Linear Programming approximation: Primal Dual algorithms

Maria Serna

Spring 2024

AA-GEI: Approx, Param and Stream Linear Programming approximation: Primal Dual algorithms

・ 同 ト ・ ヨ ト ・ ヨ ト

Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

イロト イヨト イヨト イヨト

臣

Primal-Dual algorithms Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

Primal dual algorithms

• Primal-Dual algorithms iterate obtaining primal/dual feasible solutions by increasing values of variables until a restriction is tight (fulfilled with equality).

Primal dual algorithms

- Primal-Dual algorithms iterate obtaining primal/dual feasible solutions by increasing values of variables until a restriction is tight (fulfilled with equality).
- If at some point objective functions match, we have found an optimal solution.

Primal dual algorithms

- Primal-Dual algorithms iterate obtaining primal/dual feasible solutions by increasing values of variables until a restriction is tight (fulfilled with equality).
- If at some point objective functions match, we have found an optimal solution.
- If at some point relaxed complementary slackness holds, for some *r*, we have found a *r*-approximate solution.

Bipartite graphs

MAXIMUM WEIGHT MATCHING IN BIPARTITE GRAPHS) (MWM-BG)

Given a bipartite graph G = (A, B, E) and a weight function $w : E \to R$ find a matching of maximum weight where the weight of matching M is given by $w(M) = \sum_{e \in M} w(e)$.

MINIMUM WEIGHT PERFECT MATCHING ON BIPARTITE GRAPHS)(mWPM-BG)

Given a bipartite graph G = (A, B, E) and a weight function $w : E \to R \cup \infty$ find a matching of maximum weight where the weight of matching M is given by $w(M) = \sum_{e \in M} w(e)$.

Bipartite graphs

MAXIMUM WEIGHT MATCHING IN BIPARTITE GRAPHS) (MWM-BG)

Given a bipartite graph G = (A, B, E) and a weight function $w : E \to R$ find a matching of maximum weight where the weight of matching M is given by $w(M) = \sum_{e \in M} w(e)$.

MINIMUM WEIGHT PERFECT MATCHING ON BIPARTITE GRAPHS)(mWPM-BG)

Given a bipartite graph G = (A, B, E) and a weight function $w : E \to R \cup \infty$ find a matching of maximum weight where the weight of matching M is given by $w(M) = \sum_{e \in M} w(e)$.

Is MWM-BG \leq mWPM-BG?

Bipartite graphs

MAXIMUM WEIGHT MATCHING IN BIPARTITE GRAPHS) (MWM-BG)

Given a bipartite graph G = (A, B, E) and a weight function $w : E \to R$ find a matching of maximum weight where the weight of matching M is given by $w(M) = \sum_{e \in M} w(e)$.

MINIMUM WEIGHT PERFECT MATCHING ON BIPARTITE GRAPHS)(mWPM-BG)

Given a bipartite graph G = (A, B, E) and a weight function $w : E \to R \cup \infty$ find a matching of maximum weight where the weight of matching M is given by $w(M) = \sum_{e \in M} w(e)$.

Is MWM-BG \leq mWPM-BG? YES!, even for complete bipartite graphs with |A| = |B|!

Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

ILP for MWPM-BG

$$\begin{array}{ll} \min & \sum_{a \in A, b \in B} w(a, b) x_{a, b} \\ \text{s.t.} & \sum_{b \in B} x_{a, b} = 1 \quad \forall \, a \in A \\ & \sum_{a \in A} x_{a, b} = 1 \quad \forall \, b \in B \\ & x_{a, b} \in \{0, 1\} \quad \forall \, a \in A, b \in B \end{array}$$

In the LP relaxation, the last changes to $x_{a,b} \ge 0 \quad \forall a \in A, b \in B$

イロン スロン イヨン イヨン

2

Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

ILP for MWPM-BG: The dual of the relaxed LP

Primal

$$\min \sum_{a \in A, b \in B} w(a, b) x_{a,b}$$

s.t.
$$\sum_{b \in B} x_{a,b} = 1 \quad \forall a \in A$$
$$\sum_{a \in A} x_{a,b} = 1 \quad \forall b \in B$$
$$x_{a,b} \ge 0 \quad \forall a \in A, b \in B$$

イロン 不同 とうほう 不同 とう

크

Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

ILP for MWPM-BG: The dual of the relaxed LP

Primal

S

min
$$\sum_{a \in A, b \in B} w(a, b) x_{a,b}$$

i.t.
$$\sum_{b \in B} x_{a,b} = 1 \quad \forall a \in A$$
$$\sum_{a \in A} x_{a,b} = 1 \quad \forall b \in B$$

 $x_{a,b} \ge 0 \quad \forall a \in A, b \in B$

The dual has a variable for each vertex y_a , y_b and the form

Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

ILP for MWPM-BG: The dual of the relaxed LP

Primal

$$\min \sum_{a \in A, b \in B} w(a, b) x_{a, b}$$

s.t.
$$\sum_{b \in B} x_{a, b} = 1 \quad \forall a \in A$$
$$\sum_{a \in A} x_{a, b} = 1 \quad \forall b \in B$$
$$x_{a, b} \ge 0 \quad \forall a \in A, b \in B$$

