Algorithms for data streams

Maria Serna

Spring 2025

- Finding frequent items
- 2 Counting values

- We have a stream x_1, \ldots, x_m , where $x_i \in \Sigma$.
- This implicitly defines a frequency vector f_1, \ldots, f_n , where $n = |\Sigma|$ with $f_1 + \cdots + f_n = m$.

- We have a stream x_1, \ldots, x_m , where $x_i \in \Sigma$.
- This implicitly defines a frequency vector f_1, \ldots, f_n , where $n = |\Sigma|$ with $f_1 + \cdots + f_n = m$.
- Frequent items problem:
 Given k, output the set {j | f_i > m/k}.

- We have a stream x_1, \ldots, x_m , where $x_i \in \Sigma$.
- This implicitly defines a frequency vector f_1, \ldots, f_n , where $n = |\Sigma|$ with $f_1 + \cdots + f_n = m$.
- Frequent items problem: Given k, output the set $\{j \mid f_j > m/k\}$.
- Frequency estimation problem: Process the stream to get a data structure that can provide an estimate \hat{f}_i of f_i , for a given $i \in [n]$.

• Exact algorithm:

```
1: procedure FREQ(int n, stream s)
2: int j, F[n] = 0
3: while not s.end() do
4: j = s.read()
5: F[j]++
```

• Exact algorithm:

```
1: procedure FREQ(int n, stream s)
2: int j, F[n] = 0
3: while not s.end() do
4: j = s.read()
5: F[j]++
```

Computes the frequency vector.

• Exact algorithm:

```
1: procedure FREQ(int n, stream s)
2: int j, F[n] = 0
3: while not s.end() do
4: j = s.read()
5: F[j]++
```

- Computes the frequency vector.
- One pass, using $O(n \log m)$ memory and O(1) time per item.

• The algorithm has an additional parameter k.

- The algorithm has an additional parameter k.
- Uses an associative array with n potential keys.

- The algorithm has an additional parameter k.
- Uses an associative array with n potential keys.
- The associative array can be implemented using a balanced binary search tree.

```
1: procedure MISRA-GRIES(int n, stream s,int k)
       int A empty associative array
 2:
 3:
       while not s.end() do
           i = s.read()
 4.
           if j \in keys(A) then
 5:
               A[i]++
 6.
           else
 7:
               if |keys(A)| < k-1 then
 8.
                   A[i] = 1
 9:
               else
10.
                   for \ell \in keys(A) do
11:
                       A[\ell]- -
12:
                       if A[\ell] == 0 then
13:
                           remove \ell from A
14.
       On query a, if a \in keys(A), report \hat{f}_a = A[a], else report 0.
15.
```

Misra-Gries algorithm: cost analysis

• Only one pass.

Misra-Gries algorithm: cost analysis

- Only one pass.
- Each key requires $O(\log n)$ bits and each value $O(\log m)$ bits.
- There are at most k-1 key/value pairs, the total space is $O(k(\log m + \log n))$.
- The time per element is O(k).

Misra-Gries algorithm: cost analysis

- Only one pass.
- Each key requires $O(\log n)$ bits and each value $O(\log m)$ bits.
- There are at most k-1 key/value pairs, the total space is $O(k(\log m + \log n))$.
- The time per element is O(k).
- Quality of the solution?

• Let's see A as a vector with A[i] = 0 when $i \notin keys(A)$

- Let's see A as a vector with A[i] = 0 when $i \notin keys(A)$
- A[j] is incremented only when j appears in s, so $\hat{f}_j \leq f_j$.

- Let's see A as a vector with A[i] = 0 when $i \notin keys(A)$
- A[j] is incremented only when j appears in s, so $\hat{f}_j \leq f_j$.
- Whenever A[j] is decremented, we decrement the values of other k-1 keys.
 - The decrement is witnessed by k tokens including j, assuming that A[j] first goes to 1 and then down to 0.

