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The data

Data arrives as sequence of items.

Sometimes continuously and at high speed.

Can’t store them all in main memory.

Can’t read again; or reading again has a cost.

We abstract the data to a particular feature, the data field of
interest the label.
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The data

We have a set of n labels Σ and our input is a stream
s = x1, x2, x3, . . . xm, where each xi ∈ Σ.

Take into account that some times we do not know in
advance the length of the stream.

Goal Compute a function of stream, e.g., median, number of
distinct elements, longest increasing sequence.
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Why has it become popular?

Practical appeal:

Faster networks, cheaper data storage, ubiquitous data-logging
results in massive amount of data to be processed.
Applications to network monitoring, query planning, I/O
efficiency for massive data, sensor networks aggregation, . . .

Theoretical Appeal:

Easy to state problems but hard to solve.
Links to communication complexity, compressed sensing,
embeddings, pseudo-random generators, approximation,
parallel computation, . . .

Origins in 70’s but has become popular in this century
because of growing theory and very applicable.
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The computational data stream models

Classical streaming model

The data stream is accessed sequentially.
The processing is done sequentially using a small working
memory O(polylog n).
Measures of complexity: number of passes over the data, the
size of the working memory, the per-item processing time.

Semi-streaming model

Usual for graph problems.
Working memory is O(n polylog n), for a graph with n vertices.
Enough space to store vertices but not for storing all the edges.

Streaming with sorting

Allows the creation of intermediate streams.
Streams can be sorted at no cost.
Algorithms run in phases reading and creating a stream
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Algorithmic goals

Data streams are potentially of unbounded size.

As the amount of computation and memory is limited it might
be impossible to provide exact answers.

Algorithms use randomization and seek for an approximate
answer.

Typical approach:

Build up a synopsis data structure
It should be enough to compute answers with a high
confidence level.
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Streams that describe graphs

G undirected

on [n] vertices

the stream describes the edges of G

we assume that an edge appears only once in the stream

We want to keep a DS allowing to answer queries about a
graph property

O(n log n) memory is reasonable as we are working on the
semi-streaming model.
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Connectedness

Problem: Decide whether or not the input graph G , given by
a stream, is connected.

Algorithm:

Maintain a spanning forest H of the seen graph
On query answer according to H

G connected iff admits a spanning tree, the algorithm is
correct

1 pass, O(n log n) memory, using a union find DS amortized
O(α(n)) per item
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Estimating shortest paths

Problem: Estimate the distance in G , given by a stream,
between two given vertices.

The algorithm builds an intermediate graph H to support
queries and uses a parameter t.

Algorithm:

1: procedure EDistances(int n, stream s, double t)
2: H = ([n], ∅)
3: while not s.end() do
4: (u, v) = s.read()
5: if dH(u, v) ≥ t + 1 then
6: add (u, v) to H
7: update distances

8: On query (u, v), report dH(u, v)
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Estimating shortest paths: Analysis

1 pass, O(|H| log n) space, O(n) per edge added to H.

|H|?
Quality?
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Estimating shortest paths: Analysis

A subgraph H is a t-spanner for G iff, for all u, v ∈ V
(V = V (G ) = V (H)),

dG (u, v) ≤ dH(u, v) ≤ t dG (u, v)

Let H be the graph computed by EDistances on (G , t).
H is a t-spanner.

H is a subgraph of G , so dG (u, v) ≤ dH(u, v), for u, v ∈ V .
When dG (u, v) = ∞ it also holds dH(u, v) = ∞
Let x = v0, v1, . . . , vk = y be a shortest path from x to y in G .
Pick i ∈ [k] and let e = (vi−1, vi ).
If e ∈ H, dH(vi−1, vi )) = 1, otherwise, as e was not added to
H, we known that in the current H ′ when e was read
dH′(vi−1, vi ) ≤ t.
So, dH(x , y) ≤ t dG (x , y) as any such H ′ is a subgraph of H.

