Parameterization: basics classes and algorithms

Maria Serna

Spring 2025

AA-GEI Parameterization: basics classes and algorithms

Parameterization Problems and parameters
Parameterized problems

The class FPT

@ Parameterization

AA-GEI Parameterization: basics classes and algorithms

Parameterization Problems and parameters
Parameterized problems
The class FPT

Three NP complete problems

VERTEX COLORING
Given a graph G and an integer k,
Jdo: V(G) = {1,...,k} | V{u,v} € E(G)o(u) # o(v)?

INDEPENDENT SET
Given a graph G and an integer k,
IS C V(G) ||S| =k and V{u,v} € E(G){u,v}N S| <17

VERTEX COVER
Given a graph G and an integer k,
S C V(G) | |S| = k and Y{u,v} € E(G)|{u,v}NS| > 17

Is there any difference from a computational point of view?
Let's look to exact algorithms.

AA-GEI Parameterization: basics classes and algorithms

Parameterization Problems and parameters
Parameterized problems
The class FPT

Vertex Coloring

VERTEX COLORING

Given a graph G and an integer k,

Jdo: V(G) = {1,...,k} | V{u,v} € E(G)o(u) # o(v)?
@ Brute force algorithm that checks all color assignments:
o takes time O(n%k") time.

AA-GEI Parameterization: basics classes and algorithms

Parameterization Problems and parameters
Parameterized problems
The class FPT

Independent Set

INDEPENDENT SET

Given a graph G and an integer k,

IS C V(G) | |S| = k and V{u,v} € E(G){u,v}NS| <17
@ Brute force algorithm that checks all subsets with k vertices
o takes time O(n**1) time.

AA-GEI Parameterization: basics classes and algorithms

Parameterization Problems and parameters
Parameterized problems
The class FPT

Vertex Cover

VERTEX COVER

Given a graph G and an integer k,

IS C V(G) | |S| = k and V{u,v} € E(G){u,v}NS| > 17
@ Brute force algorithm that checks all subsets with k vertices
o takes time O(n**1) time.

A better algorithm?

AA-GEI Parameterization: basics classes and algorithms

Parameterization Problems and parameters
Parameterized problems
The class FPT

Vertex Cover

function ALGVC(G, k)
if |E(G)| =0 then
return true
end if
if k=0 then
return false
end if
Select and edge e = {u,v} € E(G)
return ALGVC(G — u, k —1) or ALGVC(G — v,k —1)
end function

Correctly solves the problem and takes time O(m2%)

AA-GEI Parameterization: basics classes and algorithms

Parameterization

Problems and parameters
Parameterized problems
The class FPT

Algorithms cost

Given a graph G and an integer k:
e VERTEX COLORING: O(n%k")
o INDEPENDENT SET: O(n*+1)
o VERTEX COVER: O(m2k)

AA-GEI

Parameterization: basics classes and algorithms

Parameterization Problems and parameters
Parameterized problems
The class FPT

Algorithms cost

Given a graph G and an integer k:
e VERTEX COLORING: O(n%k")
o INDEPENDENT SET: O(n**1)
o VERTEX COVER: O(m2k)

The dependence on and k are different!
For constant k:

e VERTEX COLORING: O(n2k") exponential
o INDEPENDENT SET: O(r**1) polynomial

o VERTEX COVER: O(m2K) polynomial
(even for k = O(log n))

Objective: Find slices of the problem having efficient algorithms
Slice: The instances with a particular value of a parameter

AA-GEI Parameterization: basics classes and algorithms

Parameterization Problems and parameters
Parameterized problems
The class FPT

Natural small parameters

VLSI design: the number of layers in a chip is below 10.
Biology: DNA chains in many cases have path width below 11
Robotics: The robot movements have small dimension

Compilers: Type compatibility is usually EXP-complete,
however typical type declaration have small depth
Optimization problem: the measure of the optimal solution is
small

A problem might have more than one parameter of interest
and the behavior with respect to different parameters might
be different.

AA-GEI Parameterization: basics classes and algorithms

Parameterization Problems and parameters
Parameterized problems
The class FPT

Parameterized problems

Given an alphabet X to represent the inputs to decision problems,

@ A parameterization of ¥* is a mapping ~ : = — N that can
be computed in polynomial time.

