
Parameterization
Bounded search tree

Kernelization

Parameterization: basics classes and algorithms

Maria Serna

Spring 2025

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

Problems and parameters
Parameterized problems
The class FPT

1 Parameterization

2 Bounded search tree

3 Kernelization

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

Problems and parameters
Parameterized problems
The class FPT

Three NP complete problems

vertex coloring
Given a graph G and an integer k ,
∃σ : V (G ) → {1, . . . , k} | ∀{u, v} ∈ E (G )σ(u) ̸= σ(v)?

independent set
Given a graph G and an integer k ,
∃S ⊆ V (G ) | |S | = k and ∀{u, v} ∈ E (G )|{u, v} ∩ S | ≤ 1?

vertex cover
Given a graph G and an integer k ,
∃S ⊆ V (G ) | |S | = k and ∀{u, v} ∈ E (G )|{u, v} ∩ S | ≥ 1?

Is there any difference from a computational point of view?
Let’s look to exact algorithms.

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

Problems and parameters
Parameterized problems
The class FPT

Vertex Coloring

vertex coloring
Given a graph G and an integer k ,
∃σ : V (G ) → {1, . . . , k} | ∀{u, v} ∈ E (G )σ(u) ̸= σ(v)?

Brute force algorithm that checks all color assignments:

takes time O(n2kn) time.

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

Problems and parameters
Parameterized problems
The class FPT

Independent Set

independent set
Given a graph G and an integer k ,
∃S ⊆ V (G ) | |S | = k and ∀{u, v} ∈ E (G )|{u, v} ∩ S | ≤ 1?

Brute force algorithm that checks all subsets with k vertices

takes time O(nk+1) time.

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

Problems and parameters
Parameterized problems
The class FPT

Vertex Cover

vertex cover
Given a graph G and an integer k ,
∃S ⊆ V (G ) | |S | = k and ∀{u, v} ∈ E (G )|{u, v} ∩ S | ≥ 1?

Brute force algorithm that checks all subsets with k vertices

takes time O(nk+1) time.

A better algorithm?

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

Problems and parameters
Parameterized problems
The class FPT

Vertex Cover

function algVC(G , k)
if |E (G )| = 0 then

return true
end if
if k = 0 then

return false
end if
Select and edge e = {u, v} ∈ E (G )
return algVC(G − u, k − 1) or algVC(G − v , k − 1)

end function

Correctly solves the problem and takes time O(m2k)

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

Problems and parameters
Parameterized problems
The class FPT

Algorithms cost

Given a graph G and an integer k :

Vertex coloring: O(n2kn)

Independent Set: O(nk+1)

Vertex Cover: O(m2k)

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

Problems and parameters
Parameterized problems
The class FPT

Algorithms cost

Given a graph G and an integer k :

Vertex coloring: O(n2kn)

Independent Set: O(nk+1)

Vertex Cover: O(m2k)

The dependence on |G | and k are different!
For constant k :

Vertex coloring: O(n2kn) exponential

Independent Set: O(nk+1) polynomial

Vertex Cover: O(m2k) polynomial
(even for k = O(log n))

Objective: Find slices of the problem having efficient algorithms
Slice: The instances with a particular value of a parameter

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

Problems and parameters
Parameterized problems
The class FPT

Natural small parameters

VLSI design: the number of layers in a chip is below 10.

Biology: DNA chains in many cases have path width below 11

Robotics: The robot movements have small dimension

Compilers: Type compatibility is usually EXP-complete,
however typical type declaration have small depth

Optimization problem: the measure of the optimal solution is
small

A problem might have more than one parameter of interest
and the behavior with respect to different parameters might
be different.

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

Problems and parameters
Parameterized problems
The class FPT

Parameterized problems

Given an alphabet Σ to represent the inputs to decision problems,

A parameterization of Σ∗ is a mapping κ : Σ∗ → N that can
be computed in polynomial time.

A parameterized problem (with respect to Σ) is a pair (L, κ)
where L ⊆ Σ∗ and κ is a parameterization of Σ∗.

Parameterized problems are decision problems together with a
parameterization.

