € FPT and (L, s) <™ (L', k') then (L,x) € FPT
e Algorithm A’ solves (L', k") in f'(k'(y))p(|ly|) time.
e Computing the FPT reduction R takes time fg(x(x))pr(|x]).
@ Running A’ on y = R(x) solves (L, k) in time

fr(r(x))pr(Ix|)

AA-GEI Approx, param, stream
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FPT-reductions and complexity classes

@ FPT-equivalence
(L, k) =Pt (L', k'): (LK) <Pt (L', k") and (L', ") <Pt (L, k)
@ Closure under FPT-reductions
[(L, 1P = {(L',K") [ (L', ") <P* (L )}
o If C is a class of parameterized problems
o (L, k) is C-hard if C C [(L, k)]*.
o (L,x)is C-complete if (L,x) € C and (L, x) is C-hard.
o [(L,%)]™* defines a class of parameterized problems for which
(L, k) is complete
e if (L, k) is C-complete and C is closed under FPT reductions,
then C = [(L, x)]™*

AA-GEI Approx, param, stream
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FPT-equivalent problems

e P-INDEPENDENT SET = p-CLIQUE

R(G, k) = (C, k)
Works for both directions

e P-HITTING SET = P-DOMINATING SET
Exercise
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The class paraNP

o Let (L, k) be a parameterized problem

e (L, k) belongs to paraNP if there is a non-deterministic
algorithm A that decides x € L in time f(x(x))p(|x|),
for some computable function f and polynomial function p.

e If L € NP, for each parameterization «, (L, ) € paraNP
p-Clique, p-Vertex Cover, ...belong to paraNP.
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paraNP-completeness

o Let (L, k) be a parameterized problem
o (L,k)is trivial if L=0 or L =X*.

@ The i-th slice of (L, k) is the decision problem
(Lik)i={xe L]|k(x)=i}

If (L, k) € paraNP is not trivial and has a NP-complete slice, then
(L, k) is paraNP-complete under FPT reductions.

AA-GEI Approx, param, stream
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paraNP-completeness:problems

P-VERTEX COLORING is paraNP-complete.
P-CLIQUE is not paraNP-complete, unless P = NP.
P#VAR-SAT is not paraNP-complete, unless P = NP.
PMAX#LIT-SAT is paraNP-complete.

@ paraNP-completeness separates all slices in P from a slice is
NP-hard.
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e (L,k) belongs to (uniform) XP if there is an algorithm A that
decides L in time O(|x|f(<(x)),
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The class XP

@ Let (L, k) be a parameterized problem.

e (L,k) belongs to (uniform) XP if there is an algorithm A that
decides L in time O(|x|f(#()),
for some computable function f.

o P-CLIQUE, P-VERTEX COVER, P-HITTING SET, P-HITTING
SET, P-DOMINATING SET belong to XP.

@ XP is the counterpart of EXP in classic complexity.

AA-GEI Approx, param, stream
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Input: A deterministic TM M, x € ¥* and an integer k,
Parameter: k

Question: Does M on input x stop in no more than |x|* steps?
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XP-complete problems

P-EXp-DTM-HALT
Input: A deterministic TM M, x € ¥* and an integer k,
Parameter: k

Question: Does M on input x stop in no more than |x|* steps?

P-ExP-DTM-HALT is XP-complete but does not belong to FPT.

AA-GEI Approx, param, stream
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Relationships among classes

paraNP

FPT
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Circuits: Depth and Weft

Let C be a boolean circuit: AND OR NOT gates.

A gate is small if it has only two or one input otherwise the
gate is big

The depth of C is the maximum distance from an input gate
to an output gate.

The weft of C the maximum number of big gates in a path
from an input gate to an output gate.

@ Note that depth(C) > weft(C)

AA-GEI Approx, param, stream
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Variations on SAT

@ The weight of an assignment x = x1...x, € {0,1}" is
W(x) = > 7 x;; i.e., the number of ones

@ A circuit C is k-satisfiable if there is a satisfying assignment
with weight k.

@ A formula F is k-satisfiable if there is a satisfying assignment
with weight k.

P-WsAT(FaMm)

Input: A circuit/formula C/F in family FAM and an integer k,
Parameter: k

Question: Is C/F k-satisfiable?

