
Finding frequent items
Counting values

Algorithms for data streams

Maria Serna

Spring 2025

AA-GEI:Approx, Param and Streams Data streams

Finding frequent items
Counting values

1 Finding frequent items

2 Counting values

AA-GEI:Approx, Param and Streams Data streams

Finding frequent items
Counting values

Frequent items

We have a stream x1, . . . , xm, where xi ∈ Σ.

This implicitly defines a frequency vector f1, . . . , fn, where
n = |Σ| with f1 + · · ·+ fn = m.

Frequent items problem:
Given k , output the set {j | fj > m/k}.
Frequency estimation problem:
Process the stream to get a data structure that can provide
an estimate f̂i of fi , for a given i ∈ [n].

AA-GEI:Approx, Param and Streams Data streams

Finding frequent items
Counting values

Frequency estimation: Naive approach

Exact algorithm:

1: procedure Freq(int n, stream s)
2: int j , F [n] = 0
3: while not s.end() do
4: j = s.read()
5: F [j]++

Computes the frequency vector.

One pass, using O(n logm) memory and O(1) time per item.

AA-GEI:Approx, Param and Streams Data streams

Finding frequent items
Counting values

Frequency Estimation: Misra-Gries algorithm

The algorithm has an additional parameter k.

Uses an associative array with n potential keys.

The associative array can be implemented using a balanced
binary search tree.

AA-GEI:Approx, Param and Streams Data streams

Finding frequent items
Counting values

Frequency Estimation: Misra-Gries algorithm

1: procedure Misra-Gries(int n, stream s,int k)
2: int A empty associative array
3: while not s.end() do
4: j = s.read()
5: if j ∈ keys(A) then
6: A[j]++
7: else
8: if |keys(A)| < k − 1 then
9: A[j] = 1

10: else
11: for ℓ ∈ keys(A) do
12: A[ℓ]- -
13: if A[ℓ] == 0 then
14: remove ℓ from A
15: On query a, if a ∈ keys(A), report f̂a = A[a], else report 0.

AA-GEI:Approx, Param and Streams Data streams

Finding frequent items
Counting values

Misra-Gries algorithm: cost analysis

Only one pass.

Each key requires O(log n) bits and each value O(logm) bits.

There are at most k − 1 key/value pairs, the total space is
O(k(logm + log n)).

The time per element is O(k).

Quality of the solution?

AA-GEI:Approx, Param and Streams Data streams

Finding frequent items
Counting values

Misra-Gries algorithm: quality analysis

Let’s see A as a vector with A[i] = 0 when i /∈ keys(A)

A[j] is incremented only when j appears in s, so f̂j ≤ fj .

Whenever A[j] is decremented, we decrement the values of
other k − 1 keys.
The decrement is witnessed by k tokens including j , assuming
that A[j] first goes to 1 and then down to 0.

Since the stream has m tokens there can be at most m/k
such decrements. Therefore, f̂j ≥ fj −m/k.

Putting all together

fj −
m

k
≤ f̂j ≤ fj

AA-GEI:Approx, Param and Streams Data streams

Finding frequent items
Counting values

Frequent items using Misra-Gries algorithm

By the analysis, if one key j has fj > m/k , f̂j > 0.

However, there might be elements for which f̂j > 0 but
fj ≤ m/k .

Perform a second pass on the stream, counting exactly the
frequencies of the values i ∈ keys(A). And extracting only
those verifying the property.

2 pass algorithm, using O(k(logm + log n)) space, and O(k)
time per element.

AA-GEI:Approx, Param and Streams Data streams

Finding frequent items
Counting values

1 Finding frequent items

2 Counting values

AA-GEI:Approx, Param and Streams Data streams

Finding frequent items
Counting values

Counting the number of distinct elements

Distinct elements problem: output |{j | fj > 0}|.
This is a simplification of the Frequent items problem:

In order to solve the problem using sublinear space we need to
use probabilistic algorithms/data structure and some adequate
notion of approximation.

AA-GEI:Approx, Param and Streams Data streams

Finding frequent items
Counting values

An (ϵ, δ)-approximation

Let A(s) denote the output of a randomized streaming
algorithm A on input s; note that this is a random variable.

Let Φ(s) be the function that A is supposed to compute.

A is a (ϵ, δ)-approximation to Φ if we have

Pr

[∣∣∣∣A(s)

Φ(s)
− 1

∣∣∣∣ > ϵ

]
≤ δ.

A is a (ϵ, δ)-additive approximation to Φ if we have

Pr [|A(s)− Φ(s)| > ϵ] ≤ δ.

When δ = 0, A must be deterministic.
When ϵ = 0, A must be an exact algorithm.