A problem can be analyzed under different parameterizations.

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

Problems and parameters
Parameterized problems
The class FPT

Parameterized problem: An example

sat
Given a cnf formula F ,
is there a satisfying assignment for F?

Consider κ : Σ∗ → N

κ(w) =

{
# of variables in F if w codifies F

−3 otherwise

κ is a parameterization Why?

p#var-sat
Input: A cnf formula F ,
Parameter: The number of variables in F
Question: is there a satisfying assignment for F?

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

Problems and parameters
Parameterized problems
The class FPT

Parameterized problem: An example

sat
Given a cnf formula F ,
is there a satisfying assignment for F?

Consider κ : Σ∗ → N

κ(w) =

{
max # of literals in a clause in F if w codifies F

0 otherwise

κ is a parameterization.
pmax#lit-sat
Input: A cnf formula F
Parameter: The maximum number of literals in a clause in F
Question: is there a satisfying assignment for F?

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

Problems and parameters
Parameterized problems
The class FPT

The NPO class: Natural parameterization

Recall that an optimization problem is a structure
P = (I, sol,m, goal)
The bounded version of an optimization problem is the
decision problem

Given x ∈ I and an integer k
Is there y ∈ sol(x) such that m(x , y) ⩽ k?
Given x ∈ I and an integer k
Is there a solution y ∈ sol(x) such that m(x , y) ⩾ k?

The natural parameterization is the function κ(x , k) = k
(basically deals with x with small opt(x))
p-Π
Input: x ∈ I and an integer k,
Parameter: k
Question: Is there a solution y ∈ sol(x) such that m(x , y) ⩽ (⩾)k?

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

Problems and parameters
Parameterized problems
The class FPT

Graph problems and parameters

Let G be a graph and k a natural number.

The function κ(G , k) = k is used to define the parameterized
problems

p-Independent Set
p-Vertex Coloring
p-Vertex Cover
p-Dominating Set
p-Clique
etc.

For problems on graphs we can use other graph properties to
define graph parameters like max degree or diameter.
Or any other graph parameter of interest.

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

Problems and parameters
Parameterized problems
The class FPT

FPT: Fixed Parameter Tractable Parameterized Problems

For an alphabet Σ and a parameterization κ.

A is an FPT algorithm with respect to κ if there are
a computable function f and a polinomial function p such that
for each x ∈ Σ∗, A on input x requires time f (κ(x))p(|x |)

A parameterized problem (L, κ) belongs to FPT if there is an
FPT-algorithm with respect to κ that decides L.

We have show that there is an algorithm for Vertex Cover
requiring O(|E (G )|2k) time
p-Vertex Cover belongs to FPT!

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

Problems and parameters
Parameterized problems
The class FPT

Other classes (hard parameterized problems)

paraNP
(L, κ) belongs to paraNP if there is a non-deterministic
algorithm A that decides x ∈ L in time f (κ(x))p(|x |),
for computable function f and polynomial function p.
If L ∈ NP, for each parameterization κ, (L, κ) ∈ paraNP
p-Clique, p-Vertex Cover, . . . belong to paraNP.
paraNP is the counterpart of NP in classic complexity.

XP
(L, κ) belongs to (uniform) XP if there is an algorithm A that
decides x ∈ L in time O(|x |f (κ(x))), for a computable function
f .
p-Clique, p-Vertex Cover, p-Hitting Set,
p-Dominating Set belong to XP.
XP is the counterpart of EXP in classic complexity.

In between FPT and those classes it is placed the W-hierarchy
W[1], W[2] . . . defined through logic/circuit characterizations

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-Hitting Set
p-vertex cover(2)

1 Parameterization

2 Bounded search tree

3 Kernelization

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-Hitting Set
p-vertex cover(2)

p-Vertex Cover

p-vc
Input: a graph G and an integer k ,
Parameter: k
Question: ∃S ⊆ V (G ) | |S | = k and ∀{u, v} ∈ E (G )|{u, v} ∩ S | ≥ 1?

function algVC(G , k)
if |E (G )| = 0 then

return true
end if
if k = 0 then

return false
end if
Select and edge e = {u, v} ∈ E (G )
return algVC(G − u, k − 1) or algVC(G − v , k − 1)

end function
AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-Hitting Set
p-vertex cover(2)

p-Vertex Cover

algVC correctly solves the problem and takes time
O((n +m)2k) thus p-Vertex Cover belongs to FPT

algVC is a branching algorithm (two recursive calls) of
bounded (by the parameter) depth

As usual recursive calls are made to smaller instances (in some
sense).