@ A parameterized problem (with respect to ¥) is a pair (L, %)
where L C ¥* and k is a parameterization of X*.

@ Parameterized problems are decision problems together with a
parameterization.

@ A problem can be analyzed under different parameterizations.

AA-GEI Parameterization: basics classes and algorithms

Parameterization Problems and parameters
Parameterized problems
The class FPT

Parameterized problem: An example

SAT
Given a CNF formula F,
is there a satisfying assignment for F?

@ Consider k: ©* —- N

of variables in F if w codifies F

K(w) = .
-3 otherwise

@ K is a parameterization Why?

P#VAR-SAT

Input: A CNF formula F,

Parameter: The number of variables in F
Question: is there a satisfying assignment for F?

AA-GEI Parameterization: basics classes and algorithms

Parameterization Problems and parameters
Parameterized problems
The class FPT

Parameterized problem: An example

SAT
Given a CNF formula F,
is there a satisfying assignment for F?

@ Consider k: ©* —- N

(w) max # of literals in a clause in F if w codifies F
Kk(w) =
0 otherwise

@ Kk is a parameterization.
PMAX#LIT-SAT
Input: A CNF formula F
Parameter: The maximum number of literals in a clause in F
Question: is there a satisfying assignment for F?

AA-GEI Parameterization: basics classes and algorithms

Parameterization Problems and parameters
Parameterized problems
The class FPT

The NPO class: Natural parameterization

@ Recall that an optimization problem is a structure
P = (l,sol, m, goal)
@ The bounded version of an optimization problem is the
decision problem
o Given x € | and an integer k
Is there y € sol(x) such that m(x,y) < k?
e Given x € | and an integer k
Is there a solution y € sol(x) such that m(x,y) > k?
@ The natural parameterization is the function x(x, k) = k
(basically deals with x with small opt(x))
p-T1
Input: x € | and an integer k,
Parameter: k
Question: Is there a solution y € sol(x) such that m(x, y) < (=)k?

AA-GEI Parameterization: basics classes and algorithms

Parameterization Problems and parameters
Parameterized problems
The class FPT

Graph problems and parameters

@ Let G be a graph and k a natural number.

@ The function k(G, k) = k is used to define the parameterized
problems

P-INDEPENDENT SET

P-VERTEX COLORING

P-VERTEX COVER

P-DOMINATING SET

P-CLIQUE

etc.

@ For problems on graphs we can use other graph properties to
define graph parameters like max degree or diameter.
Or any other graph parameter of interest.

AA-GEI Parameterization: basics classes and algorithms

Parameterization Problems and parameters
Parameterized problems
The class FPT

FPT: Fixed Parameter Tractable Parameterized Problems

@ For an alphabet X and a parameterization x.
@ Ais an FPT algorithm with respect to « if there are

a computable function f and a polinomial function p such that
for each x € ¥*, A on input x requires time f(x(x))p(|x))

@ A parameterized problem (L, k) belongs to FPT if there is an
FPT-algorithm with respect to that decides L.

@ We have show that there is an algorithm for VERTEX COVER
requiring O(|E(G)|2¥) time
P-VERTEX COVER belongs to FPT!

AA-GEI Parameterization: basics classes and algorithms

Parameterization Problems and parameters
Parameterized problems
The class FPT

Other classes (hard parameterized problems)

@ paraNP
o (L, k) belongs to paraNP if there is a non-deterministic
algorithm A that decides x € L in time f(x(x))p(|x]),
for computable function f and polynomial function p.
o If L € NP, for each parameterization &, (L, k) € paraNP
p-Clique, p-Vertex Cover, ... belong to paraNP.
e paraNP is the counterpart of NP in classic complexity.

o (L,k) belongs to (uniform) XP if there is an algorithm A that
decides x € L in time O(|x|f(“(X)), for a computable function
f.
e P-CLIQUE, P-VERTEX COVER, P-HITTING SET,
P-DOMINATING SET belong to XP.
o XP is the counterpart of EXP in classic complexity.
@ In between FPT and those classes it is placed the W-hierarchy

WI1], W[2] ...defined through logic/circuit characterizations

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
Bounded search tree p-Hitting Set

p-vertex cover(2)