Then, EDistances is a t-approximation
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When dG (u, v) = ∞ it also holds dH(u, v) = ∞
Let x = v0, v1, . . . , vk = y be a shortest path from x to y in G .
Pick i ∈ [k] and let e = (vi−1, vi ).
If e ∈ H, dH(vi−1, vi )) = 1, otherwise, as e was not added to
H, we known that in the current H ′ when e was read
dH′(vi−1, vi ) ≤ t.
So, dH(x , y) ≤ t dG (x , y) as any such H ′ is a subgraph of H.

Then, EDistances is a t-approximation
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Estimating shortest paths: Analysis

The girth γ(G ) is the length of the shortest cycle in G , ∞ for
acyclic G .

Alon, Hoory, Linial 2002

Let n be sufficiently large. Let G be a graph with n vertices and m
edges having γ(G ) ≥ k , for some integer k . Then

m ≤ n + n1+⌊ k−1
2

⌋
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Estimating shortest paths: Analysis

When γ(G ) ≥ k, m = O(n1+2/(k−2)).

By construction the shortest cycle in the subgraph H
constructed by EDistances has length t + 2.

Therefore, the memory used is O(n1+2/t log n).

We can 3-approximate distances using O(n5/3 log n) memory.
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Maximum matching

Problem: Find a maximum matching in G , given by a stream.

The algorithm maintains a matching M.

Algorithm:

1: procedure MMatching(int n, stream s, double t)
2: M = ∅
3: while not s.end() do
4: (u, v) = s.read()
5: if M ∪ (u, v) is a matching then
6: M = M ∪ {(u, v)}
7: On query, report M
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Maximum matching: Analysis

1 pass, O(n log n) space, O(1) ops. per item

M is a maximal matching that provides an estimation f̂ of the
size f of a maximum matching.

f̂ is a 2 approximation to f .
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Sampling

Sampling is a general technique for tackling massive amounts
of data.

Example: To compute the median packet size of some IP
packets, we could just sample some and use the median of the
sample as an estimate for the true median. Statistical
arguments relate the size of the sample to the accuracy of the
estimate.

Challenge: But how do you take a sample from a stream of
unknown length or from a sliding window?
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Reservoir Sampling (Vitter 1985)

Problem: Maintain a uniform sample x from a stream s of
unknown length.
The selected item should be any of the seen ones with
uniform probability.

Algorithm:

Initially x = x1
On seeing the t-th element, x = xt with probability 1/t

Analysis:

1 pass, O(log n) memory (in bits), and O(1) time (in
operations) per item.
Quality?
What is the probability that x = xi at some time t ≥ i?

AA-GEI:Approx, Param and Streams Data streams



Data stream models
Graph streams

Sampling
Sliding window

Reservoir sampling
Size k sample

Reservoir Sampling (Vitter 1985)

Problem: Maintain a uniform sample x from a stream s of
unknown length.

The selected item should be any of the seen ones with
uniform probability.

Algorithm:

Initially x = x1
On seeing the t-th element, x = xt with probability 1/t

Analysis:

1 pass, O(log n) memory (in bits), and O(1) time (in
operations) per item.
Quality?
What is the probability that x = xi at some time t ≥ i?

AA-GEI:Approx, Param and Streams Data streams



Data stream models
Graph streams

Sampling
Sliding window

Reservoir sampling
Size k sample

Reservoir Sampling (Vitter 1985)

Problem: Maintain a uniform sample x from a stream s of
unknown length.
The selected item should be any of the seen ones with
uniform probability.

Algorithm:

Initially x = x1
On seeing the t-th element, x = xt with probability 1/t

Analysis:

1 pass, O(log n) memory (in bits), and O(1) time (in
operations) per item.
Quality?
What is the probability that x = xi at some time t ≥ i?

AA-GEI:Approx, Param and Streams Data streams



Data stream models
Graph streams

Sampling
Sliding window

Reservoir sampling
Size k sample

Reservoir Sampling (Vitter 1985)

Problem: Maintain a uniform sample x from a stream s of
unknown length.
The selected item should be any of the seen ones with
uniform probability.