Such type of recursive algorithm is called a bounded search
tree algorithm.

If we have a constant bound on the number of recursive calls,
depth bounded by the parameter, and polynomial cost per
call, the resulting algorithm is an FPT algorithm.

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-Hitting Set
p-vertex cover(2)

Hitting Set

hitting set
Input: a collection of subsets S = (S1, . . . ,Sm) of U = {1, . . . , n}
and an integer k .
Question: ∃A ⊆ U | |A| = k and ∀X ∈ S |X ∩ A| ≥ 1?

For a set family S, let d(S) = max{|A| | A ∈ S}
The function κ(S, k) = k + d(S) is a parameterization

p-hitting set
Input: A collection of subsets S = (S1, . . . ,Sm) of U = {1, . . . , n}
and an integer k ,
Parameter: k + d(S)
Question: ∃A ⊆ U | |A| = k and ∀X ∈ S |X ∩ A| ≥ 1?

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-Hitting Set
p-vertex cover(2)

p-Hitting Set

function algHS(U,S, k)
if |S| = 0 then

return true
end if
if k = 0 then

return false
end if
Select a set X ∈ S
for all v ∈ X do

V = U − {v}; Sv = {X ∈ S | v /∈ X}
if algHS(V ,Sv , k − 1) then

return (true)
end if

end for
return false

end function

Solves p-Hitting Set in time?AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-Hitting Set
p-vertex cover(2)

p-Hitting Set

Let s = |U|+
∑m

j=1 |Sj |
Let T (s, k , d) be the number of steps of algHS for inputs
with d(S) ≤ d .

T (s, 0, d) = O(1)
T (s, k , d) ≤ dT (s, k − 1, d) + O(s), for k > 0

When d ≥ 2 and k ≥ 0, there is a constant c (with respect to
s and k) such that the above terms O(1) and O(s) are ≤ c s.

T (s, k, d) ≤ dT (s, k − 1, d) + c s

≤ d(dT (s, k − 2, d) + c s) + c s

≤ d2T (s, k − 2, d) + (d + 1)c s

using the above inequalities it is easy to prove that
T (s, k , d) ≤ (2dk − 1)c s.

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-Hitting Set
p-vertex cover(2)

p-Hitting Set

Lemma

p-Hitting Set belongs to FPT

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-Hitting Set
p-vertex cover(2)

Bounded search tree technique

The FPT algorithms for p-Vertex Cover and
p-card-Hitting Set are exact algorithms for Vertex
Cover and Hitting Set respectively.

When the parameter is unbounded the algorithms take
exponential time.

We get FPT algorithm because the depth and/or branching of
the recursion are function of the parameter.

This algorithmic technique is called bounded search trees.

As a design tool we have to look for parameterizations
allowing a recursive algorithm with those characteristics.

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-Hitting Set
p-vertex cover(2)

A faster algorithm for p-VC

Recall some notation

For a graph G and v ∈ V (G ), G − v denotes the graph
obtained by deleting v (and all incident edges).

For a set S , S + v denotes S ∪{v}, and S − v denotes S \{v}.
For a vertex v ∈ V (G ), N(v) denotes the set of neighbors of
v . N[v ] = N(v) + v . d(v) = |N(v)|.
For a graph G = (V ,E ), δ(G ) = minv∈V d(v), and
∆(G ) = maxv∈V d(v).

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-Hitting Set
p-vertex cover(2)

Vertex with degree 1

If G contains a vertex u with N(u) = {v}, then there is a
minimum vertex cover of G that contains v (but not u) .

In such a case,
G has a k-VC iff G − u − v has a (k − 1)-VC

The recursion can skip a branching!

