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Three NP complete problems

vertex coloring
Given a graph G and an integer k ,
∃σ : V (G ) → {1, . . . , k} | ∀{u, v} ∈ E (G )σ(u) ̸= σ(v)?

independent set
Given a graph G and an integer k ,
∃S ⊆ V (G ) | |S | = k and ∀{u, v} ∈ E (G )|{u, v} ∩ S | ≤ 1?

vertex cover
Given a graph G and an integer k ,
∃S ⊆ V (G ) | |S | = k and ∀{u, v} ∈ E (G )|{u, v} ∩ S | ≥ 1?

Is there any difference from a computational point of view?
Let’s look to exact algorithms.
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Vertex Coloring

vertex coloring
Given a graph G and an integer k ,
∃σ : V (G ) → {1, . . . , k} | ∀{u, v} ∈ E (G )σ(u) ̸= σ(v)?

Brute force algorithm that checks all color assignments:

takes time O(n2kn) time.
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Independent Set

independent set
Given a graph G and an integer k ,
∃S ⊆ V (G ) | |S | = k and ∀{u, v} ∈ E (G )|{u, v} ∩ S | ≤ 1?

Brute force algorithm that checks all subsets with k vertices

takes time O(nk+1) time.
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Vertex Cover

vertex cover
Given a graph G and an integer k ,
∃S ⊆ V (G ) | |S | = k and ∀{u, v} ∈ E (G )|{u, v} ∩ S | ≥ 1?

Brute force algorithm that checks all subsets with k vertices

takes time O(nk+1) time.

A better algorithm?
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Vertex Cover

function algVC(G , k)
if |E (G )| = 0 then

return true
end if
if k = 0 then

return false
end if
Select and edge e = {u, v} ∈ E (G )
return algVC(G − u, k − 1) or algVC(G − v , k − 1)

end function

Correctly solves the problem and takes time O(m2k)
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Algorithms cost

Given a graph G and an integer k :

Vertex coloring: O(n2kn)

Independent Set: O(nk+1)

Vertex Cover: O(m2k)
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Algorithms cost

Given a graph G and an integer k :

Vertex coloring: O(n2kn)

Independent Set: O(nk+1)

Vertex Cover: O(m2k)

The dependence on |G | and k are different!
For constant k :

Vertex coloring: O(n2kn) exponential

Independent Set: O(nk+1) polynomial

Vertex Cover: O(m2k) polynomial
(even for k = O(log n))

Objective: Find slices of the problem having efficient algorithms
Slice: The instances with a particular value of a parameter
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Natural small parameters

VLSI design: the number of layers in a chip is below 10.

Biology: DNA chains in many cases have path width below 11

Robotics: The robot movements have small dimension

Compilers: Type compatibility is usually EXP-complete,
however typical type declaration have small depth

Optimization problem: the measure of the optimal solution is
small

A problem might have more than one parameter of interest
and the behavior with respect to different parameters might
be different.
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Parameterized problems

Given an alphabet Σ to represent the inputs to decision problems,

A parameterization of Σ∗ is a mapping κ : Σ∗ → N that can
be computed in polynomial time.

A parameterized problem (with respect to Σ) is a pair (L, κ)
where L ⊆ Σ∗ and κ is a parameterization of Σ∗.

Parameterized problems are decision problems together with a
parameterization.

A problem can be analyzed under different parameterizations.
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Parameterized problem: An example

sat
Given a cnf formula F ,
is there a satisfying assignment for F?

Consider κ : Σ∗ → N

κ(w) =

{
# of variables in F if w codifies F

−3 otherwise

κ is a parameterization Why?

p#var-sat
Input: A cnf formula F ,
Parameter: The number of variables in F
Question: is there a satisfying assignment for F?
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Parameterized problem: An example

sat
Given a cnf formula F ,
is there a satisfying assignment for F?