Algorithm:

Initially x = x1
On seeing the t-th element, x = xt with probability 1/t

Analysis:

1 pass, O(log n) memory (in bits), and O(1) time (in
operations) per item.
Quality?
What is the probability that x = xi at some time t ≥ i?

AA-GEI:Approx, Param and Streams Data streams



Data stream models
Graph streams

Sampling
Sliding window

Reservoir sampling
Size k sample

Reservoir Sampling (Vitter 1985)

Problem: Maintain a uniform sample x from a stream s of
unknown length.
The selected item should be any of the seen ones with
uniform probability.

Algorithm:

Initially x = x1
On seeing the t-th element, x = xt with probability 1/t

Analysis:

1 pass, O(log n) memory (in bits), and O(1) time (in
operations) per item.
Quality?
What is the probability that x = xi at some time t ≥ i?

AA-GEI:Approx, Param and Streams Data streams



Data stream models
Graph streams

Sampling
Sliding window

Reservoir sampling
Size k sample

Reservoir Sampling (Vitter 1985)

Problem: Maintain a uniform sample x from a stream s of
unknown length.
The selected item should be any of the seen ones with
uniform probability.

Algorithm:

Initially x = x1
On seeing the t-th element, x = xt with probability 1/t

Analysis:

1 pass, O(log n) memory (in bits), and O(1) time (in
operations) per item.
Quality?
What is the probability that x = xi at some time t ≥ i?

AA-GEI:Approx, Param and Streams Data streams



Data stream models
Graph streams

Sampling
Sliding window

Reservoir sampling
Size k sample

Reservoir Sampling (Vitter 1985)

Problem: Maintain a uniform sample x from a stream s of
unknown length.
The selected item should be any of the seen ones with
uniform probability.

Algorithm:

Initially x = x1
On seeing the t-th element, x = xt with probability 1/t

Analysis:

1 pass, O(log n) memory (in bits), and O(1) time (in
operations) per item.

Quality?
What is the probability that x = xi at some time t ≥ i?

AA-GEI:Approx, Param and Streams Data streams



Data stream models
Graph streams

Sampling
Sliding window

Reservoir sampling
Size k sample

Reservoir Sampling (Vitter 1985)

Problem: Maintain a uniform sample x from a stream s of
unknown length.
The selected item should be any of the seen ones with
uniform probability.

Algorithm:

Initially x = x1
On seeing the t-th element, x = xt with probability 1/t

Analysis:

1 pass, O(log n) memory (in bits), and O(1) time (in
operations) per item.
Quality?
What is the probability that x = xi at some time t ≥ i?

AA-GEI:Approx, Param and Streams Data streams



Data stream models
Graph streams

Sampling
Sliding window

Reservoir sampling
Size k sample

Reservoir Sampling: Quality

At any time step t, for i ≤ t, Pr [x = xi ] = 1/t

The proof is by induction on t.

Base t = 1: Pr [x = x1] = 1.
Induction hypothesis: true for time steps up to t − 1

Pr [x = xt ] = 1/t
For i < t, x = xi only when xt is not selected and xi was the
sampled element at step t − 1. By induction hypothesis we
have

Pr [x = xt ] =

(
1− 1

t

)
1

t − 1
=

1

t
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Reservoir Sampling II

Problem: Maintain a uniform sample X of size k from a
stream of unknown length.

Algorithm:

Initially X = {x1, . . . , xk}.
On seeing the t-th element, t > k, select xt to be added to X
with probability k/t.
If xt is selected to be added, select uniformly at random an
element from X remove it and add xt .

Analysis:

1 pass, O(k log n) memory, and O(1) time per item.
Quality?
What is the probability that xi ∈ X at some time t ≥ i?
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Reservoir Sampling II: Quality

At any time step t, for i ≤ t, Pr [xi ∈ X ] = k/t

The proof is by induction on t.

Base t = k: Pr [xi ∈ X ] = 1, for i = 1, . . . , k .
Induction hypothesis: true for time steps up to t − 1

Pr [xt ∈ X ] = k/t
For i < t, xi ∈ X when xt is not selected and xi was in the
sample at step t − 1, or when xt is selected, xi was in the
sample at step t − 1 and xi is not evicted.