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-Hitting Set
p-vertex cover(2)

Vertex with degree 2

If G contains a vertex u with N(u) = {v ,w}, then
there is a minimum vertex cover of G that contains all
neighbors of v and w , or
there is a minimum vertex cover of G that contains v and w .

Let S be a minimum vertex cover. If v ,w /∈ S , S must
contains all neighbors of v and w . If S contains v but not w ,
S must contain u. But then, S − u + w is also a minimum
vertex cover, which contains v and w .

In such a case,
G has a k-VC iff G − u − v has a (k − 2)-VC or
G − N[v ]− N[w ] has a (k − x)-VC, for x = |N(v) ∪ N(w)|.
If δ(G ) ≥ 2, x ≥ 2. The recursion can jump to a smaller
problem in one step!

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-Hitting Set
p-vertex cover(2)

Vertex with degree ≥ 3

If G contains a vertex u with d(u) ≥ 3, then

there is a minimum vertex cover of G that contains u, or
there is a minimum vertex cover of G that contains N(u).

In such a case,
G has a k-VC iff G − u has a (k − 1)-VC or G − N[u] has a
(k − d(u))-VC.

The recursion can jump to a smaller problem in one branch!

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-Hitting Set
p-vertex cover(2)

A faster algorithm for p-VC

FastVC:

If there is a vertex with degree one, use recursion of degree 1
vertices.
If there is a vertex with degree two, use recursion of degree 2
vertices.
Otherwise, use recursion of degree ≥ 3 vertices.
Stop recursion on base cases, graph has no edges (yes), k = 0
and edges (no).

How to get a bound in the cost? Guess and prove by
induction!

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-Hitting Set
p-vertex cover(2)

A faster algorithm for p-VC

Theorem

The search tree corresponding to FastVC has at most 1.47k

leaves.

Proof.

By induction over k.

If k = 0, we can decide in polynomial time if there is a 0-VC
(there are no edges), so no recursive calls, only one node in
the recursive search tree.

If k ≥ 1, then there are 3 cases:

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-Hitting Set
p-vertex cover(2)

A faster algorithm for p-VC

Proof.

G contains a degree 1 vertex, continue with the single
instance (G − v , k − 1), which by induction yields
1.47k−1 < 1.47k leaves.

G contains a degree 2 vertex, branch into two cases
(G ′, k − 2) and (G ′′, k − x), but as δ(G ) > 1, x ≥ 2. By
induction, the total number of leaves is at most
2 · 1.47k−2 ≤ 1.47k .

G contains a degree d ≥ 3 vertex, branch into two cases
(G ′, k − 1) and (G ′′, k − d). By induction, the total number
of leaves is at most 1.47k−1 + 1.47k−4 ≤ 1.47k .

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-Hitting Set
p-vertex cover(2)

A faster algorithm for p-VC

Theorem

FastVC has cost O(1.47kp(n +m)), for some polynomial p
besides the constant in O is also constant with respect to the
parameter k.

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-MaxSat
Crown decomposition
Summary

1 Parameterization

2 Bounded search tree

3 Kernelization

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-MaxSat
Crown decomposition
Summary

Kernelization

Kernelization is a technique to obtain FPT algorithms for a
parameterized problem (L, κ).

Based in auto-reductions

We look for a polynomial time algorithm that transforms an
instance x in another instance x ′ of the problem (the kernel).
So that

x ′ is a yes instance iff x is a yes instance.
x and x ′ are equivalent instances
the size of x ′ is upperbounded by f (κ(x)), for some
computable function f .

An algorithm that computes x ′ and solves by brute force this
instance has cost
O(p(|x |) + g(f (κ(x))
So, it is an FPT algorithm provided the problem is decidible.

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-MaxSat
Crown decomposition
Summary

k-Vertex Cover: reduction rules?

Often a kernelization is defined through reduction rules that,
either allow us to produce an smaller equivalent instance or to
show that, the original instance is a NO instance.

Technically, we could produce a NO instance of constant size,
however we often see the construction as a preprocesing step
that has the possibility of saying NO, and will do that as soon
as possible.

