Parameterization: basics classes and algorithms

Maria Serna

Spring 2025

- Parameterization
- 2 Bounded search tree
- 3 Kernelization

Three NP complete problems

VERTEX COLORING

Given a graph G and an integer k,

$$\exists \sigma: V(G) \rightarrow \{1, \ldots, k\} \mid \forall \{u, v\} \in E(G)\sigma(u) \neq \sigma(v)$$
?

INDEPENDENT SET

Given a graph G and an integer k,

$$\exists S \subseteq V(G) \mid |S| = k \text{ and } \forall \{u, v\} \in E(G) | \{u, v\} \cap S| \le 1?$$

VERTEX COVER

Given a graph G and an integer k,

$$\exists S \subseteq V(G) \mid |S| = k \text{ and } \forall \{u, v\} \in E(G) | \{u, v\} \cap S| \ge 1?$$

Is there any difference from a computational point of view? Let's look to exact algorithms.

Vertex Coloring

VERTEX COLORING

Given a graph G and an integer k,

$$\exists \sigma: V(G) \rightarrow \{1, \ldots, k\} \mid \forall \{u, v\} \in E(G)\sigma(u) \neq \sigma(v)$$
?

- Brute force algorithm that checks all color assignments:
- takes time $O(n^2k^n)$ time.

Independent Set

INDEPENDENT SET

Given a graph G and an integer k, $\exists S \subseteq V(G) \mid |S| = k$ and $\forall \{u, v\} \in E(G) \mid \{u, v\} \cap S| \leq 1$?

- Brute force algorithm that checks all subsets with k vertices
- takes time $O(n^{k+1})$ time.

Vertex Cover

VERTEX COVER

Given a graph G and an integer k, $\exists S \subseteq V(G) \mid |S| = k$ and $\forall \{u, v\} \in E(G) \mid \{u, v\} \cap S| \ge 1$?

- Brute force algorithm that checks all subsets with k vertices
- takes time $O(n^{k+1})$ time.

A better algorithm?

Vertex Cover

```
function \operatorname{ALGVC}(G,k)

if |E(G)|=0 then

return true

end if

if k=0 then

return false

end if

Select and edge e=\{u,v\}\in E(G)

return \operatorname{ALGVC}(G-u,k-1) or \operatorname{ALGVC}(G-v,k-1)

end function
```

Correctly solves the problem and takes time $O(m2^k)$

Algorithms cost

Given a graph G and an integer k:

- VERTEX COLORING: $O(n^2k^n)$
- INDEPENDENT SET: $O(n^{k+1})$
- Vertex Cover: $O(m2^k)$

Algorithms cost

Given a graph G and an integer k:

- VERTEX COLORING: $O(n^2k^n)$
- INDEPENDENT SET: $O(n^{k+1})$
- Vertex Cover: $O(m2^k)$

The dependence on |G| and k are different!

For constant k:

- VERTEX COLORING: $O(n^2k^n)$ exponential
- INDEPENDENT SET: $O(n^{k+1})$ polynomial
- VERTEX COVER: $O(m2^k)$ polynomial (even for $k = O(\log n)$)

Objective: Find slices of the problem having efficient algorithms Slice: The instances with a particular value of a parameter

Natural small parameters

- VLSI design: the number of layers in a chip is below 10.
- Biology: DNA chains in many cases have path width below 11
- Robotics: The robot movements have small dimension
- Compilers: Type compatibility is usually EXP-complete, however typical type declaration have small depth
- Optimization problem: the measure of the optimal solution is small
- A problem might have more than one parameter of interest and the behavior with respect to different parameters might be different.

Parameterized problems

Given an alphabet Σ to represent the inputs to decision problems,

- A parameterization of Σ^* is a mapping $\kappa : \Sigma^* \to \mathbb{N}$ that can be computed in polynomial time.
- A parameterized problem (with respect to Σ) is a pair (L, κ) where $L \subseteq \Sigma^*$ and κ is a parameterization of Σ^* .
- Parameterized problems are decision problems together with a parameterization.
- A problem can be analyzed under different parameterizations.

Parameterized problem: An example

SAT

Given a CNF formula F, is there a satisfying assignment for F?

• Consider $\kappa: \Sigma^* \to \mathbb{N}$

$$\kappa(w) = \begin{cases} \# \text{ of variables in } F & \text{if } w \text{ codifies } F \\ -3 & \text{otherwise} \end{cases}$$

• κ is a parameterization Why?