Pr [xi ∈ X ] =

(
1− k

t

)
k

t − 1
+

k

t

k

t − 1

(
1− 1

k

)
=

k

t − 1
− k

t

k

t − 1

1

k
=

k

t − 1
− 1

t

k

t − 1
=

k

t

AA-GEI:Approx, Param and Streams Data streams



Data stream models
Graph streams

Sampling
Sliding window

Reservoir sampling
Size k sample

Reservoir Sampling II: Quality

At any time step t, for i ≤ t, Pr [xi ∈ X ] = k/t

The proof is by induction on t.

Base t = k: Pr [xi ∈ X ] = 1, for i = 1, . . . , k .
Induction hypothesis: true for time steps up to t − 1

Pr [xt ∈ X ] = k/t
For i < t, xi ∈ X when xt is not selected and xi was in the
sample at step t − 1, or when xt is selected, xi was in the
sample at step t − 1 and xi is not evicted.

Pr [xi ∈ X ] =

(
1− k

t

)
k

t − 1
+

k

t

k

t − 1

(
1− 1

k

)
=

k

t − 1
− k

t

k

t − 1

1

k
=

k

t − 1
− 1

t

k

t − 1
=

k

t

AA-GEI:Approx, Param and Streams Data streams



Data stream models
Graph streams

Sampling
Sliding window

Reservoir sampling
Size k sample

Reservoir Sampling II: Quality

At any time step t, for i ≤ t, Pr [xi ∈ X ] = k/t

The proof is by induction on t.

Base t = k: Pr [xi ∈ X ] = 1, for i = 1, . . . , k .
Induction hypothesis: true for time steps up to t − 1

Pr [xt ∈ X ] = k/t
For i < t, xi ∈ X when xt is not selected and xi was in the
sample at step t − 1, or when xt is selected, xi was in the
sample at step t − 1 and xi is not evicted.

Pr [xi ∈ X ] =

(
1− k

t

)
k

t − 1
+

k

t

k

t − 1

(
1− 1

k

)
=

k

t − 1
− k

t

k

t − 1

1

k
=

k

t − 1
− 1

t

k

t − 1
=

k

t

AA-GEI:Approx, Param and Streams Data streams



Data stream models
Graph streams

Sampling
Sliding window

Reservoir sampling
Backing-Sample algorithm
Chain-Sampling

1 Data stream models

2 Graph streams

3 Sampling

4 Sliding window

AA-GEI:Approx, Param and Streams Data streams



Data stream models
Graph streams

Sampling
Sliding window

Reservoir sampling
Backing-Sample algorithm
Chain-Sampling

Sliding Windows: Replace-Sampling algorithm

Problem: Maintain a uniform sample x from the last seen w
elements.

Algorithm:

Maintain a reservoir sample for the first w items in s.
When the arrival of an item causes an element in the sample
to expire, replace it with the new arrival.

Analysis

1 pass, O(k log n) space and O(1) time per item.

Trouble: We keep an element but it might not follow the
uniform distribution.
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Reservoir Sampling for Sliding Windows

Problem: Maintain a uniform sample of k items from the last
w items.

Why reservoir sampling does not work?

Suppose an element in the reservoir expires
Need to replace it with a randomly-chosen element from the
current window
But, we have no access to past data!
Could store the entire window but this would require O(w)
memory.
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Sliding Windows: Backing-Sample algorithm

Problem: Maintain a uniform sample of size k from the last
seen w elements.

Algorithm idea:
Maintain a backing sample B:

Add xt to B with probability p
Remove from B all the elements that expire at time t.

The sample X of size k is obtained by a uniform sampling of k
items from B.

Analysis

1 pass, O((k + |B|) log n) space and O(k) time per item.
|B|? Should be small compared to w .
Quality? The algorithm might fail if |B| < k at some step.
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Concentration inequalities

Usually we measure the performance of a randomized
algorithm/process/experiment by computing the average.