Consider κ : Σ∗ → N

κ(w) =

{
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0 otherwise

κ is a parameterization.
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Question: is there a satisfying assignment for F?
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The NPO class: Natural parameterization

Recall that an optimization problem is a structure
P = (I, sol,m, goal)
The bounded version of an optimization problem is the
decision problem

Given x ∈ I and an integer k
Is there y ∈ sol(x) such that m(x , y) ⩽ k?
Given x ∈ I and an integer k
Is there a solution y ∈ sol(x) such that m(x , y) ⩾ k?

The natural parameterization is the function κ(x , k) = k
(basically deals with x with small opt(x))
p-Π
Input: x ∈ I and an integer k,
Parameter: k
Question: Is there a solution y ∈ sol(x) such that m(x , y) ⩽ (⩾)k?
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Graph problems and parameters

Let G be a graph and k a natural number.

The function κ(G , k) = k is used to define the parameterized
problems

p-Independent Set
p-Vertex Coloring
p-Vertex Cover
p-Dominating Set
p-Clique
etc.

For problems on graphs we can use other graph properties to
define graph parameters like max degree or diameter.
Or any other graph parameter of interest.
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FPT: Fixed Parameter Tractable Parameterized Problems

For an alphabet Σ and a parameterization κ.

A is an FPT algorithm with respect to κ if there are
a computable function f and a polinomial function p such that
for each x ∈ Σ∗, A on input x requires time f (κ(x))p(|x |)

A parameterized problem (L, κ) belongs to FPT if there is an
FPT-algorithm with respect to κ that decides L.

We have show that there is an algorithm for Vertex Cover
requiring O(|E (G )|2k) time
p-Vertex Cover belongs to FPT!
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Other classes (hard parameterized problems)

paraNP
(L, κ) belongs to paraNP if there is a non-deterministic
algorithm A that decides x ∈ L in time f (κ(x))p(|x |),
for computable function f and polynomial function p.

If L ∈ NP, for each parameterization κ, (L, κ) ∈ paraNP
p-Clique, p-Vertex Cover, . . . belong to paraNP.
paraNP is the counterpart of NP in classic complexity.

XP
(L, κ) belongs to (uniform) XP if there is an algorithm A that
decides x ∈ L in time O(|x |f (κ(x))), for a computable function
f .
p-Clique, p-Vertex Cover, p-Hitting Set,
p-Dominating Set belong to XP.
XP is the counterpart of EXP in classic complexity.

In between FPT and those classes it is placed the W-hierarchy
W[1], W[2] . . . defined through logic/circuit characterizations
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p-Vertex Cover

p-vc
Input: a graph G and an integer k ,
Parameter: k
Question: ∃S ⊆ V (G ) | |S | = k and ∀{u, v} ∈ E (G )|{u, v} ∩ S | ≥ 1?

function algVC(G , k)
if |E (G )| = 0 then

return true
end if
if k = 0 then

return false
end if
Select and edge e = {u, v} ∈ E (G )
return algVC(G − u, k − 1) or algVC(G − v , k − 1)

end function
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function algVC(G , k)
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end if
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end if
Select and edge e = {u, v} ∈ E (G )
return algVC(G − u, k − 1) or algVC(G − v , k − 1)
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p-Vertex Cover

algVC correctly solves the problem and takes time
O((n +m)2k) thus p-Vertex Cover belongs to FPT

algVC is a branching algorithm (two recursive calls) of
bounded (by the parameter) depth

As usual recursive calls are made to smaller instances (in some
sense).

Such type of recursive algorithm is called a bounded search
tree algorithm.

If we have a constant bound on the number of recursive calls,
depth bounded by the parameter, and polynomial cost per
call, the resulting algorithm is an FPT algorithm.
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Hitting Set

hitting set
Input: a collection of subsets S = (S1, . . . ,Sm) of U = {1, . . . , n}
and an integer k .
Question: ∃A ⊆ U | |A| = k and ∀X ∈ S |X ∩ A| ≥ 1?