- Let's see A as a vector with A[i] = 0 when $i \notin keys(A)$
- A[j] is incremented only when j appears in s, so $\hat{f}_j \leq f_j$.
- Whenever A[j] is decremented, we decrement the values of other k-1 keys.
 - The decrement is witnessed by k tokens including j, assuming that A[j] first goes to 1 and then down to 0.
- Since the stream has m tokens there can be at most m/k such decrements. Therefore, $\hat{f_i} \ge f_i m/k$.

- Let's see A as a vector with A[i] = 0 when $i \notin keys(A)$
- A[j] is incremented only when j appears in s, so $\hat{f}_j \leq f_j$.
- Whenever A[j] is decremented, we decrement the values of other k-1 keys.
 - The decrement is witnessed by k tokens including j, assuming that A[j] first goes to 1 and then down to 0.
- Since the stream has m tokens there can be at most m/k such decrements. Therefore, $\hat{f_i} \ge f_i m/k$.
- Putting all together

$$f_j - \frac{m}{k} \le \hat{f}_j \le f_j$$

• By the analysis, if one key j has $f_j > m/k$, $\hat{f}_j > 0$.

- By the analysis, if one key j has $f_j > m/k$, $\hat{f_j} > 0$.
- However, there might be elements for which $\hat{f}_j > 0$ but $f_j \leq m/k$.

- By the analysis, if one key j has $f_j > m/k$, $\hat{f}_j > 0$.
- However, there might be elements for which $\hat{f}_j > 0$ but $f_j \leq m/k$.
- Perform a second pass on the stream, counting exactly the frequencies of the values $i \in keys(A)$. And extracting only those verifying the property.

- By the analysis, if one key j has $f_j > m/k$, $\hat{f}_j > 0$.
- However, there might be elements for which $\hat{f}_j > 0$ but $f_j \leq m/k$.
- Perform a second pass on the stream, counting exactly the frequencies of the values $i \in keys(A)$. And extracting only those verifying the property.
- 2 pass algorithm, using $O(k(\log m + \log n))$ space, and O(k) time per element.

- Finding frequent items
- 2 Counting values

Counting the number of distinct elements

Counting the number of distinct elements

- Distinct elements problem: output $|\{j \mid f_j > 0\}|$.
- This is a simplification of the Frequent items problem:

Counting the number of distinct elements

- Distinct elements problem: output $|\{j \mid f_j > 0\}|$.
- This is a simplification of the Frequent items problem:
- In order to solve the problem using sublinear space we need to use probabilistic algorithms/data structure and some adequate notion of approximation.

$\overline{\mathsf{An}}\ (\epsilon,\delta)$ -approximation

An (ϵ, δ) -approximation

- Let A(s) denote the output of a randomized streaming algorithm A on input s; note that this is a random variable.
- Let $\Phi(s)$ be the function that \mathcal{A} is supposed to compute.

An (ϵ, δ) -approximation

- Let A(s) denote the output of a randomized streaming algorithm A on input s; note that this is a random variable.
- Let $\Phi(s)$ be the function that \mathcal{A} is supposed to compute.
- \mathcal{A} is a (ϵ, δ) -approximation to Φ if we have

$$Pr\left[\left|\frac{\mathcal{A}(s)}{\Phi(s)}-1\right|>\epsilon\right]\leq\delta.$$

An (ϵ, δ) -approximation

- Let A(s) denote the output of a randomized streaming algorithm A on input s; note that this is a random variable.
- Let $\Phi(s)$ be the function that \mathcal{A} is supposed to compute.
- \mathcal{A} is a (ϵ, δ) -approximation to Φ if we have

$$Pr\left[\left|\frac{\mathcal{A}(s)}{\Phi(s)}-1\right|>\epsilon\right]\leq\delta.$$

• \mathcal{A} is a (ϵ, δ) -additive approximation to Φ if we have

$$Pr[|\mathcal{A}(s) - \Phi(s)| > \epsilon] \leq \delta.$$

An (ϵ, δ) -approximation

- Let A(s) denote the output of a randomized streaming algorithm A on input s; note that this is a random variable.
- Let $\Phi(s)$ be the function that \mathcal{A} is supposed to compute.
- \mathcal{A} is a (ϵ, δ) -approximation to Φ if we have

$$Pr\left[\left|\frac{\mathcal{A}(s)}{\Phi(s)}-1\right|>\epsilon\right]\leq\delta.$$