AA-GEI:Approx, Param and Streams Data streams

Finding frequent items
Counting values

Randomized data structures

We need hashing and in particular hash functions selected at
random from a universal hash family.

Recall that a family of functions

H = {h : U → [m]}

is called a 2-universal family if, ∀x , y ∈ U, x ̸= y ,

Pr
h∈H

[h(x) = h(y)] ≤ 1

m
.

A hash function can be easily selected at random from a
2-universal hash family.

AA-GEI:Approx, Param and Streams Data streams

Finding frequent items
Counting values

Values from the binary representation

For an integer p > 0, let zeros(p) be the number of zeros at
the end of the binary representation of p.

zeros(p) = max{i | 2i divides p}.

AA-GEI:Approx, Param and Streams Data streams

Finding frequent items
Counting values

Counting distinct elements

Algorithm: Flajolet and Martin, 1983
1: procedure Count-Dif(stream s)
2: Choose a random hash function h : [n] → [n]
3: from a universal family
4: int z = 0
5: while not s.end() do
6: j = s.read()
7: if zeros(h(j)) > z then
8: z = zeros(h(j))

9: Return ⌊2z+
1
2 ⌋

Assuming that there are d distinct elements, the algorithm
computes max zeros(h(j)) as a good approximation of log d .

1 pass, O(log n) memory and O(1) time per item.

AA-GEI:Approx, Param and Streams Data streams

Finding frequent items
Counting values

Counting the number of distinct elements: Quality

For j ∈ [n] and r ≥ 0, let Xr ,j be the indicator r.v. for
zeros(h(j)) ≥ r .

Since h(j) is uniformly distributed over the log n-bit strings,

E [Xr ,j] = Pr [zeros(h(j)) ≥ r] = Pr [2r divides h(j)] =
1

2r

Let Yr =
∑

j |fj>0 Xr ,j and let t denote the final value of z .

Yr > 0 iff t ≥ r , or equivalently Yr = 0 iff t ≤ r − 1.

AA-GEI:Approx, Param and Streams Data streams

Finding frequent items
Counting values

Counting the number of distinct elements: Quality

E [Xr ,j] = Pr [zeros(h(j)) ≥ r] = Pr [2r divides h(j)] =
1

2r
.

E [Yr] =
∑
j |fj>0

E [Xr ,j] =
d

2r

Random variables Yr are pairwise independent, as they come
from a universal hash family.

Var [Yr] =
∑
j |fj>0

Var [Xr ,j] ≤
∑
j |fj>0

E [X 2
r ,j] =

∑
j |fj>0

E [Xr ,j] =
d

2r

AA-GEI:Approx, Param and Streams Data streams

Finding frequent items
Counting values

Counting the number of distinct elements: Quality

E [Yr] = Var [Yr] = d/2r

Using Markov’s and Chebyshev’s inequalities,

Pr [Yr > 0] = Pr [Yr ≥ 1] ≤ E [Yr]

1
=

d

2r
.

Pr [Yr = 0] = Pr [|Yr − E [Yr]| ≥
d

2r
] ≤ Var [Yr]

(d/2r)2
≤ 2r

d
.

AA-GEI:Approx, Param and Streams Data streams

Finding frequent items
Counting values

Counting the number of distinct elements: Quality

Pr [Yr > 0] ≤ d
2r and Pr [Yr = 0] ≤ 2r

d .

Let d̂ be the estimate of d , d̂ = 2t+
1
2 .

Let a be the smallest integer so that 2a+
1
2 ≥ 3d ,

Pr [d̂ ≥ 3d] = Pr [t ≥ a] = Pr [Ya = 0] ≤ d

2a
≤

√
2

3
.

Let b be the largest integer so that 2b+
1
2 ≤ 3d ,

Pr [d̂ ≤ 3d] = Pr [t ≤ b] = Pr [Yb+1 = 0] ≤ 2b+1

d
≤

√
2

3
.

AA-GEI:Approx, Param and Streams Data streams

Finding frequent items
Counting values

Counting the number of distinct elements: Quality

Pr [d̂ ≥ 3d] ≤
√
2
3 and Pr [d̂ ≤ 3d] ≤

√
2
3 .

Thus the algorithm provides a (2,
√
2
3)-approximation.

How to improve the quality of the approximation?

Usual technique: run k independent copies of the algorithm
and take the best information from them, in this case, the
median of the k answers.
If the median exceed 3d at least k/2 of the runs do.

By standard Chernoff bounds, the median exceed 3d with
probability 2−Ω(k) and the median is below 3d with probability
2−Ω(k).

Choosing k = Θ(log(1/δ)), we can make the sum to be at
most δ. So we get a (2, δ)-approximation. However, the used
memory is now O(log(1/δ) log n).

AA-GEI:Approx, Param and Streams Data streams

	Finding frequent items
	Counting values

