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Frequent items

@ We have a stream xy,...,Xmn, Where x; € ¥

@ This implicitly defines a frequency vector fi, ..., f,, where
n=|X| with i +---+1f,=m.
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Frequent items

@ We have a stream xy,...,Xmn, Where x; € ¥

@ This implicitly defines a frequency vector fi, ..., f,, where
n=|X| with i +---+1f,=m.

@ Frequent items problem:
Given k, output the set {j | f; > m/k}.
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Finding frequent items

Frequent items

@ We have a stream xy,...,Xmn, Where x; € ¥

@ This implicitly defines a frequency vector fi, ..., f,, where
n=|X| with i +---+1f,=m.

@ Frequent items problem:
Given k, output the set {j | f; > m/k}.

@ Frequency estimation problem:

Process the stream to get a data structure that can provide
an estimate f; of f;, for a given i € [n].
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Frequency estimation: Naive approach
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Finding frequent items

Frequency estimation: Naive approach

o Exact algorithm:
1. procedure FREQ(int n, stream s)

2: int j, F[n] =0

3: while not s.end() do
4: Jj = s.read()

5: FU]++
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Frequency estimation: Naive approach

o Exact algorithm:
1. procedure FREQ(int n, stream s)

2: int j, F[n] =0

3: while not s.end() do
4: Jj = s.read()

5: FU]++

e Computes the frequency vector.
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Finding frequent items

Frequency estimation: Naive approach

o Exact algorithm:
1. procedure FREQ(int n, stream s)

2: int j, F[n] =0

3: while not s.end() do
4: Jj = s.read()

5: FU]++

e Computes the frequency vector.

@ One pass, using O(nlog m) memory and O(1) time per item.
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Frequency Estimation: Misra-Gries algorithm
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Frequency Estimation: Misra-Gries algorithm

@ The algorithm has an additional parameter k.
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Frequency Estimation: Misra-Gries algorithm

@ The algorithm has an additional parameter k.

@ Uses an associative array with n potential keys.
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Finding frequent items

Frequency Estimation: Misra-Gries algorithm

@ The algorithm has an additional parameter k.
@ Uses an associative array with n potential keys.

@ The associative array can be implemented using a balanced
binary search tree.
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Frequency Estimation: Misra-Gries algorithm
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Frequency Estimation: Misra-Gries algorithm

1. procedure MISRA-GRIES(int n, stream s,int k)
2 int A empty associative array

3 while not s.end() do

4: Jj =s.read()

5: if j € keys(A) then

6 Alj]++

7 else

8 if |keys(A)| < k —1 then
9 Ajl=1

10: else

11: for ¢ € keys(A) do

12: Al{]- -

13: if A[{] == 0 then
14: remove ¢ from A

15: On query a, if a € keys(A), report f, = Ala], else report 0.
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Finding frequent items

Misra-Gries algorithm: cost analysis

@ Only one pass.
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Finding frequent items

Misra-Gries algorithm: cost analysis

Only one pass.

Each key requires O(log n) bits and each value O(log m) bits.

There are at most k — 1 key/value pairs, the total space is
O(k(log m + log n)).
The time per element is O(k).
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Finding frequent items

Misra-Gries algorithm: cost analysis

Only one pass.

Each key requires O(log n) bits and each value O(log m) bits.

There are at most k — 1 key/value pairs, the total space is
O(k(log m + log n)).
The time per element is O(k).

Quality of the solution?

AA-GEI:Approx, Param and Streams Data streams



Finding frequent items

Misra-Gries algorithm: quality analysis
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Misra-Gries algorithm: quality analysis

@ Let's see A as a vector with A[i] = 0 when i ¢ keys(A)
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Misra-Gries algorithm: quality analysis

@ Let's see A as a vector with A[i] = 0 when i ¢ keys(A)

o A[j] is incremented only when j appears in s, so f; < f;.
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Misra-Gries algorithm: quality analysis

@ Let's see A as a vector with A[i] = 0 when i ¢ keys(A)
o A[j] is incremented only when j appears in s, so f; < f;.

@ Whenever A[j] is decremented, we decrement the values of
other k — 1 keys.
The decrement is witnessed by k tokens including j, assuming
that A[j] first goes to 1 and then down to 0.
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Misra-Gries algorithm: quality analysis

@ Let's see A as a vector with A[i] = 0 when i ¢ keys(A)
o A[j] is incremented only when j appears in s, so f; < f;.

