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Linear programming

@ In a linear programming problem, we are given a set of
variables, an objective linear function a set of linear constrains
and want to assign real values to the variables as to:

o satisfy the set of linear inequalities (equations or constraints),
e maximize or minimize the objective function.

@ LP is a pure algebraic problem.
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Linear programming: An example

max x; + 6xp
subject to
x1 < 200
xp < 300
x1 + xo < 400

X1,x2 >0
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Linear programming: feasible region

@ A linear equality defines a hyperplane.
@ A linear inequality defines a half-space.

@ The solutions to the linear constraints lie inside a feasible
region limited by the polytope (convex polygon in R?) defined
by the linear constraints.

X2

X1
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Linear programming: infeasibility

@ A linear programming is infeasible if
o The constrains are so tight that it is impossible to satisfy all of
them.
Forex. x>2and x <1
e The constrains are so loose that the feasible region is
unbounded allowing the objective function to go to oo .
For ex. max x; + x» subject to x1,x > 0
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Linear programming: optimum

@ In a feasible linear programming the optimum is achieved at a
vertex of the feasible region.

X2
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Linear programming: standard formulation

A LP has many degrees of freedom.
@ maximization or minimization.
@ constrains could be =, >, <, < or >.

@ variables are often restricted to be non-negative, but they also
could be unrestricted.

@ standard form?
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Linear programming: standard formulation

@ From max to min (or min to max)
multiply by -1 the coefficients of the objective function.

e To reverse an inequality (for ex. > to <)
multiply all coefficients and the independent term by -1.

e From < to < (or to =)
create a new positive variable and add it with coefficient 1 to
the left par of the inequality.

@ From = to < (or to >)
put two versions one with < and the other with >, multiply
the last one by —1.

@ From x unrestricted to non-negative variables,
create two new variables x™ and x~, both non negative,
replace x by xT — x~.
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Linear programming: standard formulation

LP standard form

min c'x
s.t Ax > b
x>0

Where

o x=(x1,...,%n), ¢ =(c1,...,Cn).
o b7 = (b1,...,bm)

@ Ais a nx m matrix.
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Linear programming: problem

Given
e c=(c1,...,¢n),
o b" = (by,...,bm),
@ and a n X m matrix A.
find x = (x1,...,xp) >0, so that

@ Ax > b and ¢ x is minimized.
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Linear programming: algorithms

We can solve Linear Programming in polynomial time

Simplex method: Dantzig in 1947
(exponential time Klee and Minty 1972)

Ellipsoid method: Khachiyan 1979 (O(n®))
Interior-point method: Karmarkar 1984 (O(n?))

Most used algorithm is still Simplex (fast on average).

Many commercial LP solvers CPLEX and open source Gurobi
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Integer programming

@ An integer programming (IP) problem is a linear programming
problem with the additional restriction that the values of the
variables must be integers.

@ A mixed integer programming (MIP) problem is a linear
programming problem with the additional restriction that, the
values of some variables must be integers.

@ Many NPO problems can be easily expressed as IP or MIP
problems

@ IP is NP-hard
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Max SAT as integer program

@ Max Sat: Input a set of m clauses on n variables, find an
assignment that maximizes the number of satisfied clauses.

@ For a clause j, the set of variables that appear in C;
e positive is P(j)
e negative is N(j)
@ We consider n 4+ m integer variables,
@ Xy,...,Xn, One per each variable
@ Vi,...,Ym, One per each clause
The variables will be restricted to have values in {0,1}
This is a simplification of saying that they must hold integer
values and that all of them are < 1.
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Max SAT as integer program

Max SAT-IP
m
max ny
j=1
s.t. Zx;Jr Z(lfx,-)Zyj 1<j<m
ieP(j) ieN(j)

ye{o1}  1<j<m
x;i € {0,1} 1<i<n

The size of the IP is polynomial in the size of the Max SAT, so the
transformation is a polynomial Turing reduction from Max SAT to

IP.
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Vertex cover as integer program

VvC
Given a graph G = (V, E) we want to find aset S C V with minimum
cardinality, so that every edge in G has at least one end point in S.

VC-IP

n
min Zx,-
i=1
s.t. xi+x;>1 forall (i,j) € E
xi € {0,1} forallie V
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Weighted Vertex cover as integer program

WVC

Given a graph G = (V, A) with weights w associated to the vertices,
we want to find a set S C V with minimum weight, so that every
edge in G has at least one end point in S.

