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Primal dual algorithms

Primal-Dual algorithms iterate obtaining primal/dual feasible
solutions by increasing values of variables until a restriction is
tight (fulfilled with equality).

If at some point objective functions match, we have found an
optimal solution.

If at some point relaxed complementary slackness holds, for
some r , we have found a r -approximate solution.
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Bipartite graphs

Maximum Weight Matching in Bipartite Graphs)
(MWM-BG)
Given a bipartite graph G = (A,B,E ) and a weight function
w : E → R find a matching of maximum weight where the weight
of matching M is given by w(M) =

∑
e∈M w(e).

Minimum Weight Perfect Matching on Bipartite
Graphs)(mWPM-BG)
Given a bipartite graph G = (A,B,E ) and a weight function
w : E → R ∪∞ find a matching of maximum weight where the
weight of matching M is given by w(M) =

∑
e∈M w(e).

Is MWM-BG ≤ mWPM-BG? YES!, even for complete bipartite
graphs with |A| = |B|!
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ILP for MWPM-BG

min
∑

a∈A,b∈B
w(a, b)xa,b

s.t.
∑
b∈B

xa,b = 1 ∀ a ∈ A∑
a∈A

xa,b = 1 ∀ b ∈ B

xa,b ∈ {0, 1} ∀ a ∈ A, b ∈ B

In the LP relaxation, the last changes to xa,b ≥ 0 ∀ a ∈ A, b ∈ B
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ILP for MWPM-BG: The dual of the relaxed LP

Primal

min
∑

a∈A,b∈B
w(a, b)xa,b

s.t.
∑
b∈B

xa,b = 1 ∀ a ∈ A∑
a∈A

xa,b = 1 ∀ b ∈ B

xa,b ≥ 0 ∀ a ∈ A, b ∈ B

The dual has a variable for each
vertex ya, yb and the form

max
∑
a∈A

ya +
∑
b∈B

yb

s.t. ya + yb ≤ w(a, b) ∀ a ∈ A, b ∈ B

ya ≥ 0 ∀ a ∈ A

yb ≥ 0 ∀ b ∈ B
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ILP for MWPM-BG: tight edges

An edge e = (a, b) is tight, for a dual feasible solution y , if
ya + yb = w(e).

Let ŷ be dual-feasible, and let M be a perfect matching in
G = (A,B,E ), then

w(M) =
∑

(a,b)∈M

w(a, b) ≥
∑

(a,b)∈M

(ŷa + ŷb) ≥
∑
a∈A

ŷa +
∑
b∈B

ŷb

The first inequality by feasibility and the second because M is a
perfect matching.

If all edges in M are tight equality holds and M is optimal.
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(ŷa + ŷb) ≥
∑
a∈A
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MWPM-BG: Primal dual algorithm

The primal dual algorithm starts with a dual feasible solution,
and a matching.

At each time step it improves the number of tight edges and
the weight of the matching, until the matching is perfect.

At this point an optimal solution has been found.
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MWPM-BG: Primal dual algorithm

function Primal-Dual MWPM-BG(A,B,E ,w)
yb = 0, for b ∈ B and ya = minb w(a, b), for a ∈ A
E ′ = set of tight edges
M = max cardinality matching in G ′ = (A,B,E ′)
while M is not a perfect matching do−→

E = {e ∈ E ′e /∈ M (as
−→
AB)} ∪ {e ∈ M (as

−→
BA)}

D = (A ∪ B,
−→
E ) % a directed graph.

L = {v ∈ A ∪ B | v is reachable in D from an
unmatched vertex in A}

ϵ = mina∈A∩L(w(a, b)− ya − yb)
ya = ya + ϵ, for a ∈ A ∩ L and yb = yb − ϵ, for b ∈ B ∩ L
E ′ = set of tight edges
M = max cardinality matching in G ′ = (A,V ,E ′)

return M
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MWPM-BG: Primal dual algorithm

Claim

After one iteration of the while loop

y is a feasible dual solution.

The number of tight edges strictly increases.

Theorem

Algorithm Primal-Dual MWPM-BG terminates in
O(|A ∪ B|3) iterations.
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Primal-Dual for vertex cover

vc
Given a graph G = (V ,E ), we want to find a set S , with minimum
number of vertices, so that every edge in G has at least one end point
in S .

We know how to formulate VC as an IP problem

We know how to relax the IP formulation as LP problem

We know how to compute the dual of the LP problem
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Vertex cover: LP relaxation

IP

min
n∑

i=1

xi

s.t. xi + xj ≥ 1 for all (i , j) ∈ E

xi ∈ {0, 1} for all i ∈ V

LP

min
n∑

i=1

xi

s.t. xi + xj ≥ 1 for all(i , j) ∈ E

xi ≥ 0 for all i ∈ V

Let opt be the size of an optimal solution of the VC instance.

Let x∗ be an optimal solution of the LP and s∗ =
∑n

i=1 x
∗
i .

s∗ ≤ opt

AA-GEI: Approx, Param and Stream Linear Programming approximation: Primal Dual algorithms
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Vertex cover: Primal-Dual approximation

LP primal

min
n∑

i=1

xi

s.t. xi + xj ≥ 1 e = (i , j) ∈ E

xi ≥ 0 i ∈ V

LP dual

max
∑
e∈E

ze

s.t.
∑
i∈e

ze ≤ 1 for all i ∈ V

ze ≥ 0 for all e ∈ E

Start with the integer
infeasible primal solution
x = 0, and the dual feasible
solution z = 0.