@ Whenever A[j] is decremented, we decrement the values of
other k — 1 keys.
The decrement is witnessed by k tokens including j, assuming
that A[j] first goes to 1 and then down to 0.

@ Since the stream has m tokens there can be at most m/k
such decrements. Therefore, f; > f; — m/k.
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Misra-Gries algorithm: quality analysis

@ Let's see A as a vector with A[i] = 0 when i ¢ keys(A)
o A[j] is incremented only when j appears in s, so f; < f;.

@ Whenever A[j] is decremented, we decrement the values of
other k — 1 keys.
The decrement is witnessed by k tokens including j, assuming
that A[j] first goes to 1 and then down to 0.

@ Since the stream has m tokens there can be at most m/k
such decrements. Therefore, f; > f; — m/k.

e Putting all together

~|3
IN
<hy
IN
<hH
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Frequent items using Misra-Gries algorithm
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Frequent items using Misra-Gries algorithm

e By the analysis, if one key j has f; > m/k, 6 > 0.
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Frequent items using Misra-Gries algorithm

e By the analysis, if one key j has f; > m/k, 6 > 0.

@ However, there might be elements for which f; > 0 but
fi <m/k.
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Finding frequent items

Frequent items using Misra-Gries algorithm

e By the analysis, if one key j has f; > m/k, 6 > 0.

@ However, there might be elements for which fA, > 0 but
fi <m/k.

@ Perform a second pass on the stream, counting exactly the
frequencies of the values i € keys(A). And extracting only
those verifying the property.
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Finding frequent items

Frequent items using Misra-Gries algorithm

e By the analysis, if one key j has f; > m/k, 6 > 0.

@ However, there might be elements for which f; > 0 but
fi <m/k.

@ Perform a second pass on the stream, counting exactly the
frequencies of the values i € keys(A). And extracting only
those verifying the property.

@ 2 pass algorithm, using O(k(log m + log n)) space, and O(k)
time per element.
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Counting the number of distinct elements
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Counting values

Counting the number of distinct elements

e Distinct elements problem: output |{j | f; > 0}|.

@ This is a simplification of the Frequent items problem:
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Counting values

Counting the number of distinct elements

e Distinct elements problem: output |{j | f; > 0}|.
@ This is a simplification of the Frequent items problem:

@ In order to solve the problem using sublinear space we need to
use probabilistic algorithms/data structure and some adequate
notion of approximation.
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An (€, d)-approximation
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Counting values

An (€, d)-approximation

@ Let A(s) denote the output of a randomized streaming
algorithm A on input s; note that this is a random variable.

@ Let ®(s) be the function that A is supposed to compute.
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An (€, d)-approximation

@ Let A(s) denote the output of a randomized streaming
algorithm A on input s; note that this is a random variable.

@ Let ®(s) be the function that A is supposed to compute.

e Ais a (e 0)-approximation to @ if we have

o]
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Counting values

An (€, d)-approximation

@ Let A(s) denote the output of a randomized streaming
algorithm A on input s; note that this is a random variable.

@ Let ®(s) be the function that A is supposed to compute.

e Ais a (e 0)-approximation to @ if we have

o]

e Ais a (e, 0)-additive approximation to ¢ if we have

Pr[|A(s) — &(s)| > ¢] < 6.
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Counting values

An (€, d)-approximation

@ Let A(s) denote the output of a randomized streaming
algorithm A on input s; note that this is a random variable.

@ Let ®(s) be the function that A is supposed to compute.

e Ais a (e 0)-approximation to @ if we have

o]

e Ais a (e, 0)-additive approximation to ¢ if we have
Pr[|A(s) — ®(s)| > €] < 6.

@ When § = 0, A must be deterministic.
When € = 0, A must be an exact algorithm.
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Counting values

Randomized data structures

@ We need hashing and in particular hash functions selected at
random from a universal hash family.
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Counting values

Randomized data structures

@ We need hashing and in particular hash functions selected at
random from a universal hash family.

@ Recall that a family of functions
H={h:U—[m]}

is called a 2-universal family if, Vx,y € U, x # y,

1
Prlh(x) = A < .
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Counting values

Randomized data structures

@ We need hashing and in particular hash functions selected at
random from a universal hash family.