P#VAR-SAT

Input: A CNF formula F,

Parameter: The number of variables in F

Question: is there a satisfying assignment for F?

Parameterized problem: An example

SAT

Given a CNF formula F, is there a satisfying assignment for F?

• Consider $\kappa: \Sigma^* \to \mathbb{N}$

$$\kappa(w) = \begin{cases} \max \# \text{ of literals in a clause in } F & \text{if } w \text{ codifies } F \\ 0 & \text{otherwise} \end{cases}$$

ullet κ is a parameterization.

Input: A CNF formula *F*

Parameter: The maximum number of literals in a clause in F

Question: is there a satisfying assignment for F?

The NPO class: Natural parameterization

- Recall that an optimization problem is a structure P = (I, sol, m, goal)
- The bounded version of an optimization problem is the decision problem
 - Given $x \in I$ and an integer kIs there $y \in sol(x)$ such that $m(x, y) \leq k$?
 - Given $x \in I$ and an integer kIs there a solution $y \in sol(x)$ such that $m(x, y) \ge k$?
- The natural parameterization is the function $\kappa(x, k) = k$ (basically deals with x with small opt(x))

Р-П

Input: $x \in I$ and an integer k,

Parameter: k

Question: Is there a solution $y \in \text{sol}(x)$ such that $m(x, y) \leq (\geqslant)k$?

Graph problems and parameters

- Let G be a graph and k a natural number.
- The function $\kappa(G, k) = k$ is used to define the parameterized problems
 - P-INDEPENDENT SET
 - P-Vertex Coloring
 - P-VERTEX COVER.
 - P-DOMINATING SET
 - P-CLIQUE
 - etc.
- For problems on graphs we can use other graph properties to define graph parameters like max degree or diameter.
 Or any other graph parameter of interest.

FPT: Fixed Parameter Tractable Parameterized Problems

- For an alphabet Σ and a parameterization κ .
- \mathcal{A} is an FPT algorithm with respect to κ if there are a computable function f and a polinomial function p such that for each $x \in \Sigma^*$, \mathcal{A} on input x requires time $f(\kappa(x))p(|x|)$
- A parameterized problem (L, κ) belongs to FPT if there is an FPT-algorithm with respect to κ that decides L.
- We have show that there is an algorithm for VERTEX COVER requiring $O(|E(G)|2^k)$ time P-VERTEX COVER belongs to FPT!

Other classes (hard parameterized problems)

paraNP

- (L, κ) belongs to paraNP if there is a non-deterministic algorithm \mathcal{A} that decides $x \in L$ in time $f(\kappa(x))p(|x|)$, for computable function f and polynomial function p.
- If $L \in NP$, for each parameterization κ , $(L, \kappa) \in paraNP$ p-Clique, p-Vertex Cover, . . . belong to paraNP.
- paraNP is the counterpart of NP in classic complexity.

XP

- (L, κ) belongs to (uniform) XP if there is an algorithm \mathcal{A} that decides $x \in L$ in time $O(|x|^{f(\kappa(x))})$, for a computable function f.
- P-CLIQUE, P-VERTEX COVER, P-HITTING SET, P-DOMINATING SET belong to XP.
- XP is the counterpart of EXP in classic complexity.
- In between FPT and those classes it is placed the W-hierarchy W[1], W[2] . . . defined through logic/circuit characterizations

- Parameterization
- 2 Bounded search tree
- 3 Kernelization

p-Vertex Cover

```
P-VC
Input: a graph G and an integer k.
Parameter: k
Question: \exists S \subseteq V(G) \mid |S| = k \text{ and } \forall \{u, v\} \in E(G) \mid \{u, v\} \cap S \mid \geq 1?
  function ALGVC(G, k)
      if |E(G)| = 0 then
          return true
      end if
      if k=0 then
          return false
      end if
      Select and edge e = \{u, v\} \in E(G)
      return ALGVC(G - u, k - 1) or ALGVC(G - v, k - 1)
  end function
```

p-Vertex Cover

- ALGVC correctly solves the problem and takes time $O((n+m)2^k)$ thus P-VERTEX COVER belongs to FPT
- ALGVC is a branching algorithm (two recursive calls) of bounded (by the parameter) depth
- As usual recursive calls are made to smaller instances (in some sense).
- Such type of recursive algorithm is called a bounded search tree algorithm.
- If we have a constant bound on the number of recursive calls, depth bounded by the parameter, and polynomial cost per call, the resulting algorithm is an FPT algorithm.