© Bounded search tree

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
Bounded search tree p-Hitting Set
p-vertex cover(2)

p-Vertex Cover

P-vC

Input: a graph G and an integer k,

Parameter: k

Question: 35 C V(G) | |S| = k and V{u,v} € E(G)|{u,v} N S| >1?

function ALGVC(G, k)
if |[E(G)| = 0 then
return true
end if
if k =0 then
return false
end if
Select and edge e = {u, v} € E(G)
return ALGVC(G — u,k —1) or ALGVC(G — v,k —1)
end function

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
Bounded search tree p-Hitting Set
p-vertex cover(2)

p-Vertex Cover

@ ALGVC correctly solves the problem and takes time
O((n + m)2k) thus P-VERTEX COVER belongs to FPT

@ ALGVC is a branching algorithm (two recursive calls) of
bounded (by the parameter) depth

@ As usual recursive calls are made to smaller instances (in some
sense).

@ Such type of recursive algorithm is called a bounded search
tree algorithm.

@ If we have a constant bound on the number of recursive calls,
depth bounded by the parameter, and polynomial cost per
call, the resulting algorithm is an FPT algorithm.

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
Bounded search tree p-Hitting Set
p-vertex cover(2)

Hitting Set

HITTING SET

Input: a collection of subsets S = (51,...,Sy) of U = {1,...,n}
and an integer k.

Question: JAC U | [A|=kand VX € S [XNA| > 1?

e For a set family S, let d(S) = max{|A| | A € S}

@ The function (S, k) = k + d(S) is a parameterization
P-HITTING SET
Input: A collection of subsets S = (S1,...,5m) of U = {1,...,n}
and an integer k,

Parameter: k + d(S)
Question: JAC U | [A|=kand VX € S [XNA| > 17

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
Bounded search tree p-Hitting Set
p-vertex cover(2)

p-Hitting Set

function ALcHS(U, S, k)
if |S| =0 then
return true
end if
if k=0 then
return false
end if
Selectaset X € S
for all v € X do
V=U-{v}; S ={XeS|ve¢X}
if ALGHS(V,S,,k —1) then
return (true)
end if
end for
return false
end function

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
Bounded search tree p-Hitting Set
p-vertex cover(2)

p-Hitting Set

o Lets=[U[+> ;1S

o Let T (s, k,d) be the number of steps of ALGHS for inputs
with d(S) < d.

e T(s,0,d)=0(1)
T(s,k,d) <dT(s,k—1,d)+ O(s), for k >0

@ When d > 2 and k > 0, there is a constant ¢ (with respect to
s and k) such that the above terms O(1) and O(s) are < cs.

T(s,k,d) < dT(s,k—1,d)+cs
<d(dT(s,k—2,d)+cs)+cs
<d’T(s,k—2,d)+(d +1)cs

@ using the above inequalities it is easy to prove that
T(s, k,d) < (2d¥ — 1)cs.

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
Bounded search tree p-Hitting Set
p-vertex cover(2)

p-Hitting Set

P-HITTING SET belongs to FPT

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
Bounded search tree p-Hitting Set
p-vertex cover(2)

Bounded search tree technique

@ The FPT algorithms for P-VERTEX COVER and
P-CARD-HITTING SET are exact algorithms for VERTEX
COVER and HITTING SET respectively.

@ When the parameter is unbounded the algorithms take
exponential time.

@ We get FPT algorithm because the depth and/or branching of
the recursion are function of the parameter.

@ This algorithmic technique is called bounded search trees.

@ As a design tool we have to look for parameterizations
allowing a recursive algorithm with those characteristics.

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
Bounded search tree p-Hitting Set
p-vertex cover(2)

A faster algorithm for p-VC

Recall some notation

e For a graph G and v € V(G), G — v denotes the graph
obtained by deleting v (and all incident edges).

@ ForasetS, S+ v denotes SU{v}, and S — v denotes S\ {v}.

@ For a vertex v € V(G), N(v) denotes the set of neighbors of
v. N[v] = N(v) + v. d(v) = |[N(v)|.

e For a graph G = (V,E), §(G) = min,cy d(v), and
A(G) = max,cy d(v).

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
Bounded search tree p-Hitting Set
p-vertex cover(2)

Vertex with degree 1

e If G contains a vertex u with N(u) = {v}, then there is a
minimum vertex cover of G that contains v (but not u) .