For a set family S, let d(S) = max{|A| | A ∈ S}
The function κ(S, k) = k + d(S) is a parameterization

p-hitting set
Input: A collection of subsets S = (S1, . . . ,Sm) of U = {1, . . . , n}
and an integer k ,
Parameter: k + d(S)
Question: ∃A ⊆ U | |A| = k and ∀X ∈ S |X ∩ A| ≥ 1?
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p-Hitting Set

function algHS(U,S, k)
if |S| = 0 then

return true
end if
if k = 0 then

return false
end if
Select a set X ∈ S
for all v ∈ X do

V = U − {v}; Sv = {X ∈ S | v /∈ X}
if algHS(V ,Sv , k − 1) then

return (true)
end if

end for
return false

end function

Solves p-Hitting Set in time?
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p-Hitting Set

Let s = |U|+
∑m

j=1 |Sj |

Let T (s, k , d) be the number of steps of algHS for inputs
with d(S) ≤ d .

T (s, 0, d) = O(1)
T (s, k , d) ≤ dT (s, k − 1, d) + O(s), for k > 0

When d ≥ 2 and k ≥ 0, there is a constant c (with respect to
s and k) such that the above terms O(1) and O(s) are ≤ c s.

T (s, k, d) ≤ dT (s, k − 1, d) + c s

≤ d(dT (s, k − 2, d) + c s) + c s

≤ d2T (s, k − 2, d) + (d + 1)c s

using the above inequalities it is easy to prove that
T (s, k , d) ≤ (2dk − 1)c s.
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Lemma

p-Hitting Set belongs to FPT
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Bounded search tree technique

The FPT algorithms for p-Vertex Cover and
p-card-Hitting Set are exact algorithms for Vertex
Cover and Hitting Set respectively.

When the parameter is unbounded the algorithms take
exponential time.

We get FPT algorithm because the depth and/or branching of
the recursion are function of the parameter.

This algorithmic technique is called bounded search trees.

As a design tool we have to look for parameterizations
allowing a recursive algorithm with those characteristics.
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A faster algorithm for p-VC

Recall some notation

For a graph G and v ∈ V (G ), G − v denotes the graph
obtained by deleting v (and all incident edges).

For a set S , S + v denotes S ∪{v}, and S − v denotes S \{v}.
For a vertex v ∈ V (G ), N(v) denotes the set of neighbors of
v . N[v ] = N(v) + v . d(v) = |N(v)|.
For a graph G = (V ,E ), δ(G ) = minv∈V d(v), and
∆(G ) = maxv∈V d(v).
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Vertex with degree 1

If G contains a vertex u with N(u) = {v}, then there is a
minimum vertex cover of G that contains v (but not u) .

In such a case,
G has a k-VC iff G − u − v has a (k − 1)-VC

The recursion can skip a branching!

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-Hitting Set
p-vertex cover(2)

Vertex with degree 1

If G contains a vertex u with N(u) = {v}, then there is a
minimum vertex cover of G that contains v (but not u) .

In such a case,
G has a k-VC iff G − u − v has a (k − 1)-VC

The recursion can skip a branching!

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-Hitting Set
p-vertex cover(2)

Vertex with degree 1

If G contains a vertex u with N(u) = {v}, then there is a
minimum vertex cover of G that contains v (but not u) .

In such a case,

G has a k-VC iff G − u − v has a (k − 1)-VC

The recursion can skip a branching!

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-Hitting Set
p-vertex cover(2)

Vertex with degree 1

If G contains a vertex u with N(u) = {v}, then there is a
minimum vertex cover of G that contains v (but not u) .

In such a case,
G has a k-VC iff G − u − v has a (k − 1)-VC

The recursion can skip a branching!

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-Hitting Set
p-vertex cover(2)

Vertex with degree 1

If G contains a vertex u with N(u) = {v}, then there is a
minimum vertex cover of G that contains v (but not u) .

In such a case,
G has a k-VC iff G − u − v has a (k − 1)-VC

The recursion can skip a branching!

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-Hitting Set
p-vertex cover(2)

Vertex with degree 2

If G contains a vertex u with N(u) = {v ,w}, then
there is a minimum vertex cover of G that contains all
neighbors of v and w , or
there is a minimum vertex cover of G that contains v and w .