VC-IP

n
min E Wi X;
i=1

s.t. xi+x;>1 forall (i,j) € E
xi € {0,1} forallie V
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Exercise

Try to write a LP or IP formulation for the problems
@ Min Weighted Matching
@ Set cover

@ Max Flow
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Relaxation and rounding

@ Many real-life problems can be modeled as Integer Linear
Programs (IP).

@ The IP can be relaxed to a linear program (LP) by eliminating
the integrity constraints.

@ By doing so the optimum cost can only improve, i.e.,
opt of LP is better than opt of IP.

@ We can solve the LP in polynomial time.

@ The LP optimal solution might not be integral, when possible,
transform it to get a feasible integer solution not far from opt
of IP.
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Vertex cover

VvC
Given a graph G = (V, A) we want to find aset S C V with minimum
cardinality, so that every edge in G has at least one end point in S.

VC-IP VC-LP
n n
min Zx,- min ZX,‘
i=1 i=1
s.t. xi+x;>1 forall (i,j)€ E s.t. xi+x;>1 forall(i,j) € E
x; €{0,1} forallieV x>0 forallieV
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Vertex cover: another approximation algorithm

VC-LP has an optimal solution x* such that x; € {0,1,1/2}.
Furthermore, such a solution can be computed in polynomial time.

Let y be an optimal solution s.t. not all its coordinates are in {0,1,1/2}.
Set € = miny ¢r0.1,1/23{i; [¥i — 1/2[,1 — y;}. Consider

yi—e 0<y <1/2 yite 0<y <1/2
yi=qyite 12<y <1 yvii=<Syi—e 1/2<y <1
Vi otherwise Vi otherwise

Syi= Oyl +>y!)/2, so both are optimal solutions. One of them
has more {0,1,1/2} coordinates than y. ©)
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Vertex cover

function RELAX+RounD VC(G)
Construct the LP-VC associated G
Let y be an optimal relaxed solution (of the LP instance)
Using the previous lemma, construct an optimal relaxed
solution y’ such that y/ € {0,1,1/2}
Let x defined as x; =0 if y/ =0, x; = 1 otherwise.
return (x)

RELAX4RoOUND VC
@ runs in polynomial time
@ x defines a vertex cover
° 3 lixi <2371y < 2opt
@ is a 2-approximation for VC.
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Weighted vertex cover: Relax4+Round approximation

function WV C(G, c)
Construct the LP WVC, |

LP WvC y = LP.solve(l)
n fori=1,...,ndo
min Z WiX; if y; < 1/2 then
i=1 xi=0
s.t. xi+xj >1 forall(i,j) e E else
x>0 forallieV xi=1
return (x)

RELAX+RoUND WVC
@ runs in polynomial time
@ x defines a vertex cover
o >, wixi <2377 wiy; < 20pt
@ is a 2-approximation for WVC.
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Minimum 2-Satisfiability

MIN 2-SAT
Given a Boolean formula in 2-CNF, determine whether it is satisfi-
able and, in such a case, find a satisfying assignment with minimum
number of true variables.

@ 2-SAT can be solved in polynomial time.

@ MiIN 2-SAT is NP-hard.

o MiIN 2-SAT IP formulation?
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Minimum 2-Satisfiability: IP formulation

Suppose that F has n variables xi,...x, and m clauses with 2
literals per clause

IP Min 2-SAT

n
min E X;
i=1

s.t. xi+x; > 1 for all clauses (x; V x;) € F
(I—x7)+x;>1 forall clauses (X; V x;) € F
(I-x))+(1—x;)>1 forall clauses (X; VX;) € F

xi € {0,1} 1<i<n

LP Min 2-SAT is obtaining replacing x; € {0,1} by x; > 0.
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Minimum 2-Satisfiability: LP relaxation

LP Min 2-SAT

n
min in
i=1
s.t. xi+x;>1 forall clauses (x; V x;) € F
(I1—x7)+x >1 forall clauses (X;V x;) € F
(I—x)+(1—x;)>1 forall clauses (Xx; VX;) € F
x; >0 1<i<n

@ Let y be an optimal solution to LP Min 2-SAT.

o Can we use the same rounding scheme as for WV C?

@ Setting x; = 1if y; > 1/2 and x; =0 if y; < 1/2 is safe, all
clauses with at least one literal with value > 1/2 will be
satisfied.

e When y; =1/27
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Minimum 2-Satisfiability: LP relaxation

@ Let y be an optimal solution to IP Min 2-SAT.
e What to do when y; =1/27 17 07

e If F contains the clauses (x; V x;) and (X; V X;) and
yi = yj = 1/2, neither x; = x; = 1 nor x; = x; = 0 satisfy the
formula.