@ Recall that a family of functions
H={h:U—[m]}

is called a 2-universal family if, Vx,y € U, x # y,
Pr [h(x) = h(y)] <

1
heH m’

@ A hash function can be easily selected at random from a
2-universal hash family.
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Values from the binary representation
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Counting values

Values from the binary representation

e For an integer p > 0, let zeros(p) be the number of zeros at
the end of the binary representation of p.
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Counting values

Values from the binary representation

e For an integer p > 0, let zeros(p) be the number of zeros at
the end of the binary representation of p.

zeros(p) = max{i | 2' divides p}.
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Counting distinct elements
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Counting values

Counting distinct elements

Algorithm: Flajolet and Martin, 1983
1. procedure COUNT-DIF(stream s)

2 Choose a random hash function h: [n] — [n]
3 from a universal family

4: intz=0

5: while not s.end() do

6 Jj = s.read()

7 if zeros(h(j)) > z then

8 z = zeros(h(j))

9 Return 2773 |
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Counting values

Counting distinct elements

Algorithm: Flajolet and Martin, 1983
1. procedure COUNT-DIF(stream s)

2: Choose a random hash function h: [n] — [n]
3 from a universal family

4: intz=0

5: while not s.end() do

6 Jj = s.read()

7 if zeros(h(j)) > z then

8 z = zeros(h(j))

9 Return 2773 |

@ Assuming that there are d distinct elements, the algorithm
computes max zeros(h(j)) as a good approximation of log d.
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Counting values

Counting distinct elements

Algorithm: Flajolet and Martin, 1983
1. procedure COUNT-DIF(stream s)

2: Choose a random hash function h: [n] — [n]
3 from a universal family

4: intz=0

5: while not s.end() do

6 Jj = s.read()

7 if zeros(h(j)) > z then

8 z = zeros(h(j))

9 Return 2773 |

@ Assuming that there are d distinct elements, the algorithm
computes max zeros(h(j)) as a good approximation of log d.

@ 1 pass, O(logn) memory and O(1) time per item.
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Counting values

Counting the number of distinct elements: Quality
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Counting values

Counting the number of distinct elements: Quality

@ For j € [n] and r >0, let X, ; be the indicator r.v. for
zeros(h(j)) > r.
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Counting values

Counting the number of distinct elements: Quality

@ For j € [n] and r >0, let X, ; be the indicator r.v. for
zeros(h(j)) > r.

e Since h(j) is uniformly distributed over the log n-bit strings,

E[X,j] = Prlzeros(h(j)) > r] = Pr[2" divides h(j)] = 2l
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Counting values

Counting the number of distinct elements: Quality

@ For j € [n] and r >0, let X, ; be the indicator r.v. for
zeros(h(j)) > r.

e Since h(j) is uniformly distributed over the log n-bit strings,

E[X,j] = Prlzeros(h(j)) > r] = Pr[2" divides h(j)] = 2l

o Let Y, = ij>0 X, j and let t denote the final value of z.

AA-GEI:Approx, Param and Streams Data streams



Counting values

Counting the number of distinct elements: Quality

@ For j € [n] and r >0, let X, ; be the indicator r.v. for
zeros(h(j)) > r.

e Since h(j) is uniformly distributed over the log n-bit strings,

E[X,j] = Prlzeros(h(j)) > r] = Pr[2" divides h(j)] = 2l

o Let Y, = ij>0 Xy j and let t denote the final value of z.
o Y, >0iff t > r, or equivalently Y, =0 iff t < r — 1.
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Counting values

Counting the number of distinct elements: Quality

E[X, ] = Pr[zeros(h(j)) > r] = Pr[2" divides h(j)] = %
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Counting values

Counting the number of distinct elements: Quality

E[X, ] = Pr[zeros(h(j)) > r] = Pr[2" divides h(j)] = %

d
E[Y,]= > EXjl=5;
jl>0
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Counting values

Counting the number of distinct elements: Quality

E[X, ] = Pr[zeros(h(j)) > r] = Pr[2" divides h(j)] = %

d
E[Y,]= > EXjl=5;
jl>0

@ Random variables Y, are pairwise independent, as they come
from a universal hash family.