Repeat while some
constraint in primal is
unsatisfied:

Increase all (unfrozen)
variables ze until some
dual constraint becomes
tight (say, for vertex i).
Set xi = 1. Freeze all the
variables ze such that
i ∈ e.
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Vertex cover: Primal-Dual approximation

When the process stops, we have increased the variables ze
suitably.

Some vertices i were chosen (xi = 1)

This set S of vertices is our output.

Is S a vertex cover?
Otherwise, we would have continued as some primal
constraint were still unsatisfied.

Cost of the solution?
At the end of the algorithm x , z are feasible. Relaxed
complementary slackness?.

AA-GEI: Approx, Param and Stream Linear Programming approximation: Primal Dual algorithms
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Primal-Dual approximation: relaxed complementary
conditions

Two conditions hold:

Primal:
If xi > 0, we have frozen xi = 1 at some step,
then

∑
i∈e ze = 1.

Dual:
If ze > 0, ze is increased. We do not know if it is because for
one or both endpoints the constraints got tight, but
xi + xj ≤ 2 ≤ 2ci , for e = (i , j).

So, relaxed complementary slackness conditions hold for
r = 2. A 2-approximation .
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Primal-Dual for weighted vertex cover

wvc
Given a vertex weighted graph G = (V ,A, c) we want to find a set
S ⊂ V with minimum weight, so that every edge in G has at least
one end point in S .

The problem is NP-hard and belongs to NPO.

Can we formulate WVC as an IP problem?

Variables: x1 . . . xn, xi = 1 iff i ∈ S .

Objective functon:
∑n

i=1 cixi .

Restrictions: for every edge (i , j) ∈ E , xi + xj ≥ 1

xi ∈ {0, 1}
The IP can be computed in polytime.

AA-GEI: Approx, Param and Stream Linear Programming approximation: Primal Dual algorithms
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Weighted vertex cover: LP relaxation

IP

min
n∑

i=1

cixi

s.t. xi + xj ≥ 1 for all (i , j) ∈ E

xi ∈ {0, 1} for all i ∈ V

LP

min
n∑

i=1

cixi

s.t. xi + xj ≥ 1 for all(i , j) ∈ E

xi ≥ 0 for all i ∈ V
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Weighted vertex cover: Primal-Dual approximation

LP primal

min
n∑

i=1

cixi

s.t. xi + xj ≥ 1 for all(i , j) ∈ E

xi ≥ 0 for all i ∈ V

LP dual

max
∑
e∈E

ze

s.t.
∑
i∈e

ze ≤ ci for all i ∈ V

ze ≥ 0 for all e ∈ E

Start with the integer
infeasible primal solution
x = 0, and the dual feasible
solution z = 0.

Repeat while some
constraint in primal is
unsatisfied:

Increase all (unfrozen)
variables ze until some
dual constraint becomes
tight (say, for vertex i).
Set xi = 1. Freeze all the
variables ze such that
i ∈ e.

AA-GEI: Approx, Param and Stream Linear Programming approximation: Primal Dual algorithms
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Weighted vertex cover: Primal-Dual approximation

When the process stops, we have increased the variables ze
suitably.

Some vertices i were chosen (xi = 1)

This set S of vertices is our output and again is a vertex cover.

Cost of the solution? x , z are feasible. Relaxed
complementary slackness conditions?

AA-GEI: Approx, Param and Stream Linear Programming approximation: Primal Dual algorithms
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Primal-Dual approximation: relaxed complementary
conditions

Two conditions hold:

Primal:
If xi > 0, we have frozen xi = 1 at some step,
then

∑
i∈e ze = ci .

Dual:
If ze > 0, ze is increased. We do not know if it is because for
one or both endpoints the constraints got tight, but
xi + xj ≤ 2 ≤ 2ci , for e = (i , j).

So, relaxed complementary conditions hold for r = 2 and we
have a 2-approximation for WVC.
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Primal-Dual approximation: generalizing the approach

In the algorithm, we increased the (active) dual variables
simultaneously.

Trying to get the highest (the best) lower bound that we can
get for the primal minimization objective.
In general, this step can be implemented solving another LP
program!

We can also increase edge variables one by one. This leads to
another primal-dual approximation algorithm Pricing
method

AA-GEI: Approx, Param and Stream Linear Programming approximation: Primal Dual algorithms
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Pricing method: another view of Primal-Dual

Each edge must be covered by some vertex.

Edge e = (i , j) pays price ze ≥ 0 to use both vertex i and j .

Fairness: Edges incident to vertex i should pay ≤ ci in total.

Prices ze are fair if, for any vertex cover S ,
∑

e ze ≤ w(S).

A vertex is tight with respect to a pricing z if
∑

i∈e ze = ci .

AA-GEI: Approx, Param and Stream Linear Programming approximation: Primal Dual algorithms
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Pricing algorithm

Set prices and find vertex cover simultaneously.

function Pricing WVC(G , c)
S = ∅;
for e ∈ E do

z [e] = 0 % initial price is 0

while there is (i , j) ∈ E so that neither i nor j is tight do
select such an edge e = (i , j)
Increase z [e] until i or j became tight.
Add to S the vertex (vertices) that became tight.

return S

AA-GEI: Approx, Param and Stream Linear Programming approximation: Primal Dual algorithms
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Pricing algorithm

Theorem

Pricing WVC is a 2-approximation for WVC.

Follows directly from primal-dual arguments.

However, Pricing WVC is a greedy algorithm.

No LP solver has been used!
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