Let S be a minimum vertex cover. If v ,w /∈ S , S must
contains all neighbors of v and w . If S contains v but not w ,
S must contain u. But then, S − u + w is also a minimum
vertex cover, which contains v and w .

In such a case,
G has a k-VC iff G − u − v has a (k − 2)-VC or
G − N[v ]− N[w ] has a (k − x)-VC, for x = |N(v) ∪ N(w)|.
If δ(G ) ≥ 2, x ≥ 2. The recursion can jump to a smaller
problem in one step!
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Vertex with degree ≥ 3

If G contains a vertex u with d(u) ≥ 3, then

there is a minimum vertex cover of G that contains u, or
there is a minimum vertex cover of G that contains N(u).

In such a case,
G has a k-VC iff G − u has a (k − 1)-VC or G − N[u] has a
(k − d(u))-VC.

The recursion can jump to a smaller problem in one branch!
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A faster algorithm for p-VC

FastVC:

If there is a vertex with degree one, use recursion of degree 1
vertices.
If there is a vertex with degree two, use recursion of degree 2
vertices.
Otherwise, use recursion of degree ≥ 3 vertices.
Stop recursion on base cases, graph has no edges (yes), k = 0
and edges (no).

How to get a bound in the cost? Guess and prove by
induction!

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-Hitting Set
p-vertex cover(2)

A faster algorithm for p-VC

FastVC:

If there is a vertex with degree one, use recursion of degree 1
vertices.
If there is a vertex with degree two, use recursion of degree 2
vertices.
Otherwise, use recursion of degree ≥ 3 vertices.

Stop recursion on base cases, graph has no edges (yes), k = 0
and edges (no).

How to get a bound in the cost? Guess and prove by
induction!

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-Hitting Set
p-vertex cover(2)

A faster algorithm for p-VC

FastVC:

If there is a vertex with degree one, use recursion of degree 1
vertices.
If there is a vertex with degree two, use recursion of degree 2
vertices.
Otherwise, use recursion of degree ≥ 3 vertices.
Stop recursion on base cases, graph has no edges (yes), k = 0
and edges (no).

How to get a bound in the cost? Guess and prove by
induction!

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-Hitting Set
p-vertex cover(2)

A faster algorithm for p-VC

FastVC:

If there is a vertex with degree one, use recursion of degree 1
vertices.
If there is a vertex with degree two, use recursion of degree 2
vertices.
Otherwise, use recursion of degree ≥ 3 vertices.
Stop recursion on base cases, graph has no edges (yes), k = 0
and edges (no).

How to get a bound in the cost?

Guess and prove by
induction!

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-Hitting Set
p-vertex cover(2)

A faster algorithm for p-VC

FastVC:

If there is a vertex with degree one, use recursion of degree 1
vertices.
If there is a vertex with degree two, use recursion of degree 2
vertices.
Otherwise, use recursion of degree ≥ 3 vertices.
Stop recursion on base cases, graph has no edges (yes), k = 0
and edges (no).

How to get a bound in the cost? Guess and prove by
induction!

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-Hitting Set
p-vertex cover(2)

A faster algorithm for p-VC

Theorem

The search tree corresponding to FastVC has at most 1.47k

leaves.

Proof.

By induction over k.

If k = 0, we can decide in polynomial time if there is a 0-VC
(there are no edges), so no recursive calls, only one node in
the recursive search tree.

If k ≥ 1, then there are 3 cases:
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A faster algorithm for p-VC

Proof.

G contains a degree 1 vertex, continue with the single
instance (G − v , k − 1), which by induction yields
1.47k−1 < 1.47k leaves.

G contains a degree 2 vertex, branch into two cases
(G ′, k − 2) and (G ′′, k − x), but as δ(G ) > 1, x ≥ 2. By
induction, the total number of leaves is at most
2 · 1.47k−2 ≤ 1.47k .