The dual has a variable for each vertex y_a , y_b and the form

$$\begin{array}{ll} \max & \sum_{a \in A} y_a + \sum_{b \in B} y_b \\ \text{s.t.} & y_a + y_b \leq w(a,b) \quad \forall \, a \in A, \, b \in B \\ & y_a \geq 0 \quad \forall \, a \in A \\ & y_b \geq 0 \quad \forall \, b \in B \end{array}$$

Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

ILP for MWPM-BG: tight edges

An edge e = (a, b) is tight, for a dual feasible solution y, if $y_a + y_b = w(e)$.

Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

ILP for MWPM-BG: tight edges

An edge e = (a, b) is tight, for a dual feasible solution y, if $y_a + y_b = w(e)$.

Let \hat{y} be dual-feasible, and let M be a perfect matching in G = (A, B, E), then

Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

ILP for MWPM-BG: tight edges

An edge e = (a, b) is tight, for a dual feasible solution y, if $y_a + y_b = w(e)$.

Let \hat{y} be dual-feasible, and let M be a perfect matching in G = (A, B, E), then

$$w(M) = \sum_{(a,b)\in M} w(a,b) \ge \sum_{(a,b)\in M} (\hat{y}_a + \hat{y}_b) \ge \sum_{a\in A} \hat{y}_a + \sum_{b\in B} \hat{y}_b$$

The first inequality by feasibility and the second because M is a perfect matching.

Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

ILP for MWPM-BG: tight edges

An edge e = (a, b) is tight, for a dual feasible solution y, if $y_a + y_b = w(e)$.

Let \hat{y} be dual-feasible, and let M be a perfect matching in G = (A, B, E), then

$$w(M) = \sum_{(a,b)\in M} w(a,b) \ge \sum_{(a,b)\in M} (\hat{y}_a + \hat{y}_b) \ge \sum_{a\in A} \hat{y}_a + \sum_{b\in B} \hat{y}_b$$

The first inequality by feasibility and the second because M is a perfect matching.

If all edges in M are tight equality holds

イロン 不同 とくほど 不良 とう

Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

ILP for MWPM-BG: tight edges

An edge e = (a, b) is tight, for a dual feasible solution y, if $y_a + y_b = w(e)$.

Let \hat{y} be dual-feasible, and let M be a perfect matching in G = (A, B, E), then

$$w(M) = \sum_{(a,b)\in M} w(a,b) \ge \sum_{(a,b)\in M} (\hat{y}_a + \hat{y}_b) \ge \sum_{a\in A} \hat{y}_a + \sum_{b\in B} \hat{y}_b$$

The first inequality by feasibility and the second because M is a perfect matching.

If all edges in M are tight equality holds and M is optimal.

MWPM-BG: Primal dual algorithm

- The primal dual algorithm starts with a dual feasible solution, and a matching.
- At each time step it improves the number of tight edges and the weight of the matching, until the matching is perfect.
- At this point an optimal solution has been found.

Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

MWPM-BG: Primal dual algorithm

function PRIMAL-DUAL MWPM-BG(A, B, E, w) $y_b = 0$, for $b \in B$ and $y_a = \min_b w(a, b)$, for $a \in A$ E' = set of tight edges $M = \max$ cardinality matching in G' = (A, B, E')while *M* is not a perfect matching **do** $\vec{E} = \{ e \in E' e \notin M \text{ (as} \overrightarrow{AB}) \} \cup \{ e \in M \text{ (as} \overrightarrow{BA}) \}$ $D = (A \cup B, \vec{E})$ % a directed graph. $L = \{ v \in A \cup B \mid v \text{ is reachable in } D \text{ from an} \}$ unmatched vertex in A $\epsilon = \min_{a \in A \cap I} (w(a, b) - y_a - y_b)$ $v_a = v_a + \epsilon$, for $a \in A \cap L$ and $v_b = v_b - \epsilon$, for $b \in B \cap L$ E' = set of tight edges $M = \max$ cardinality matching in G' = (A, V, E')return M

Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

MWPM-BG: Primal dual algorithm

Claim

After one iteration of the while loop

- y is a feasible dual solution.
- The number of tight edges strictly increases.

Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

MWPM-BG: Primal dual algorithm

Claim

After one iteration of the while loop

- y is a feasible dual solution.
- The number of tight edges strictly increases.

Theorem

Algorithm PRIMAL-DUAL MWPM-BG terminates in $O(|A \cup B|^3)$ iterations.

Primal-Dual for vertex cover

\mathbf{VC}

Given a graph G = (V, E), we want to find a set S, with minimum number of vertices, so that every edge in G has at least one end point in S.