Let’s look at a first kernelization for p-VC.

p-vertex cover
Input: a graph G and an integer k ,
Parameter: k
Question: ∃S ⊆ V (G ) | |S | = k and ∀{u, v} ∈ E (G )|{u, v} ∩ S | ≥ 1?

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-MaxSat
Crown decomposition
Summary

k-Vertex Cover: reduction rules?

Let (G , k) be a k-VC instance.

recall: Two instances x1 and x2 of decision probem P are
equivalent when ”x1 ∈ P iff x2 ∈ P”.

An isolated vertex has degree zero. Therefore it does not
cover any edge!

Obs 1

If v is an isolated vertex, (G , k) and (G − v , k) are equivalent.

A vertex with degree ≥ k + 1 must be part of a vertex cover
of size ≤ k .

Obs 2

If v has degree ≥ k + 1, (G , k) and (G − v , k − 1) are equivalent.

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-MaxSat
Crown decomposition
Summary

Reduction rules

The previous observations suggest a preprocessing of the
input:
Iteratively remove isolated vertices and vertices with degree at
least k + 1, decreasing the parameter by one in the second
case.

By Obs 1 and 2, the resulting instance (G ′, k ′) is equivalent to
the original instance.

Furthermore, it can be computed in polynomial time.

How big is (G ′, k ′)?

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-MaxSat
Crown decomposition
Summary

Reduced instance

Iteratively remove isolated vertices and vertices with degree at
least k + 1, decreasing the parameter by one in the second
case.

In (G ′, k ′) all the vertices have degree ≤ k.

Obs 3

If G has a vertex cover with ≤ k vertices and all the vertices have
degree ≤ k, |E (G ′)| ≤ k2.

So, we can filter as no instances those leading to reduced
instances with a high number of edges!

By Obs 3, if |E (G ′)| > k2, we replace (G ′, k ′) by a trivial
small no-instance, which is again equivalent.

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-MaxSat
Crown decomposition
Summary

Kernel

Theorem

Let (G , k) be an instance to p-VC. In polynomial time we can
obtain an equivalent p-VC instance (G ′, k ′) with
|V (G ′)|, |E (G ′)| ≤ O(k2).

Such an instance is called a kernel.

A kernel

is an equivalent instance,
can be computed in polynomial time, and
has size bounded by a function of the parameter

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-MaxSat
Crown decomposition
Summary

Kernelization algorithm

Assume that Ker-P is a polynomial time algorithm
computing a kernel for a given instance of problem P and that
Alg-P is an exact (exponential time) algorithm for P.

function AlgKernel-P(x)
z =Ker-P(x)
return (Alg-P(z))

end function

AlgKer-p-VC is an FPT algorithm for P.

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-MaxSat
Crown decomposition
Summary

A kernelization algorithm for p-VC

function AlgKernel-p-VC(G , k)
(G ′, k ′) = Iteratively remove isolated vertices and vertices
with degree at least k + 1, decreasing the parameter
by one in the second case.
if |E (G ′)| > k2 then return no
end if
for each S ⊆ V ′ with |S | = k ′ do

if S is a vertex cover then return si
end if

end for
return no

end function

AlgKernel-p-VC runs in O(nc + k2kk2) = O(nc) + O(k2k+2)

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-MaxSat
Crown decomposition
Summary

p-MaxSat

p-maxsat
Input: a Boolean CNF formula F and an integer k .
Parameter: k .
Question: Is there a variable assignment satisfying at least k clauses?

Recall that the size of a CNF formula is the sum of clause lengths
(# literals); we ignore as usual log-factors.

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-MaxSat
Crown decomposition
Summary

p-MaxSat: Reduction rules

A clause in F is trivial if it contains both a positive and
negative literal in the same variable.

Obs 1

Let F ′ be obtained from formula F by removing all t trivial
clauses. (F ′, k − t) and (F , k) are equivalent.

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-MaxSat
Crown decomposition
Summary

p-MaxSat: Reduction rules

A clause in (F , k) is long if it contains at least k literals, and
short otherwise.

If F contains at least k long clauses, (F , k) is a yes instance
of p-MaxSat.