Hitting Set

HITTING SET

Input: a collection of subsets $S = (S_1, ..., S_m)$ of $U = \{1, ..., n\}$ and an integer k.

Question:
$$\exists A \subseteq U \mid |A| = k$$
 and $\forall X \in \mathcal{S} \mid X \cap A| \ge 1$?

- For a set family S, let $d(S) = \max\{|A| \mid A \in S\}$
- The function $\kappa(\mathcal{S}, k) = k + d(\mathcal{S})$ is a parameterization

P-HITTING SET

Input: A collection of subsets $S = (S_1, ..., S_m)$ of $U = \{1, ..., n\}$ and an integer k,

Parameter: k + d(S)

Question: $\exists A \subseteq U \mid |A| = k$ and $\forall X \in \mathcal{S} \mid X \cap A| \ge 1$?

p-Hitting Set

```
function ALGHS(U, S, k)
   if |S| = 0 then
       return true
   end if
   if k=0 then
       return false
   end if
   Select a set X \in \mathcal{S}
   for all v \in X do
       V = U - \{v\}; S_v = \{X \in S \mid v \notin X\}
       if ALGHS(V, S_v, k-1) then
           return (true)
       end if
   end for
   return false
end function
```

p-Hitting Set

- Let $s = |U| + \sum_{j=1}^{m} |S_j|$
- Let T(s, k, d) be the number of steps of ALGHS for inputs with $d(S) \leq d$.
- T(s,0,d) = O(1) $T(s,k,d) \le dT(s,k-1,d) + O(s)$, for k > 0
- When $d \ge 2$ and $k \ge 0$, there is a constant c (with respect to s and k) such that the above terms O(1) and O(s) are $\le c s$.

$$T(s, k, d) \le dT(s, k - 1, d) + cs$$

 $\le d(dT(s, k - 2, d) + cs) + cs$
 $\le d^2T(s, k - 2, d) + (d + 1)cs$

• using the above inequalities it is easy to prove that $T(s, k, d) \le (2d^k - 1)c s$.

p-Hitting Set

Lemma

P-HITTING SET belongs to FPT

Bounded search tree technique

- The FPT algorithms for P-VERTEX COVER and P-CARD-HITTING SET are exact algorithms for VERTEX COVER and HITTING SET respectively.
- When the parameter is unbounded the algorithms take exponential time.
- We get FPT algorithm because the depth and/or branching of the recursion are function of the parameter.
- This algorithmic technique is called bounded search trees.
- As a design tool we have to look for parameterizations allowing a recursive algorithm with those characteristics.

Recall some notation

- For a graph G and $v \in V(G)$, G v denotes the graph obtained by deleting v (and all incident edges).
- For a set S, S + v denotes $S \cup \{v\}$, and S v denotes $S \setminus \{v\}$.
- For a vertex $v \in V(G)$, N(v) denotes the set of neighbors of v. N[v] = N(v) + v. d(v) = |N(v)|.
- For a graph G = (V, E), $\delta(G) = \min_{v \in V} d(v)$, and $\Delta(G) = \max_{v \in V} d(v)$.

Vertex with degree 1

- If G contains a vertex u with $N(u) = \{v\}$, then there is a minimum vertex cover of G that contains v (but not u).
- In such a case, G has a k-VC iff G - u - v has a (k - 1)-VC
- The recursion can skip a branching!

Vertex with degree 2

- If G contains a vertex u with $N(u) = \{v, w\}$, then
 - there is a minimum vertex cover of G that contains all neighbors of v and w, or
 - there is a minimum vertex cover of G that contains v and w. Let S be a minimum vertex cover. If $v, w \notin S$, S must contains all neighbors of v and w. If S contains v but not w, S must contain u. But then, S-u+w is also a minimum vertex cover, which contains v and w.
- In such a case,

G has a k-VC iff
$$G - u - v$$
 has a $(k - 2)$ -VC or $G - N[v] - N[w]$ has a $(k - x)$ -VC, for $x = |N(v) \cup N(w)|$.

• If $\delta(G) \ge 2$, $x \ge 2$. The recursion can jump to a smaller problem in one step!

Vertex with degree ≥ 3

- If G contains a vertex u with $d(u) \ge 3$, then
 - ullet there is a minimum vertex cover of G that contains u, or
 - there is a minimum vertex cover of G that contains N(u).
- In such a case, G has a k-VC iff G - u has a (k - 1)-VC or G - N[u] has a (k - d(u))-VC.
- The recursion can jump to a smaller problem in one branch!