G contains a degree d ≥ 3 vertex, branch into two cases
(G ′, k − 1) and (G ′′, k − d). By induction, the total number
of leaves is at most 1.47k−1 + 1.47k−3 ≤ 1.47k .
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A faster algorithm for p-VC

Theorem

FastVC has cost O(1.47kp(n +m)), for some polynomial p
besides the constant in O is also constant with respect to the
parameter k.
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Kernelization

Kernelization is a technique to obtain FPT algorithms for a
parameterized problem (L, κ).

Based in auto-reductions

We look for a polynomial time algorithm that transforms an
instance x in another instance x ′ of the problem (the kernel).
So that

x ′ is a yes instance iff x is a yes instance.
x and x ′ are equivalent instances
the size of x ′ is upperbounded by f (κ(x)), for some
computable function f .

An algorithm that computes x ′ and solves by brute force this
instance has cost
O(p(|x |) + g(f (κ(x))
So, it is an FPT algorithm provided the problem is decidible.
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k-Vertex Cover: reduction rules?

Often a kernelization is defined through reduction rules that,
either allow us to produce an smaller equivalent instance or to
show that, the original instance is a NO instance.

Technically, we could produce a NO instance of constant size,
however we often see the construction as a preprocesing step
that has the possibility of saying NO, and will do that as soon
as possible.

Let’s look at a first kernelization for p-VC.

p-vertex cover
Input: a graph G and an integer k ,
Parameter: k
Question: ∃S ⊆ V (G ) | |S | = k and ∀{u, v} ∈ E (G )|{u, v} ∩ S | ≥ 1?
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k-Vertex Cover: reduction rules?

Let (G , k) be a k-VC instance.

recall: Two instances x1 and x2 of decision probem P are
equivalent when ”x1 ∈ P iff x2 ∈ P”.

An isolated vertex has degree zero. Therefore it does not
cover any edge!

Obs 1

If v is an isolated vertex, (G , k) and (G − v , k) are equivalent.

A vertex with degree ≥ k + 1 must be part of a vertex cover
of size ≤ k .

Obs 2

If v has degree ≥ k + 1, (G , k) and (G − v , k − 1) are equivalent.
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Reduction rules

The previous observations suggest a preprocessing of the
input:

Iteratively remove isolated vertices and vertices with degree at
least k + 1, decreasing the parameter by one in the second
case.

By Obs 1 and 2, the resulting instance (G ′, k ′) is equivalent to
the original instance.

Furthermore, it can be computed in polynomial time.

How big is (G ′, k ′)?
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Reduced instance

Iteratively remove isolated vertices and vertices with degree at
least k + 1, decreasing the parameter by one in the second
case.

In (G ′, k ′) all the vertices have degree ≤ k.

Obs 3

If G has a vertex cover with ≤ k vertices and all the vertices have
degree ≤ k, |E (G ′)| ≤ k2.

So, we can filter as no instances those leading to reduced
instances with a high number of edges!

By Obs 3, if |E (G ′)| > k2, we replace (G ′, k ′) by a trivial
small no-instance, which is again equivalent.
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Kernel

Theorem

Let (G , k) be an instance to p-VC. In polynomial time we can
obtain an equivalent p-VC instance (G ′, k ′) with
|V (G ′)|, |E (G ′)| ≤ O(k2).

Such an instance is called a kernel.

A kernel

is an equivalent instance,
can be computed in polynomial time, and
has size bounded by a function of the parameter
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Kernelization algorithm

Assume that Ker-P is a polynomial time algorithm
computing a kernel for a given instance of problem P and that
Alg-P is an exact (exponential time) algorithm for P.

function AlgKernel-P(x)
z =Ker-P(x)
return (Alg-P(z))

end function

AlgKer-p-VC is an FPT algorithm for P.
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A kernelization algorithm for p-VC

function AlgKernel-p-VC(G , k)
(G ′, k ′) = Iteratively remove isolated vertices and vertices
with degree at least k + 1, decreasing the parameter
by one in the second case.
if |E (G ′)| > k2 then return no
end if
for each S ⊆ V ′ with |S | = k ′ do

if S is a vertex cover then return si
end if

end for
return no

end function

AlgKernel-p-VC runs in O(nc + k2kk2) = O(nc) + O(k2k+2)
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p-MaxSat

p-maxsat
Input: a Boolean CNF formula F and an integer k .
Parameter: k .
Question: Is there a variable assignment satisfying at least k clauses?