It is not always true that by sampling, we will get close to the
expected values.
If you draw a fair coin, with values 1 or -1 on each side, and
you get as a reward the written value. The expected gain is 0.
However, there is no draw that provides gain 0.

In probability there are collections of inequalities providing
bounds of the probability of being close to the mean under
different hypothesis.

We survey some such useful bounds.
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Markov’s, Chebyshev’s and Chernoff’s bounds

Markov’s inequality

When X is a non-negative random variable and a > 0,

Pr(X > a) ≤ E [X ]

a

Chebyshev’s inequality

Let X be a random variable with finite expected value µ and finite
non-zero variance σ2. Then for any real number t > 0,

Pr(|X − µ| ≥ tσ) ≤ 1

t2
.
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Chernoff bounds

When applying Markov’s inequality to ecX , we get

Chernoff bound

For c > 0,

Pr(X > a) = Pr(ecX ≥ eca) ≤ E [ecX ]

eca
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Chernoff bounds

When X = X1 + · · ·+ Xn and we have additional information on
Xi we can get refined Chernoff bounds.

Chernoff bounds

Let X1, . . . ,Xn be independent random variables corresponding to
Bernoulli experiments, each variable with probability pi of success.
Let X = X1 + · · ·Xn and let µ = E [X ] =

∑n
i=1 pi . Then, for any

d > 0,

Pr[X > (1 + d)µ] ≤
(

ed

(1 + d)1+d

)µ

.

For any 0 < d < 1,

Pr[X < (1− d)µ] ≤
(

e−d

(1− d)1−d

)µ

.
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Simplified Chernoff bounds

A less accurate (but quite useful) version of Chernoff bounds is the
following.

Chernoff bounds

Let X1, . . . ,Xn be independent random variables corresponding to
Bernoulli experiments, each variable with probability pi of success.
Let X = X1 + · · ·Xn and let µ = E [X ] =

∑n
i=1 pi . Then, for any

d ∈ (0, 1),

Pr[X < (1− d)µ] ≤ e
−d2µ

2 and Pr[X > (1 + d)µ] ≤ e
−d2µ

3 .
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Sliding Windows: Backing-Sample algorithm

Problem: Maintain a uniform sample of size k from the last
seen w elements.

Algorithm:
Maintain a backing sample B:

Add xt to B with probability p = 2ck logw/w
Remove from B all the elements that expire at time t.

The sample X of size k is obtained by a uniform sampling of k
items from B.

Analysis

1 pass, O((k + |B|) log n) space and O(k) time per item.
|B|? Should be small compared to w .
Quality? The algorithm might fail if |B| < k at some step.
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Sliding Windows: Backing-Sample size

Using Chernoff bounds, the size of the backing sample is
between k and 4ck logw with probability 1− w−c .

Selecting the adequate c , with high probability the algorithm
succeeds in keeping a large enough backing sample.

The bound on the space is O(k logw) with high probability.
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Chain-Sampling for Sliding Windows

Algorithm: (k = 1)

Maintain a reservoir sample for the first w items in s, but
whenever an element xi is selected, choose and index j ∈ [w ]
uniformly at random, xi+j will be the replacement for xi .
For t > w , when t = i + j , set x = xi+j (and choose the next
replacement).

Analysis

1 pass, O(log n + logw) space and O(1) time per item.
Provides a uniform sample.

For higher values of k, run k parallel chain samples.
With high probability, for large enough w , such chains will not
intersect.
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Chain-Sampling: number of updates

k = 1

The algorithm perform changes only on the chain of selected
items.

The number of possible chains of elements with more than x
data elements is bounded by the number of partitions of m
into x ordered integer parts, which is bounded by

(m
x

)
.

Each such chain has probability at most m−x .

The probability of updating x steps is therefore at most(m
x

)
m−x .

Using Stirling’s approximation we get the bound
(
e
x

)x
.

For x = O(logm) this is less than m−c , for some constant c

With high probability the number of updates is O(logm).
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