• FastVC:

- If there is a vertex with degree one, use recursion of degree 1 vertices.
- If there is a vertex with degree two, use recursion of degree 2 vertices.
- Otherwise, use recursion of degree ≥ 3 vertices.
- Stop recursion on base cases, graph has no edges (yes), k = 0 and edges (no).
- How to get a bound in the cost? Guess and prove by induction!

Theorem

The search tree corresponding to FASTVC has at most 1.47^k leaves.

Proof.

- By induction over k.
- If k = 0, we can decide in polynomial time if there is a 0-VC (there are no edges), so no recursive calls, only one node in the recursive search tree.
- If $k \ge 1$, then there are 3 cases:

Proof.

- G contains a degree 1 vertex, continue with the single instance (G v, k 1), which by induction yields $1.47^{k-1} < 1.47^k$ leaves.
- G contains a degree 2 vertex, branch into two cases (G', k-2) and (G'', k-x), but as $\delta(G) > 1$, $x \ge 2$. By induction, the total number of leaves is at most $2 \cdot 1.47^{k-2} < 1.47^k$.
- G contains a degree $d \ge 3$ vertex, branch into two cases (G', k-1) and (G'', k-d). By induction, the total number of leaves is at most $1.47^{k-1} + 1.47^{k-4} \le 1.47^k$.

Theorem

FASTVC has cost $O(1.47^k p(n+m))$, for some polynomial p besides the constant in O is also constant with respect to the parameter k.

·vertex cover ·MaxSat rown decompositio ummary

- Parameterization
- 2 Bounded search tree
- 3 Kernelization

Kernelization

- Kernelization is a technique to obtain FPT algorithms for a parameterized problem (L, κ) .
- Based in auto-reductions
- We look for a polynomial time algorithm that transforms an instance x in another instance x' of the problem (the kernel).
 So that
 - x' is a yes instance iff x is a yes instance.
 x and x' are equivalent instances
 - the size of x' is upperbounded by $f(\kappa(x))$, for some computable function f.
- An algorithm that computes x' and solves by brute force this instance has cost

$$O(p(|x|) + g(f(\kappa(x)))$$

So, it is an FPT algorithm provided the problem is decidible.

k-Vertex Cover: reduction rules?

- Often a kernelization is defined through reduction rules that, either allow us to produce an smaller equivalent instance or to show that, the original instance is a NO instance.
- Technically, we could produce a NO instance of constant size, however we often see the construction as a preprocesing step that has the possibility of saying NO, and will do that as soon as possible.
- Let's look at a first kernelization for p-VC.

p-VERTEX COVER

Input: a graph G and an integer k,

Parameter: k

Question: $\exists S \subseteq V(G) \mid |S| = k \text{ and } \forall \{u, v\} \in E(G) \mid \{u, v\} \cap S \mid \geq 1$?

k-Vertex Cover: reduction rules?

- Let (G, k) be a k-VC instance.
- recall: Two instances x_1 and x_2 of decision probem P are equivalent when " $x_1 \in P$ iff $x_2 \in P$ ".
- An isolated vertex has degree zero. Therefore it does not cover any edge!

Obs 1

If v is an isolated vertex, (G, k) and (G - v, k) are equivalent.

• A vertex with degree $\geq k+1$ must be part of a vertex cover of size $\leq k$.

Obs 2

If v has degree $\geq k+1$, (G,k) and (G-v,k-1) are equivalent.

Reduction rules

- The previous observations suggest a preprocessing of the input:
 - Iteratively remove isolated vertices and vertices with degree at least k+1, decreasing the parameter by one in the second case.
- By Obs 1 and 2, the resulting instance (G', k') is equivalent to the original instance.
- Furthermore, it can be computed in polynomial time.
- How big is (G', k')?

Reduced instance

- Iteratively remove isolated vertices and vertices with degree at least k+1, decreasing the parameter by one in the second case.
- In (G', k') all the vertices have degree $\leq k$.

Obs 3

If G has a vertex cover with $\leq k$ vertices and all the vertices have degree $\leq k$, $|E(G')| \leq k^2$.

- So, we can filter as NO instances those leading to reduced instances with a high number of edges!
- By Obs 3, if $|E(G')| > k^2$, we replace (G', k') by a trivial small NO-instance, which is again equivalent.