• \mathcal{A} is a (ϵ, δ) -additive approximation to Φ if we have

$$Pr[|\mathcal{A}(s) - \Phi(s)| > \epsilon] \leq \delta.$$

• When $\delta = 0$, \mathcal{A} must be deterministic. When $\epsilon = 0$, \mathcal{A} must be an exact algorithm.

Randomized data structures

• We need hashing and in particular hash functions selected at random from a universal hash family.

Randomized data structures

- We need hashing and in particular hash functions selected at random from a universal hash family.
- Recall that a family of functions

$$H = \{h: U \to [m]\}$$

is called a 2-universal family if, $\forall x, y \in U, x \neq y$,

$$\Pr_{h\in H}[h(x)=h(y)]\leq \frac{1}{m}.$$

Randomized data structures

- We need hashing and in particular hash functions selected at random from a universal hash family.
- Recall that a family of functions

$$H = \{h: U \to [m]\}$$

is called a 2-universal family if, $\forall x, y \in U, x \neq y$,

$$\Pr_{h\in H}[h(x)=h(y)]\leq \frac{1}{m}.$$

• A hash function can be easily selected at random from a 2-universal hash family.

Values from the binary representation

Values from the binary representation

• For an integer p > 0, let zeros(p) be the number of zeros at the end of the binary representation of p.

Values from the binary representation

• For an integer p > 0, let zeros(p) be the number of zeros at the end of the binary representation of p.

$$zeros(p) = max\{i \mid 2^i \text{ divides } p\}.$$

Algorithm: Flajolet and Martin, 1983

```
1: procedure COUNT-DIF(stream s)
      Choose a random hash function h: [n] \rightarrow [n]
      from a universal family
3:
4.
      int z=0
5:
      while not s.end() do
          i = s.read()
6:
          if zeros(h(j)) > z then
7:
              z = zeros(h(i))
8:
      Return |2^{z+\frac{1}{2}}|
9:
```

Algorithm: Flajolet and Martin, 1983

```
1: procedure Count-Dif(stream s)
       Choose a random hash function h:[n] \rightarrow [n]
2.
      from a universal family
3:
      int z=0
4.
5:
      while not s.end() do
          i = s.read()
6.
          if zeros(h(j)) > z then
7:
              z = zeros(h(i))
8.
      Return |2^{z+\frac{1}{2}}|
9:
```

• Assuming that there are d distinct elements, the algorithm computes $\max \operatorname{zeros}(h(j))$ as a good approximation of $\log d$.

Algorithm: Flajolet and Martin, 1983

```
1: procedure Count-Dif(stream s)
       Choose a random hash function h:[n] \rightarrow [n]
2.
      from a universal family
3:
      int z=0
4.
5:
      while not s.end() do
          i = s.read()
6:
          if zeros(h(j)) > z then
7:
              z = zeros(h(i))
8:
      Return |2^{z+\frac{1}{2}}|
9:
```

- Assuming that there are d distinct elements, the algorithm computes max zeros(h(i)) as a good approximation of log d.
- 1 pass, $O(\log n)$ memory and O(1) time per item.

• For $j \in [n]$ and $r \ge 0$, let $X_{r,j}$ be the indicator r.v. for $zeros(h(j)) \ge r$.