@ In such a case,
G has a k-VCiff G — u— v has a (k — 1)-VC

@ The recursion can skip a branching!

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
Bounded search tree p-Hitting Set
p-vertex cover(2)

Vertex with degree 2

e If G contains a vertex u with N(u) = {v, w}, then

o there is a minimum vertex cover of G that contains all
neighbors of v and w, or
o there is a minimum vertex cover of G that contains v and w.

Let S be a minimum vertex cover. If v,w ¢ S, S must
contains all neighbors of v and w. If S contains v but not w,
S must contain u. But then, S — u+ w is also a minimum
vertex cover, which contains v and w.
@ In such a case,
G has a k-VC iff G —u— v has a (k —2)-VC or
G — N[v] — N[w] has a (k — x)-VC, for x = |[N(v) U N(w)|.
e If §(G) > 2, x > 2. The recursion can jump to a smaller
problem in one step!

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
Bounded search tree p-Hitting Set
p-vertex cover(2)

Vertex with degree > 3

e If G contains a vertex u with d(u) > 3, then
e there is a minimum vertex cover of G that contains u, or
o there is a minimum vertex cover of G that contains N(u).
@ In such a case,
G has a k-VC iff G — u has a (k—1)-VC or G — N[u] has a
(k — d(u))-VC.

@ The recursion can jump to a smaller problem in one branch!

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
Bounded search tree p-Hitting Set
p-vertex cover(2)

A faster algorithm for p-VC

o FasTVC:
o If there is a vertex with degree one, use recursion of degree 1

vertices.
o If there is a vertex with degree two, use recursion of degree 2

vertices.
o Otherwise, use recursion of degree > 3 vertices.
e Stop recursion on base cases, graph has no edges (yes), k =0
and edges (no).
@ How to get a bound in the cost? Guess and prove by
induction!

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
Bounded search tree p-Hitting Set
p-vertex cover(2)

A faster algorithm for p-VC

The search tree corresponding to FASTVC has at most 1.47%
leaves.

@ By induction over k.

e If k =0, we can decide in polynomial time if there is a 0-VC
(there are no edges), so no recursive calls, only one node in
the recursive search tree.

@ If k> 1, then there are 3 cases:

.

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
Bounded search tree p-Hitting Set
p-vertex cover(2)

A faster algorithm for p-VC

@ G contains a degree 1 vertex, continue with the single
instance (G — v, k — 1), which by induction yields
1.47%71 < 1.47% leaves.

@ G contains a degree 2 vertex, branch into two cases
(G',k —2) and (G”, k — x), but as 6(G) > 1, x > 2. By
induction, the total number of leaves is at most
21,4772 < 1.47k,

@ G contains a degree d > 3 vertex, branch into two cases
(G',k —1) and (G”, k — d). By induction, the total number
of leaves is at most 1.475k—1 4+ 1.47k—4 < 1.47k,

©

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
Bounded search tree p-Hitting Set
p-vertex cover(2)

A faster algorithm for p-VC

FasTVC has cost O(1.47%p(n + m)), for some polynomial p
besides the constant in O is also constant with respect to the
parameter k.

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
p-MaxSat

Crown decompos

Kernelization
Summary

© Kernelization

AA-GEI

p-vertex cover
p-MaxSat
Crown decomposition

Kernelization
Summary

Kernelization

o Kernelization is a technique to obtain FPT algorithms for a
parameterized problem (L, k).

@ Based in auto-reductions

@ We look for a polynomial time algorithm that transforms an
instance x in another instance x’ of the problem (the kernel).
So that

e x' is a yes instance iff x is a yes instance.
x and x’ are equivalent instances

o the size of x” is upperbounded by f(x(x)), for some
computable function f.

@ An algorithm that computes x’ and solves by brute force this
instance has cost
O(p(Ix) + g(F(r(x))
So, it is an FPT algorithm provided the problem is decidible.

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
p-MaxSat
Crown decomposition

Kernelization
Summary

k-Vertex Cover: reduction rules?

@ Often a kernelization is defined through reduction rules that,
either allow us to produce an smaller equivalent instance or to
show that, the original instance is a NO instance.