Kernel

Theorem

Let (G, k) be an instance to P-VC. In polynomial time we can obtain an equivalent P-VC instance (G', k') with $|V(G')|, |E(G')| \le O(k^2)$.

- Such an instance is called a kernel.
- A kernel
 - is an equivalent instance,
 - can be computed in polynomial time, and
 - has size bounded by a function of the parameter

Kernelization algorithm

 Assume that Ker-P is a polynomial time algorithm computing a kernel for a given instance of problem P and that ALG-P is an exact (exponential time) algorithm for P.

```
function ALGKERNEL-P(x)

z = KER-P(x)

return (ALG-P(z))

end function
```

• ALGKER-P-VC is an FPT algorithm for P.

A kernelization algorithm for p-VC

```
function AlgKernel-P-VC(G, k)
   (G', k') = Iteratively remove isolated vertices and vertices
    with degree at least k+1, decreasing the parameter
    by one in the second case.
   if |E(G')| > k^2 then return NO
   end if
   for each S \subseteq V' with |S| = k' do
       if S is a vertex cover then return SI
       end if
   end for
   return NO
end function
```

ALGKERNEL-P-VC runs in
$$O(n^c + k^{2k}k^2) = O(n^c) + O(k^{2k+2})$$

p-vertex cover p-MaxSat Crown decomposition Summary

p-MaxSat

P-MAXSAT

Input: a Boolean CNF formula F and an integer k.

Parameter: k.

Question: Is there a variable assignment satisfying at least k clauses?

Recall that the size of a CNF formula is the sum of clause lengths (# literals); we ignore as usual log-factors.

p-MaxSat: Reduction rules

 A clause in F is trivial if it contains both a positive and negative literal in the same variable.

Obs 1

Let F' be obtained from formula F by removing all t trivial clauses. (F', k - t) and (F, k) are equivalent.

p-MaxSat: Reduction rules

- A clause in (F, k) is long if it contains at least k literals, and short otherwise.
- If F contains at least k long clauses, (F, k) is a YES instance of P-MAXSAT.

Obs 2

Let F_s be obtained from formula F by removing all $\ell < k$ long clauses. $(F_s, k - \ell)$ and (F, k) are equivalent.

p-MaxSat: Reduction rules

Obs 3

If F contains at least 2k clauses, (F, k) is a YES instance of P-MAXSAT.

Proof.

Take an arbitrary truth assignment x and its complement \overline{x} obtained by flipping all variables. Every clause of F is satisfied by x or by *overlinex* (or by both). The one that satisfies most clauses satisfies at least k clauses.

A kernelization algorithm for p-MaxSat

```
1: function ALGKERNEL-P-MAXSAT(F, k)
       Remove from F all t trivial clauses and set k = k - t
 2:
 3:
       if F has at least k long clauses then return YES
 4:
       end if
       Remove from F all \ell long clauses and set k = k - \ell
 5:
       if F has at least 2k clauses then return YES
 6:
       end if
 7:
       for each set of k clauses do
 8:
           for each selection of one literal per clause in the set do
9.
              if selection has a compatible truth assignment then
10:
11:
                  return YES
              end if
12:
           end for
13:
       end for
14:
15.
       return NO
```

- Crown decomposition is a general kernelization technique based on some results on matchings.
- For disjoint vertex subsets U, W of a graph G, M is a
 matching of U into W if every edge of M connects a vertex of
 U and a vertex of W and every vertex of U is an endpoint of
 some edge of M.

We also say that M saturates U.

If M saturates U, $|U| \leq |W|$

Crown decomposition: Definition

- A crown decomposition of a graph G = (V, E) is a partitioning of V into three parts C, H and R, such that
 - $C \neq \emptyset$ is an independent set.
 - There are no edges between vertices of C and R. Removing H separates C from R.
 - Let E' be the set of edges between vertices of C and H. Then E' contains a matching of H into C.

Computing a crown decomposition

Theorem (König's theorem)

In every undirected bipartite graph the size of a maximum matching is equal to the size of a minimum vertex cover.

Theorem (Hall's theorem)

Let $G = (V_1, V_2, E)$ be an undirected bipartite graph. G has a matching saturating V_1 iff for all $X \subseteq V_1$, we have $|N(X)| \ge |X|$.

Can you obtain a minimum vertex cover in a bipartite graph in polynomial time? YES!