- For $j \in [n]$ and $r \ge 0$, let $X_{r,j}$ be the indicator r.v. for $zeros(h(j)) \ge r$.
- Since h(j) is uniformly distributed over the log n-bit strings,

$$E[X_{r,j}] = Pr[zeros(h(j)) \ge r] = Pr[2^r \text{ divides } h(j)] = \frac{1}{2^r}$$

- For $j \in [n]$ and $r \ge 0$, let $X_{r,j}$ be the indicator r.v. for $zeros(h(j)) \ge r$.
- Since h(j) is uniformly distributed over the log n-bit strings,

$$E[X_{r,j}] = Pr[zeros(h(j)) \ge r] = Pr[2^r \text{ divides } h(j)] = \frac{1}{2^r}$$

• Let $Y_r = \sum_{j|f_i>0} X_{r,j}$ and let t denote the final value of z.

- For $j \in [n]$ and $r \ge 0$, let $X_{r,j}$ be the indicator r.v. for $zeros(h(j)) \ge r$.
- Since h(j) is uniformly distributed over the log n-bit strings,

$$E[X_{r,j}] = Pr[zeros(h(j)) \ge r] = Pr[2^r \text{ divides } h(j)] = \frac{1}{2^r}$$

- Let $Y_r = \sum_{i|f_i>0} X_{r,j}$ and let t denote the final value of z.
- $Y_r > 0$ iff $t \ge r$, or equivalently $Y_r = 0$ iff $t \le r 1$.

$$E[X_{r,j}] = Pr[\operatorname{zeros}(h(j)) \ge r] = Pr[2^r \text{ divides } h(j)] = \frac{1}{2^r}.$$

$$E[X_{r,j}] = Pr[zeros(h(j)) \ge r] = Pr[2^r \text{ divides } h(j)] = \frac{1}{2^r}.$$

$$E[Y_r] = \sum_{j|f_j>0} E[X_{r,j}] = \frac{d}{2^r}$$

$$E[X_{r,j}] = Pr[\operatorname{zeros}(h(j)) \ge r] = Pr[2^r \text{ divides } h(j)] = \frac{1}{2^r}.$$

$$E[Y_r] = \sum_{j|f_j>0} E[X_{r,j}] = \frac{d}{2^r}$$

• Random variables Y_r are pairwise independent, as they come from a universal hash family.

$$Var[Y_r] = \sum_{j|f_j>0} Var[X_{r,j}] \le \sum_{j|f_j>0} E[X_{r,j}^2] = \sum_{j|f_j>0} E[X_{r,j}] = \frac{d}{2^r}$$

- $E[Y_r] = Var[Y_r] = d/2^r$
- Using Markov's and Chebyshev's inequalities,

$$Pr[Y_r > 0] = Pr[Y_r \ge 1] \le \frac{E[Y_r]}{1} = \frac{d}{2^r}.$$

$$Pr[Y_r = 0] = Pr[|Y_r - E[Y_r]| \ge \frac{d}{2^r}] \le \frac{Var[Y_r]}{(d/2^r)^2} \le \frac{2^r}{d}.$$

• $Pr[Y_r > 0] \le \frac{d}{2^r}$ and $Pr[Y_r = 0] \le \frac{2^r}{d}$.

- $Pr[Y_r > 0] \le \frac{d}{2^r}$ and $Pr[Y_r = 0] \le \frac{2^r}{d}$.
- Let \hat{d} be the estimate of d, $\hat{d} = 2^{t + \frac{1}{2}}$.

- $Pr[Y_r > 0] \le \frac{d}{2^r}$ and $Pr[Y_r = 0] \le \frac{2^r}{d}$.
- Let \hat{d} be the estimate of d, $\hat{d} = 2^{t+\frac{1}{2}}$.
- Let a be the smallest integer so that $2^{a+\frac{1}{2}} \ge 3d$,

$$Pr[\hat{d} \ge 3d] = Pr[t \ge a] = Pr[Y_a = 0] \le \frac{d}{2^a} \le \frac{\sqrt{2}}{3}.$$

- $Pr[Y_r > 0] \le \frac{d}{2^r}$ and $Pr[Y_r = 0] \le \frac{2^r}{d}$.
- Let \hat{d} be the estimate of d, $\hat{d} = 2^{t + \frac{1}{2}}$.
- Let a be the smallest integer so that $2^{a+\frac{1}{2}} \ge 3d$,

$$Pr[\hat{d} \ge 3d] = Pr[t \ge a] = Pr[Y_a = 0] \le \frac{d}{2^a} \le \frac{\sqrt{2}}{3}.$$