@ Technically, we could produce a NO instance of constant size,
however we often see the construction as a preprocesing step
that has the possibility of saying NO, and will do that as soon
as possible.

@ Let's look at a first kernelization for p-VC.

p-VERTEX COVER

Input: a graph G and an integer k,

Parameter: k

Question: 35 C V(G) | |S| = k and V{u,v} € E(G)|{u,v} N S| >1?

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
p-MaxSat

Crown decomposition
Summary

Kernelization

k-Vertex Cover: reduction rules?

o Let (G, k) be a k-VC instance.

@ recall: Two instances x; and x» of decision probem P are
equivalent when "x; € P iff x, € P”.

@ An isolated vertex has degree zero. Therefore it does not
cover any edge!

If v is an isolated vertex, (G, k) and (G — v, k) are equivalent.

@ A vertex with degree > k 4+ 1 must be part of a vertex cover
of size < k.

If v has degree > k + 1, (G, k) and (G — v, k — 1) are equivalent.

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
p-MaxSat
Crown decomposition

Kernelization
Summary

Reduction rules

@ The previous observations suggest a preprocessing of the
input:
Iteratively remove isolated vertices and vertices with degree at
least k + 1, decreasing the parameter by one in the second
case.

@ By Obs 1 and 2, the resulting instance (G’, k') is equivalent to
the original instance.

@ Furthermore, it can be computed in polynomial time.
e How big is (G', k')?

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
p-MaxSat

Crown decomposition
Summary

Kernelization

Reduced instance

o lteratively remove isolated vertices and vertices with degree at
least k + 1, decreasing the parameter by one in the second
case.

e In (G', k') all the vertices have degree < k.

If G has a vertex cover with < k vertices and all the vertices have
degree < k, |E(G')| < k.

@ So, we can filter as NO instances those leading to reduced
instances with a high number of edges!

@ By Obs 3, if |E(G')| > k2, we replace (G, k') by a trivial
small NO-instance, which is again equivalent.

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
p-MaxSat
Crown decomposition

Kernelization
Summary

Kernel

Let (G, k) be an instance to P-VC. In polynomial time we can
obtain an equivalent P-VC instance (G', k") with
V(G |E(G")] < O(k?).

@ Such an instance is called a kernel.
@ A kernel

@ is an equivalent instance,
e can be computed in polynomial time, and
e has size bounded by a function of the parameter

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
p-MaxSat
Crown decomposition

Kernelization
Summary

Kernelization algorithm

@ Assume that KER-P is a polynomial time algorithm
computing a kernel for a given instance of problem P and that
ALG-P is an exact (exponential time) algorithm for P.

function ALGKERNEL-P(x)
z =KER-P(x)
return (ALG-P(z))

end function

o ALGKER-P-VC is an FPT algorithm for P.

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
p-MaxSat
Crown decomposition

Kernelization
Summary

A kernelization algorithm for p-VC

function ALGKERNEL-P-VC(G, k)
(G', k") = lIteratively remove isolated vertices and vertices
with degree at least k + 1, decreasing the parameter
by one in the second case.
if |E(G')| > k? then return NO
end if
for each S C V' with |S| = k" do
if S is a vertex cover then return s1
end if
end for
return NO
end function

ALGKERNEL-P-VC runs in O(n€ + k?(k2) = O(n°) + O(k?k+2)

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
p-MaxSat
Crown decomposition

Kernelization
Summary

p-MaxSat

P-MAXSAT
Input: a Boolean CNF formula F and an integer k.
Parameter: k.

Question: Is there a variable assignment satisfying at least k clauses?

Recall that the size of a CNF formula is the sum of clause lengths
(# literals); we ignore as usual log-factors.

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
p-MaxSat
Crown decomposition

Kernelization
Summary

p-MaxSat: Reduction rules

@ A clause in F is trivial if it contains both a positive and
negative literal in the same variable.

Let F’ be obtained from formula F by removing all t trivial
clauses. (F’, k — t) and (F, k) are equivalent.

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
p-MaxSat

Crown decomposition
Summary

Kernelization

p-MaxSat: Reduction rules

e A clause in (F, k) is long if it contains at least k literals, and
short otherwise.

e If F contains at least k long clauses, (F, k) is a YES instance
of P-MAXSAT.