Computing a crown decomposition

Theorem ((Hopcroft-Karp, SIAM J. Computing 2, 225–231 (1973))

Let $G = (V_1, V_2, E)$ be an undirected bipartite graph on n vertices and m edges. Then we can find a maximum matching as well as a minimum vertex cover of G in time $O(m\sqrt{n})$. Furthermore, in time $O(m\sqrt{n})$ either we can find a matching saturating V_1 or an inclusion-wise minimal set $X \subseteq V_1$ such that |N(X)| < |X|.

Crown lemma

Lemma

Let G = (V, E) be a graph without isolated vertices and with at least 3k + 1 vertices. There is a polynomial-time algorithm that either

- finds a matching of size k + 1 in G; or
- finds a crown decomposition of G.

Proof

We compute a maximal matching M in G. If $|M| \ge k + 1$, we are done.

Now, $1 \le |M| \le k + 1$.

Let V_M be the end points of M and $I = V - V_M$.

- M is a maximal matching, so I is an independent set.
- Let G_{I,V_M} be the bipartite subgraph induced in G by I and V_M .
- In polynomial time, we compute a minimum size vertex cover X and a maximum matching M' in G_{I,V_M} .
- If $|M'| \ge k$, we are done. From now on, $|M'| \le k$ and also $|X| \le k$.
- If $X \cap V_M = \emptyset$, X = I. Then, $|I| = |X| \le k$ and $|V| = |I| + |X| \le k + 2k \le 3k!$
- Then, $X \cap V_M \neq \emptyset$

- We obtain a crown decomposition (C, H, R) as follows.
- Since |X| = |M'|, every edge of the matching M' has exactly one endpoint in X.
- Let M^* be the subset of M' such that every edge from M^* has exactly one endpoint in $X \cap V_M$ and let V_{M^*} denote the set of endpoints of edges in M^* .
- Set head $H = X \cap V_M = X \cap V_{M^*}$, crown $C = V_{M^*} \cap I$, and the remaining part is R.
- C is an independent set and, by construction, M^* is a matching of H into C.
- Since X is a vertex cover of G_{I,V_M} , every vertex of C can be adjacent only to vertices of H.

End proof

Crown decomposition: Vertex cover

Consider a Vertex Cover instance (G, k).

- By an exhaustive application of the isolated vertex reduction rule, we may assume that G has no isolated vertices.
- If |V(G)| > 3k, we use the crown lemma to get either
- a matching of size k + 1, (so (G, k) is a no-instance) or a crown decomposition C, H, R.

Crown decomposition: Vertex cover

From the crown decomposition C, H, R of G, let M be a matching of H into C.

- The matching M witnesses that, for every vertex cover X of G, X contains at least |M| = |H| vertices of $H \cap C$ to cover the edges of M.
- H covers all edges of G that are incident to $H \cup C$.
- So, there exists a minimum vertex cover of G that contains H, and we may reduce (G, k) to (G H, k |H|).
- Further, in (G H, k |H|), $c \in C$ is isolated and can be eliminated.

p-vertex cover p-MaxSat Crown decomposition Summary

Crown decomposition: Vertex cover

As the crown lemma promises that $H \neq \emptyset$, we can always reduce the graph as long as |V(G)| > 3k.

Lemma

Vertex Cover admits a kernel with at most 3k vertices.

Crown decomposition: Max SAT

Lemma

Max SAT admits a kernel with at most k variables and 2k clauses.

Kernelization: summary

- For parameterized problems, kernelization algorithms are a method to obtain FPT algorithms.
- These are preprocessing algorithms that can add to any algorithmic method (e.g. approximation/exact algorithms).
- Kernelization algorithms usually consist of reduction rules, which reduce simple local structures (degree 1 vertices / high degree vertices / long clauses, etc), and a bound f(k) for irreducible instances (X,k) that allows us to
 - return NO if |X| > f(k), for minimization problems, or
 - return YES if |X| > f(k), for maximization problems.

Designing kernelization algorithms

- What are the trivial substructures, where an optimal solution of a certain form can be guaranteed?
- Is there a reduction rule reflecting this?
- Can a bound be proved for irreducible instances? If not, which structures are problematic? Etc...
- Any problem in FPT admits a kernelization.
- Hardness notion?
- We would like to get a kernel as small as possible.
- Statements like: (L, κ) does not admit a linear (quadratic) kernel unless some complexity assumption fails are the kind of results showing kernelization hardness.