• Let b be the largest integer so that $2^{b+\frac{1}{2}} \le 3d$,

$$Pr[\hat{d} \le 3d] = Pr[t \le b] = Pr[Y_{b+1} = 0] \le \frac{2^{b+1}}{d} \le \frac{\sqrt{2}}{3}.$$

- $Pr[\hat{d} \ge 3d] \le \frac{\sqrt{2}}{3}$ and $Pr[\hat{d} \le 3d] \le \frac{\sqrt{2}}{3}$.
- Thus the algorithm provides a $(2, \frac{\sqrt{2}}{3})$ -approximation.

- $Pr[\hat{d} \ge 3d] \le \frac{\sqrt{2}}{3}$ and $Pr[\hat{d} \le 3d] \le \frac{\sqrt{2}}{3}$.
- Thus the algorithm provides a $(2, \frac{\sqrt{2}}{3})$ -approximation.
- How to improve the quality of the approximation?

- $Pr[\hat{d} \ge 3d] \le \frac{\sqrt{2}}{3}$ and $Pr[\hat{d} \le 3d] \le \frac{\sqrt{2}}{3}$.
- Thus the algorithm provides a $(2, \frac{\sqrt{2}}{3})$ -approximation.
- How to improve the quality of the approximation?
- Usual technique: run *k* independent copies of the algorithm and take the best information from them, in this case,

- $Pr[\hat{d} \ge 3d] \le \frac{\sqrt{2}}{3}$ and $Pr[\hat{d} \le 3d] \le \frac{\sqrt{2}}{3}$.
- Thus the algorithm provides a $(2, \frac{\sqrt{2}}{3})$ -approximation.
- How to improve the quality of the approximation?
- Usual technique: run k independent copies of the algorithm and take the best information from them, in this case, the median of the k answers.

- $Pr[\hat{d} \ge 3d] \le \frac{\sqrt{2}}{3}$ and $Pr[\hat{d} \le 3d] \le \frac{\sqrt{2}}{3}$.
- Thus the algorithm provides a $(2, \frac{\sqrt{2}}{3})$ -approximation.
- How to improve the quality of the approximation?
- Usual technique: run k independent copies of the algorithm and take the best information from them, in this case, the median of the k answers.
 - If the median exceed 3d at least k/2 of the runs do.

- $Pr[\hat{d} \ge 3d] \le \frac{\sqrt{2}}{3}$ and $Pr[\hat{d} \le 3d] \le \frac{\sqrt{2}}{3}$.
- Thus the algorithm provides a $(2, \frac{\sqrt{2}}{3})$ -approximation.
- How to improve the quality of the approximation?
- Usual technique: run k independent copies of the algorithm and take the best information from them, in this case, the median of the k answers.
 - If the median exceed 3d at least k/2 of the runs do.
- By standard Chernoff bounds, the median exceed 3d with probability $2^{-\Omega(k)}$ and the median is below 3d with probability $2^{-\Omega(k)}$.

- $Pr[\hat{d} \ge 3d] \le \frac{\sqrt{2}}{3}$ and $Pr[\hat{d} \le 3d] \le \frac{\sqrt{2}}{3}$.
- Thus the algorithm provides a $(2, \frac{\sqrt{2}}{3})$ -approximation.
- How to improve the quality of the approximation?
- Usual technique: run k independent copies of the algorithm and take the best information from them, in this case, the median of the k answers.
 - If the median exceed 3d at least k/2 of the runs do.
- By standard Chernoff bounds, the median exceed 3d with probability $2^{-\Omega(k)}$ and the median is below 3d with probability $2^{-\Omega(k)}$.
- Choosing $k = \Theta(\log(1/\delta))$, we can make the sum to be at most δ . So we get a $(2, \delta)$ -approximation. However, the used memory is now $O(\log(1/\delta)\log n)$.