Recall that the size of a CNF formula is the sum of clause lengths
(# literals); we ignore as usual log-factors.

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-MaxSat
Crown decomposition
Summary

p-MaxSat

p-maxsat
Input: a Boolean CNF formula F and an integer k .
Parameter: k .
Question: Is there a variable assignment satisfying at least k clauses?

Recall that the size of a CNF formula is the sum of clause lengths
(# literals); we ignore as usual log-factors.

AA-GEI Parameterization: basics classes and algorithms



Parameterization
Bounded search tree

Kernelization

p-vertex cover
p-MaxSat
Crown decomposition
Summary

p-MaxSat: Reduction rules

A clause in F is trivial if it contains both a positive and
negative literal in the same variable.

Obs 1

Let F ′ be obtained from formula F by removing all t trivial
clauses. (F ′, k − t) and (F , k) are equivalent.
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p-MaxSat: Reduction rules

A clause in (F , k) is long if it contains at least k literals, and
short otherwise.

If F contains at least k long clauses, (F , k) is a yes instance
of p-MaxSat.

Obs 2

Let Fs be obtained from formula F by removing all ℓ < k long
clauses. (Fs , k − ℓ) and (F , k) are equivalent.
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p-MaxSat: Reduction rules

Obs 3

If F contains at least 2k clauses, (F , k) is a yes instance of
p-MaxSat.

Proof.

Take an arbitrary truth assignment x and its complement x
obtained by flipping all variables. Every clause of F is satisfied by
x or by overlinex (or by both). The one that satisfies most clauses
satisfies at least k clauses.
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A kernelization algorithm for p-MaxSat

1: function AlgKernel-p-MaxSat(F , k)
2: Remove from F all t trivial clauses and set k = k − t
3: if F has at least k long clauses then return yes
4: end if
5: Remove from F all ℓ long clauses and set k = k − ℓ
6: if F has at least 2k clauses then return yes
7: end if
8: for each set of k clauses do
9: for each selection of one literal per clause in the set do

10: if selection has a compatible truth assignment then
11: return yes
12: end if
13: end for
14: end for
15: return no
16: end function

After step 5, F contains at most 2k ′ clauses with at most k ′

literals, for k ′ = k − t − ℓ.

AlgKernel-p-MaxSat is an FPT algorithm for p-MaxSat.
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Crown decomposition is a general kernelization technique
based on some results on matchings.

For disjoint vertex subsets U,W of a graph G , M is a
matching of U into W if every edge of M connects a vertex of
U and a vertex of W and every vertex of U is an endpoint of
some edge of M.
We also say that M saturates U.

If M saturates U, |U| ≤ |W |
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Crown decomposition: Definition

A crown decomposition of a graph G = (V ,E ) is a
partitioning of V into three parts C , H and R, such that

C ̸= ∅ is an independent set.
There are no edges between vertices of C and R.
Removing H separates C from R.
Let E ′ be the set of edges between vertices of C and H. Then
E ′ contains a matching of H into C .
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Computing a crown decomposition

Theorem (König’s theorem)

In every undirected bipartite graph the size of a maximum
matching is equal to the size of a minimum vertex cover.

Theorem (Hall’s theorem)

Let G = (V1,V2,E ) be an undirected bipartite graph. G has a
matching saturating V1 iff for all X ⊆ V1, we have |N(X )| ≥ |X |.

Can you obtain a minimum vertex cover in a bipartite graph in
polynomial time?