Obs 2

Let Fs be obtained from formula F by removing all ℓ < k long
clauses. (Fs , k − ℓ) and (F , k) are equivalent.

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-MaxSat
Crown decomposition
Summary

p-MaxSat: Reduction rules

Obs 3

If F contains at least 2k clauses, (F , k) is a yes instance of
p-MaxSat.

Proof.

Take an arbitrary truth assignment x and its complement x
obtained by flipping all variables. Every clause of F is satisfied by
x or by overlinex (or by both). The one that satisfies most clauses
satisfies at least k clauses.

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-MaxSat
Crown decomposition
Summary

A kernelization algorithm for p-MaxSat

1: function AlgKernel-p-MaxSat(F , k)
2: Remove from F all t trivial clauses and set k = k − t
3: if F has at least k long clauses then return yes
4: end if
5: Remove from F all ℓ long clauses and set k = k − ℓ
6: if F has at least 2k clauses then return yes
7: end if
8: for each set of k clauses do
9: for each selection of one literal per clause in the set do

10: if selection has a compatible truth assignment then
11: return yes
12: end if
13: end for
14: end for
15: return no
16: end function

After step 5, F contains at most 2k ′ clauses with at most k ′

literals, for k ′ = k − t − ℓ.

AlgKernel-p-MaxSat is an FPT algorithm for p-MaxSat.

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-MaxSat
Crown decomposition
Summary

Crown decomposition is a general kernelization technique
based on some results on matchings.

For disjoint vertex subsets U,W of a graph G , M is a
matching of U into W if every edge of M connects a vertex of
U and a vertex of W and every vertex of U is an endpoint of
some edge of M.
We also say that M saturates U.

If M saturates U, |U| ≤ |W |
AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-MaxSat
Crown decomposition
Summary

Crown decomposition: Definition

A crown decomposition of a graph G = (V ,E ) is a
partitioning of V into three parts C , H and R, such that

C ̸= ∅ is an independent set.
There are no edges between vertices of C and R.
Removing H separates C from R.
Let E ′ be the set of edges between vertices of C and H. Then
E ′ contains a matching of H into C .

0 1 2 3

4

5

6

7

8 9

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-MaxSat
Crown decomposition
Summary

Computing a crown decomposition

Theorem (König’s theorem)

In every undirected bipartite graph the size of a maximum
matching is equal to the size of a minimum vertex cover.

Theorem (Hall’s theorem)

Let G = (V1,V2,E ) be an undirected bipartite graph. G has a
matching saturating V1 iff for all X ⊆ V1, we have |N(X )| ≥ |X |.

Can you obtain a minimum vertex cover in a bipartite graph in
polynomial time? YES!

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-MaxSat
Crown decomposition
Summary

Computing a crown decomposition

Theorem ((Hopcroft-Karp, SIAM J. Computing 2, 225–231 (1973))

Let G = (V1,V2,E ) be an undirected bipartite graph on n vertices
and m edges. Then we can find a maximum matching as well as a
minimum vertex cover of G in time O(m

√
n). Furthermore, in

time O(m
√
n) either we can find a matching saturating V1 or an

inclusion-wise minimal set X ⊆ V1 such that |N(X )| < |X |.

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-MaxSat
Crown decomposition
Summary

Crown lemma

Lemma

Let G = (V ,E ) be a graph without isolated vertices and with at
least 3k + 1 vertices. There is a polynomial-time algorithm that
either

finds a matching of size k + 1 in G ; or

finds a crown decomposition of G .

Proof

We compute a maximal matching M in G .
If |M| ≥ k + 1, we are done.

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-MaxSat
Crown decomposition
Summary

Now, 1 ≤ |M| ≤ k + 1.
Let VM be the end points of M and I = V − VM .

M is a maximal matching, so I is an independent set.

Let GI ,VM
be the bipartite subgraph induced in G by I and

VM .

In polynomial time, we compute a minimum size vertex cover
X and a maximum matching M ′ in GI ,VM

.

If |M ′| ≥ k , we are done. From now on, |M ′| ≤ k and also
|X | ≤ k .