@ F; = clauses whose two variables have y value = 1/2.

@ Rounding those values to 1 or 0 would keep the approximation
ratio to 2, provided the constructed solution x to MIN 2-SAT
is still a satisfying assignment.

@ Any satisfying assignment for the clauses in F; and get a
2-approximation ©
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Minimum 2-Satisfiability: Relax-++Round approximation

function RELAX+ROUND MIN 2-SAT(F)

if F is not satisfiable then return false
Construct the LP Min 2-SAT, /
y = LP.solve(l)
fori=1,...,ndo

if y/ <1/2then x;=0

if y/>1/2then x; =1
F1 = clauses with both y values =1/2.
Let J={j|x € Fi}
fori=1,..., ndo

if y=1/2and i ¢ Jthen x; =1
Complete x with a satisfying assignment for F;
return (x)
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Minimum 2-Satisfiability: Relax-++Round approximation

RELAX-+ROUND MIN 2-SAT js a 2-approximation for MIN
2-SAT.
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Max Satisfiability

MAX SAT

Given a Boolean formula in CNF and weights for each clause, find a
Boolean assignment to maximize the weight of the satisfied clauses.

Suppose that F has n variables xi,...x, and m clauses Gy, ..., Cy,.

IP Max SAT
m

max Z w;z;
j=1

s.t. Zy,-—‘r Z(l—y,—)zzj- 1=1....m

x€C; Xi€C;
yi €{0,1} 1<i<n
z € {0,1} 1<;<m

LP Max SAT is obtaining replacing a € {0,1} by 0 < a < 1.

AA-GEI: Approx, Param and Stream Approximation algorithms: Linear and Integer Programming



A basic case
Relax and round Min 2-SAT
Randomized rounding

Max Satisfiability: Relax+RRound

function RELAX+RROUND(F)
Construct the LP Max SAT, /
(y,z) = LP.solve(l)
fori=1,..., ndo
Set x; = 1 with probability y;
return (x)

@ The optimal LP solution is used as an indicator of the
probability that the variable has to been set to 1.

@ The performance of a randomized algorithm is the expected
number of satisfiable clause.

@ This expectation has to be compared with opt.
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Max Satisfiability: Relax+RRound

o Let (y*,z*) be an optimal solution of LP Max SAT

@ Let Z; be the indicator random variable for the event that
clause C; is satisfied.

@ Assume that C; has k-literals and that £ of them are negated
variables.

Forany1<j<m, E[Z]] > z;(1 - 1/e).

Recall (a1 ...ax)Y* < (a1 + --- + ax)/k or equivalently
(a1...ak) < ((ar + -+ + ak) /k)*
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Max Satisfiability: Relax+RRound

Zj is an indicator random variable, and so
E[Z] = PriZi=1] =1- Pr[Z; = 0]

(k=0 — > cc Vit Ysec Vi ,
Prizi=0]= [ -y)- Hy,,< ) = 2neg Zmeg)

k
x€C; x,€G

S ((kzx;eqyf‘kzx;ecj(1Y7)>k < <@>k < (17

ElZ) > 1- (kz—[)kza* (17%)34(171/@

x|y

y
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Max Satisfiability: Relax+RRound approximation

RELAX+RROUND is a e/(e — 1)-approximation for MAX SAT.

o Let (y*,z*) be an optimal solution of LP Max SAT

@ Let Z; be the indicator r.v.a for clause C; is satisfied.
@ Let W be the r.v. weight of satisfied clauses:
W =3 w2
o E[W]=3"wE[Z] > (1-1/e)3 L wjzi > (1—1/e)opt
©
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Max Satisfiability:RandAssign

function RANDASSIGN(F)
for i=1,..., ndo
Set x; = 1 with probability 1/2
return (x)

RANDASSIGN is a 2-approximation for MAX SAT.

E[W] = wiE[Z] = > wy (1 — ()b
Lopt.

We move from r = 2 (RANDASSIGN) to r = 1.581977
(RELAX-+RROUND).
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Max Satisfiability:Best2

function BEST2(F)
x1, Wi = RANDASSIGN(F)
x2, Wo = RELAX-+RROUND(F)
if Wi > W5 then
return (xq)
else
return (x)

BEST2 is a 4/3 (1.33333)-approximation for MAX SAT.
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Max Satisfiability:Best2

o E[W] = E[max{Wi, Wa}] > E[(W1 + Wa)/2}].
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Max Satisfiability:Best2

17 1 1\ ,_ 3.,
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© LP Duality
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