Let Fs be obtained from formula F by removing all ¢ < k long
clauses. (Fs, k —) and (F, k) are equivalent.

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
p-MaxSat

Crown decomposition
Summary

Kernelization

p-MaxSat: Reduction rules

If F contains at least 2k clauses, (F, k) is a YES instance of
P-MAXSAT.

Take an arbitrary truth assignment x and its complement X
obtained by flipping all variables. Every clause of F is satisfied by
x or by overlinex (or by both). The one that satisfies most clauses
satisfies at least k clauses. @)

v

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
p-MaxSat
Crown decomposition

Kernelization
Summary

A kernelization algorithm for p-MaxSat

1. function ALGKERNEL-P-MAXSAT(F, k)

2 Remove from F all t trivial clauses and set k = k — t

3 if F has at least k long clauses then return YES

4 end if

5: Remove from F all £ long clauses and set k = k — ¢

6 if F has at least 2k clauses then return YES

7 end if

8 for each set of k clauses do

9: for each selection of one literal per clause in the set do
10: if selection has a compatible truth assignment then
11: return YES

12: end if

13: end for

14: end for

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
p-MaxSat

Crown decomposition

Kernelization
Summary

e Crown decomposition is a general kernelization technique
based on some results on matchings.

e For disjoint vertex subsets U, W of a graph G, M is a
matching of U into W if every edge of M connects a vertex of
U and a vertex of W and every vertex of U is an endpoint of
some edge of M.
We also say that M saturates U.

If M saturates U, |U| < |W|

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
p-MaxSat
Crown decomposition

Kernelization
Summary

Crown decomposition: Definition

@ A crown decomposition of a graph G = (V,E) is a
partitioning of V into three parts C, H and R, such that
o C # (0 is an independent set.
e There are no edges between vertices of C and
Removing H separates C from
o Let E’ be the set of edges between vertices of C and H. Then
E’ contains a matching of H into C.

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
p-MaxSat

Crown decomposition
Summary

Kernelization

Computing a crown decomposition

Theorem (Konig's theorem)

In every undirected bipartite graph the size of a maximum
matching is equal to the size of a minimum vertex cover.

Theorem (Hall's theorem)

Let G = (V4, Vo, E) be an undirected bipartite graph. G has a
matching saturating V4 iff for all X C Vi, we have [N(X)| > |X]|.

Can you obtain a minimum vertex cover in a bipartite graph in
polynomial time? YES!

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
p-MaxSat
Crown decomposition

Kernelization
Summary

Computing a crown decomposition

Theorem ((Hopcroft-Karp, SIAM J. Computing 2, 225-231 (1973))

Let G = (V4, Vo, E) be an undirected bipartite graph on n vertices
and m edges. Then we can find a maximum matching as well as a
minimum vertex cover of G in time O(m+/n). Furthermore, in
time O(m+/n) either we can find a matching saturating Vi or an
inclusion-wise minimal set X C V4 such that |[N(X)| < |X|.

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
p-MaxSat

Crown decomposition
Summary

Kernelization

Crown lemma

Let G = (V, E) be a graph without isolated vertices and with at
least 3k + 1 vertices. There is a polynomial-time algorithm that
either

e finds a matching of size k +1 in G; or

@ finds a crown decomposition of G.

[CAE—,,,,rrisg.

We compute a maximal matching M in G.
If [M| > k + 1, we are done.

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
p-MaxSat

Crown decomposition

Kernelization
Summary

Now, 1 < [M| < k+1.
Let V) be the end points of M and | =V — V).

@ M is a maximal matching, so / is an independent set.

Let Gy v,, be the bipartite subgraph induced in G by / and
V.

In polynomial time, we compute a minimum size vertex cover
X and a maximum matching M’ in G, y,,.

o If [M'| > k, we are done. From now on, |M’| < k and also
|X| < k.

e If XN Vy=0,X=1. Then, |I|=|X]| <k and
V| = 1| + [X| < k + 2k < 3K!

@ Then, XNV #10

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
p-MaxSat

Crown decomposition
Summary

Kernelization

@ We obtain a crown decomposition (C, H, R) as follows.

@ Since | X| = |M'|, every edge of the matching M’ has exactly
one endpoint in X.