YES!
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Computing a crown decomposition

Theorem ((Hopcroft-Karp, SIAM J. Computing 2, 225–231 (1973))

Let G = (V1,V2,E ) be an undirected bipartite graph on n vertices
and m edges. Then we can find a maximum matching as well as a
minimum vertex cover of G in time O(m

√
n). Furthermore, in

time O(m
√
n) either we can find a matching saturating V1 or an

inclusion-wise minimal set X ⊆ V1 such that |N(X )| < |X |.
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Crown lemma

Lemma

Let G = (V ,E ) be a graph without isolated vertices and with at
least 3k + 1 vertices. There is a polynomial-time algorithm that
either

finds a matching of size k + 1 in G ; or

finds a crown decomposition of G .

Proof

We compute a maximal matching M in G .
If |M| ≥ k + 1, we are done.
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Now, 1 ≤ |M| ≤ k + 1.
Let VM be the end points of M and I = V − VM .

M is a maximal matching, so I is an independent set.

Let GI ,VM
be the bipartite subgraph induced in G by I and

VM .

In polynomial time, we compute a minimum size vertex cover
X and a maximum matching M ′ in GI ,VM

.

If |M ′| ≥ k , we are done. From now on, |M ′| ≤ k and also
|X | ≤ k .

If X ∩ VM = ∅, X = I . Then, |I | = |X | ≤ k and
|V | = |I |+ |X | ≤ k + 2k ≤ 3k!

Then, X ∩ VM ̸= ∅
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We obtain a crown decomposition (C ,H,R) as follows.

Since |X | = |M ′|, every edge of the matching M ′ has exactly
one endpoint in X .

Let M∗ be the subset of M ′ such that every edge from M∗

has exactly one endpoint in X ∩ VM and let VM∗ denote the
set of endpoints of edges in M∗.

Set head H = X ∩ VM = X ∩ VM∗ , crown C = VM∗ ∩ I , and
the remaining part is R.

C is an independent set and, by construction, M∗ is a
matching of H into C .

Since X is a vertex cover of GI ,VM
, every vertex of C can be

adjacent only to vertices of H.

End proof
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An example with k = 3
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Crown decomposition: Vertex cover

Consider a Vertex Cover instance (G , k).

By an exhaustive application of the isolated vertex reduction
rule, we may assume that G has no isolated vertices.

If |V (G )| > 3k, we use the crown lemma to get either

a matching of size k + 1, (so (G , k) is a no-instance) or a
crown decomposition C , H, R.
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Crown decomposition: Vertex cover

From the crown decomposition C , H, R of G , let M be a
matching of H into C .

The matching M witnesses that, for every vertex cover X of
G , X contains at least |M| = |H| vertices of H ∩ C to cover
the edges of M.

H covers all edges of G that are incident to H ∪ C .

So, there exists a minimum vertex cover of G that contains
H, and we may reduce (G , k) to (G − H, k − |H|).
Further, in (G − H, k − |H|), c ∈ C is isolated and can be
eliminated.
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Crown decomposition: Vertex cover

As the crown lemma promises that H ̸= ∅, we can always reduce
the graph as long as |V (G )| > 3k .

Lemma

Vertex Cover admits a kernel with at most 3k vertices.
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Crown decomposition: Max SAT

Lemma

Max SAT admits a kernel with at most k variables and 2k clauses.
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Kernelization: summary

For parameterized problems, kernelization algorithms are a
method to obtain FPT algorithms.

These are preprocessing algorithms that can add to any
algorithmic method (e.g. approximation/exact algorithms).

Kernelization algorithms usually consist of reduction rules,
which reduce simple local structures (degree 1 vertices / high
degree vertices / long clauses, etc), and a bound f (k) for
irreducible instances (X , k) that allows us to

return no if |X | > f (k), for minimization problems, or
return yes if |X | > f (k), for maximization problems.
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Designing kernelization algorithms

What are the trivial substructures, where an optimal solution
of a certain form can be guaranteed?

Is there a reduction rule reflecting this?

Can a bound be proved for irreducible instances? If not, which
structures are problematic? Etc...

Any problem in FPT admits a kernelization.

Hardness notion?

We would like to get a kernel as small as possible.

Statements like: (L, κ) does not admit a linear (quadratic)
kernel unless some complexity assumption fails are the kind of
results showing kernelization hardness.
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