AA-GEI Approx, param, stream
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@ For d >t >0, define

Ct.d = {c | C € CIRC and weft(C) < t and depth(C) < d}

We define the following classes:
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W-classes

Families of circuits/formulas
@ CIRC all boolean circuits
e PRroP all propositional formulas
@ For d >t >0, define

Ct.d = {c | C € CIRC and weft(C) < t and depth(C) < d}

We define the following classes:
o W[P] = [p-WsaT(CIrC)]*
o W[SAT] = [p-Wsar(Prop)]*
o For t > 1, W[t] = {[P-WsaT(C, 4)]?t | d > 1}
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W-hierarchy

o W[P] = [P-Wsar(CIrc)]t
o W[SAT] = [p-Wsat(Propr)]?t
o For t > 1, W[t] = {[P-WSAT(Co.a)] | d > 1}

WIP] C paraNPn XP
WI[SAT] C WIP]
Fori> 1, Wil € W[SAT] and W[i] C W[i + 1]
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W-hierarchy

FPT C WI[1]

e If, for some i > 1, FPT # W([i] then P # NP

o If FPT # W[SAT] then P # NP
o If FPT # WIP] then P # NP

Any of those conditions imply FPT # paraNP.

If FPT = W|P] then CIRCUITSAT for circuits with n inputs and
m gates can be decided in 2°(" mO() time.

il = = = =

AA-GEI Approx, param, stream
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WI[P]-hard problems

Some problems in W([P]
o P-CLIQUE, P-DOMINANTSET, P-SETCOVER
But in which level of the W-hierarchy?
e P-CLIQUE € W[1]
To prove this statement it is enough to show a circuit with

weft 1 solving the problem (see blackboard)
In fact the problem is W([1]-complete

e P-DOMINATING SET € WJ2] and P-SETCOVER € W|2]
(Exercise)

In fact both problems are W[2]-complete

AA-GEI Approx, param, stream
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Exponential Time Hypothesis

Exponential Time Hypothesis (ETH)

n-variable 3-SAT cannot be solved in time 2°(").

@ We wish to get results like:

If there is an f(k) n°(k) time algorithm for problem XXX, then
ETH fails.

AA-GEI Approx, param, stream
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@ We know that VERTEX COVER can be solved in time
O*(ch).

e Can we do it much faster, for example in time O*(c‘/E) or
O*(Ck//ogk)?

If VERTEX COVER can be solved in time 2°(k) n®1), then ETH
fails.
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Lower bounds for FPT algorithms

@ We know that VERTEX COVER can be solved in time
O*(ch).

e Can we do it much faster, for example in time O*(c‘/E) or
O*(Ck//ogk)?

If VERTEX COVER can be solved in time 2°(k) n®1), then ETH
fails.

There is a polynomial-time reduction from m-clause 3SAT to
O(m)-vertex VERTEX COVER. The assumed algorithm would
solve the latter problem in time 2°(™ n®() yiolating ETH. O

AA-GEI Approx, param, stream
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@ Polynomial-time approximation scheme (PTAS):
Input: Instance x,e¢ > 0
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Running time: polynomial in |x| for every fixed €
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@ Polynomial-time approximation scheme (PTAS):
Input: Instance x,e¢ > 0
Output: (1 + €)-approximate solution
Running time: polynomial in |x| for every fixed €

@ PTAS: running time is \x]f(l/e)
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@ Polynomial-time approximation scheme (PTAS):
Input: Instance x,e¢ > 0
Output: (1 + €)-approximate solution
Running time: polynomial in |x| for every fixed €
o PTAS: running time is |x|/(1/¢)
o Efficient PTAS (EPTAS)
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Efficient approximation schemes

@ Polynomial-time approximation scheme (PTAS):
Input: Instance x,e¢ > 0
Output: (1 + €)-approximate solution
Running time: polynomial in |x| for every fixed €

o PTAS: running time is |x|/(1/¢)

o Efficient PTAS (EPTAS) running time is (1/¢)|x|°®)

@ For some problems, there is a PTAS, but no EPTAS is known.
Can we show that no EPTAS is possible?

AA-GEI Approx, param, stream
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No EPTAS?

If the standard parameterization of an optimization problem is
W(1]-hard, then there is no EPTAS for the optimization problem,
unless FPT = W/1].
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No EPTAS?

If the standard parameterization of an optimization problem is
W(1]-hard, then there is no EPTAS for the optimization problem,
unless FPT = W/1].

v

Suppose an f(1/€) n°1) time EPTAS exists.
Running this EPTAS with € = 1/(k + 1) decides if the optimum is
at most/at least k. O

AA-GEI Approx, param, stream
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Parameterized complexity

@ Possibility to give evidence that certain problems are not FPT.
@ Parameterized reduction.

@ The W-hierarchy.

@ ETH gives much stronger and tighter lower bounds.

o PTAS vs. EPTAS

°

Kernel lower bounds

AA-GEI Approx, param, stream
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