@ Let M* be the subset of M’ such that every edge from M*
has exactly one endpoint in X N V), and let Vj,- denote the
set of endpoints of edges in M*.

@ Set head H=XnNVy = XN Vys, crown C =V« N1, and
the remaining part is R.

@ C is an independent set and, by construction, M* is a
matching of H into C.

@ Since X is a vertex cover of Gy y,,, every vertex of C can be
adjacent only to vertices of H.

End proof

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
p-MaxSat
Crown decomposition

Kernelization
Summary

An example with kK = 3

AA-GEI Parameterizatis basics classes and algorithms

p-vertex cover
p-MaxSat
Crown decomposition

Kernelization
Summary

An example with kK = 3

AA-GEI Parameterizatis basics classes and algorithms

p-vertex cover
p-MaxSat
Crown decomposition

Kernelization
Summary

An example with kK = 3

AA-GEI Parameterizatis basics classes and algorithms

p-vertex cover
p-MaxSat
Crown decomposition

Kernelization
Summary

An example with kK = 3

AA-GEI Parameterizatis basics classes and algorithms

p-vertex cover
p-MaxSat
Crown decomposition

Kernelization
Summary

An example with kK = 3

AA-GEI Parameterizatis basics classes and algorithms

p-vertex cover
p-MaxSat
Crown decomposition

Kernelization
Summary

Crown decomposition: Vertex cover

Consider a Vertex Cover instance (G, k).

@ By an exhaustive application of the isolated vertex reduction
rule, we may assume that G has no isolated vertices.

e If |V(G)| > 3k, we use the crown lemma to get either

@ a matching of size k + 1, (so (G, k) is a no-instance) or a
crown decomposition C, H, R.

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
p-MaxSat
Crown decomposition

Kernelization
Summary

Crown decomposition: Vertex cover

From the crown decomposition C, H, R of G, let M be a
matching of H into C.

@ The matching M witnesses that, for every vertex cover X of
G, X contains at least |M| = |H| vertices of HN C to cover
the edges of M.

@ H covers all edges of G that are incident to HU C.

@ So, there exists a minimum vertex cover of G that contains
H, and we may reduce (G, k) to (G — H, k — |H|).

e Further, in (G — H, k —|H]), c € C is isolated and can be
eliminated.

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
p-MaxSat
Crown decomposition

Kernelization
Summary

Crown decomposition: Vertex cover

As the crown lemma promises that H # (), we can always reduce
the graph as long as |V/(G)| > 3k.

Vertex Cover admits a kernel with at most 3k vertices.

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
p-MaxSat
Crown decomposition

Kernelization
Summary

Crown decomposition: Max SAT

Max SAT admits a kernel with at most k variables and 2k clauses.

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
p-MaxSat
Crown decomposition

Kernelization
Summary

Kernelization: summary

@ For parameterized problems, kernelization algorithms are a
method to obtain FPT algorithms.

@ These are preprocessing algorithms that can add to any
algorithmic method (e.g. approximation/exact algorithms).

o Kernelization algorithms usually consist of reduction rules,
which reduce simple local structures (degree 1 vertices / high
degree vertices / long clauses, etc), and a bound f(k) for
irreducible instances (X, k) that allows us to

e return NO if | X| > f(k), for minimization problems, or
o return YEs if |[X]| > f(k), for maximization problems.

AA-GEI Parameterization: basics classes and algorithms

p-vertex cover
p-MaxSat
Crown decomposition

Kernelization
Summary

Designing kernelization algorithms

@ What are the trivial substructures, where an optimal solution
of a certain form can be guaranteed?

@ Is there a reduction rule reflecting this?

@ Can a bound be proved for irreducible instances? If not, which
structures are problematic? Etc...

@ Any problem in FPT admits a kernelization.

@ Hardness notion?
@ We would like to get a kernel as small as possible.

e Statements like: (L, k) does not admit a linear (quadratic)
kernel unless some complexity assumption fails are the kind of
results showing kernelization hardness.

AA-GEI Parameterization: basics classes and algorithms

	Parameterization
	Problems and parameters
	Parameterized problems
	The class FPT

	Bounded search tree
	p-vertex cover
	p-Hitting Set
	p-vertex cover(2)

	Kernelization
	p-vertex cover
	p-MaxSat
	Crown decomposition
	Summary