Varly ] = 3 Va1 < 3 EZ) = Y Elx = o

jlf>0 jlf>0 jlf>0
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Counting values

Counting the number of distinct elements: Quality

o E[Y,] = VarY,] = d/2r

@ Using Markov's and Chebyshev's inequalities,

PriY, > 0] = PrY, > 1] < E[Y] 2dr~
Pr[Y,zO] = Pr[|Yr_E[YI’]| > %] = (Vda;gz/)l — d
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Counting values

Counting the number of distinct elements: Quality

o PrlY, >0] < & and Pr[Y, =0] < 2.
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Counting values

Counting the number of distinct elements: Quality

o PrlY, >0] < & and Pr[Y, =0] < 2.

o Let d be the estimate of d, d = ot+3
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Counting values

Counting the number of distinct elements: Quality

o PrlY, >0] < & and Pr[Y, =0] < 2.
o Let d be the estimate of d, d = ot+3
@ Let a be the smallest integer so that 2"’+% > 3d,

w.\s

A d
Pr[d > 3d] = Pr[t > a] = Pr[Y,=0] < 2—
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Counting values

Counting the number of distinct elements: Quality

o PrlY, >0] < & and Pr[Y, =0] < 2.
o Let d be the estimate of d, d = ot+3
@ Let a be the smallest integer so that 2"’+% > 3d,

, d 2
Prld = 3d) = Prlt > a] = PrY, = 0] < < {

@ Let b be the largest integer so that ob+3 < 3d,

n ob+1 2
Pr[d§3d]:Pr[t§b] Pr[Yb+1_0]<d<\3[
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Counting the number of distinct elements: Quality

o Pr[d >3d] < ? and Pr[d < 3d] < @

V2

@ Thus the algorithm provides a (2, %3*)-approximation.
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Counting values

Counting the number of distinct elements: Quality

o Pr[d >3d] < ? and Pr[d < 3d] < @

V2

@ Thus the algorithm provides a (2, %3*)-approximation.

@ How to improve the quality of the approximation?
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Counting values

Counting the number of distinct elements: Quality

Prld > 3d] < 2 and Pr[d < 3d] < ¥2.

Thus the algorithm provides a (2, ?)—approximation.

How to improve the quality of the approximation?

Usual technique: run k independent copies of the algorithm
and take the best information from them, in this case,
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Counting values

Counting the number of distinct elements: Quality

Prld > 3d] < 2 and Pr[d < 3d] < ¥2.

Thus the algorithm provides a (2, ?)—approximation.

How to improve the quality of the approximation?

Usual technique: run k independent copies of the algorithm
and take the best information from them, in this case, the
median of the k answers.
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Counting values

Counting the number of distinct elements: Quality

o Pr[d >3d] < ? and Pr[d < 3d] < @

V2

@ Thus the algorithm provides a (2, %3*)-approximation.

@ How to improve the quality of the approximation?

@ Usual technique: run k independent copies of the algorithm
and take the best information from them, in this case, the
median of the k answers.

If the median exceed 3d at least k/2 of the runs do.
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Counting values

Counting the number of distinct elements: Quality

o Pr[d >3d] < ? and Pr[d < 3d] < @

@ Thus the algorithm provides a (2, ?)—approximation.

@ How to improve the quality of the approximation?
@ Usual technique: run k independent copies of the algorithm
and take the best information from them, in this case, the

median of the k answers.
If the median exceed 3d at least k/2 of the runs do.

@ By standard Chernoff bounds, the median exceed 3d with

probability 272(K) and the median is below 3d with probability
2 k),
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Counting values

Counting the number of distinct elements: Quality

o Pr[d >3d] < ? and Pr[d < 3d] < @

V2

@ Thus the algorithm provides a (2, %3*)-approximation.

@ How to improve the quality of the approximation?

@ Usual technique: run k independent copies of the algorithm
and take the best information from them, in this case, the
median of the k answers.

If the median exceed 3d at least k/2 of the runs do.

@ By standard Chernoff bounds, the median exceed 3d with
probability 272(K) and the median is below 3d with probability
2~ 5k),

@ Choosing k = O(log(1/¢)), we can make the sum to be at
most §. So we get a (2, d)-approximation. However, the used
memory is now O(log(1/9) log n).
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