If X ∩ VM = ∅, X = I . Then, |I | = |X | ≤ k and
|V | = |I |+ |X | ≤ k + 2k ≤ 3k!

Then, X ∩ VM ̸= ∅

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-MaxSat
Crown decomposition
Summary

We obtain a crown decomposition (C ,H,R) as follows.

Since |X | = |M ′|, every edge of the matching M ′ has exactly
one endpoint in X .

Let M∗ be the subset of M ′ such that every edge from M∗

has exactly one endpoint in X ∩ VM and let VM∗ denote the
set of endpoints of edges in M∗.

Set head H = X ∩ VM = X ∩ VM∗ , crown C = VM∗ ∩ I , and
the remaining part is R.

C is an independent set and, by construction, M∗ is a
matching of H into C .

Since X is a vertex cover of GI ,VM
, every vertex of C can be

adjacent only to vertices of H.

End proof

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-MaxSat
Crown decomposition
Summary

An example with k = 3

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-MaxSat
Crown decomposition
Summary

An example with k = 3

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-MaxSat
Crown decomposition
Summary

An example with k = 3

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-MaxSat
Crown decomposition
Summary

An example with k = 3

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-MaxSat
Crown decomposition
Summary

An example with k = 3

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-MaxSat
Crown decomposition
Summary

Crown decomposition: Vertex cover

Consider a Vertex Cover instance (G , k).

By an exhaustive application of the isolated vertex reduction
rule, we may assume that G has no isolated vertices.

If |V (G )| > 3k, we use the crown lemma to get either

a matching of size k + 1, (so (G , k) is a no-instance) or a
crown decomposition C , H, R.

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-MaxSat
Crown decomposition
Summary

Crown decomposition: Vertex cover

From the crown decomposition C , H, R of G , let M be a
matching of H into C .

The matching M witnesses that, for every vertex cover X of
G , X contains at least |M| = |H| vertices of H ∩ C to cover
the edges of M.

H covers all edges of G that are incident to H ∪ C .

So, there exists a minimum vertex cover of G that contains
H, and we may reduce (G , k) to (G − H, k − |H|).
Further, in (G − H, k − |H|), c ∈ C is isolated and can be
eliminated.

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-MaxSat
Crown decomposition
Summary

Crown decomposition: Vertex cover

As the crown lemma promises that H ̸= ∅, we can always reduce
the graph as long as |V (G )| > 3k .

Lemma

Vertex Cover admits a kernel with at most 3k vertices.

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-MaxSat
Crown decomposition
Summary

Crown decomposition: Max SAT

Lemma

Max SAT admits a kernel with at most k variables and 2k clauses.

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-MaxSat
Crown decomposition
Summary

Kernelization: summary

For parameterized problems, kernelization algorithms are a
method to obtain FPT algorithms.

These are preprocessing algorithms that can add to any
algorithmic method (e.g. approximation/exact algorithms).

Kernelization algorithms usually consist of reduction rules,
which reduce simple local structures (degree 1 vertices / high
degree vertices / long clauses, etc), and a bound f (k) for
irreducible instances (X , k) that allows us to

return no if |X | > f (k), for minimization problems, or
return yes if |X | > f (k), for maximization problems.

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-MaxSat
Crown decomposition
Summary

Designing kernelization algorithms

What are the trivial substructures, where an optimal solution
of a certain form can be guaranteed?

Is there a reduction rule reflecting this?

Can a bound be proved for irreducible instances? If not, which
structures are problematic? Etc...

Any problem in FPT admits a kernelization.

Hardness notion?

We would like to get a kernel as small as possible.

Statements like: (L, κ) does not admit a linear (quadratic)
kernel unless some complexity assumption fails are the kind of
results showing kernelization hardness.

AA-GEI Parameterization: basics classes and algorithms


	Parameterization
	Problems and parameters
	Parameterized problems
	The class FPT

	Bounded search tree
	p-vertex cover
	p-Hitting Set
	p-vertex cover(2)

	Kernelization
	p-vertex cover
	p-MaxSat
	Crown decomposition
	Summary