Primal-Dual for vertex cover

\mathbf{VC}

Given a graph G = (V, E), we want to find a set S, with minimum number of vertices, so that every edge in G has at least one end point in S.

 \bullet We know how to formulate $\overline{\mathrm{VC}}$ as an IP problem

Primal-Dual for vertex cover

\mathbf{VC}

Given a graph G = (V, E), we want to find a set S, with minimum number of vertices, so that every edge in G has at least one end point in S.

- \bullet We know how to formulate VC as an IP problem
- We know how to relax the IP formulation as LP problem

Primal-Dual for vertex cover

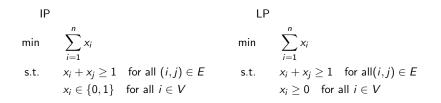
\mathbf{VC}

Given a graph G = (V, E), we want to find a set S, with minimum number of vertices, so that every edge in G has at least one end point in S.

- We know how to formulate VC as an IP problem
- We know how to relax the IP formulation as LP problem
- We know how to compute the dual of the LP problem

Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

Vertex cover: LP relaxation

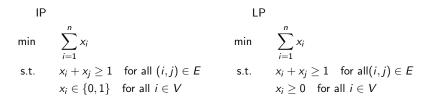


イロン 不同 とうほう 不同 とう

3

Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

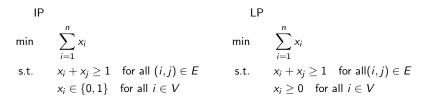
Vertex cover: LP relaxation



• Let opt be the size of an optimal solution of the VC instance.

Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

Vertex cover: LP relaxation

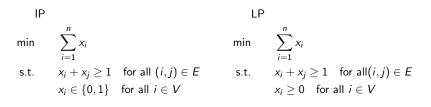


• Let opt be the size of an optimal solution of the VC instance.

• Let x^* be an optimal solution of the LP and $s^* = \sum_{i=1}^n x_i^*$.

Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

Vertex cover: LP relaxation



Let opt be the size of an optimal solution of the VC instance.
Let x* be an optimal solution of the LP and s* = ∑_{i=1}ⁿ x_i*.
s* ≤ opt

Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

イロン イロン イヨン イヨン 三日

Vertex cover: Primal-Dual approximation

LP primal
min
$$\sum_{i=1}^{n} x_i$$

s.t. $x_i + x_j \ge 1$ $e = (i, j) \in E$
 $x_i \ge 0$ $i \in V$
LP dual

 $\begin{array}{ll} \max & \sum_{e \in E} z_e \\ \text{s.t.} & \sum_{i \in e} z_e \leq 1 \quad \text{for all } i \in V \\ & z_e \geq 0 \quad \text{for all } e \in E \end{array}$

Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

Vertex cover: Primal-Dual approximation

LP primal
min
$$\sum_{i=1}^{n} x_i$$

s.t. $x_i + x_j \ge 1$ $e = (i, j) \in E$
 $x_i \ge 0$ $i \in V$

 Start with the integer infeasible primal solution x = 0, and the dual feasible solution z = 0.

LP dual

 $\begin{array}{ll} \max & \sum_{e \in E} z_e \\ \text{s.t.} & \sum_{i \in e} z_e \leq 1 \quad \text{for all } i \in V \\ & z_e \geq 0 \quad \text{for all } e \in E \end{array}$

Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

Vertex cover: Primal-Dual approximation

LP primal
min
$$\sum_{i=1}^{n} x_i$$

s.t. $x_i + x_j \ge 1$ $e = (i, j) \in E$
 $x_i \ge 0$ $i \in V$
LP dual
max $\sum_{e \in E} z_e$

s.t.
$$\sum_{i \in e} z_e \leq 1$$
 for all $i \in V$
 $z_e \geq 0$ for all $e \in E$

 Start with the integer infeasible primal solution x = 0, and the dual feasible solution z = 0.

<ロ> (四) (四) (三) (三) (三)

• Repeat while some constraint in primal is unsatisfied:

Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

Vertex cover: Primal-Dual approximation

LP primal
min
$$\sum_{i=1}^{n} x_i$$

s.t. $x_i + x_j \ge 1$ $e = (i, j) \in E$
 $x_i \ge 0$ $i \in V$
LP dual
max $\sum_{e \in E} z_e$
s.t. $\sum_{i \in e} z_e \le 1$ for all $i \in V$
 $z_e \ge 0$ for all $e \in E$

- Start with the integer infeasible primal solution x = 0, and the dual feasible solution z = 0.
- Repeat while some constraint in primal is unsatisfied:
 - Increase all (unfrozen) variables z_e until some dual constraint becomes tight (say, for vertex *i*).

イロン 不同 とくほど 不良 とう

크

Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

Vertex cover: Primal-Dual approximation

LP primal
min
$$\sum_{i=1}^{n} x_i$$

s.t. $x_i + x_j \ge 1$ $e = (i, j) \in E$
 $x_i \ge 0$ $i \in V$
LP dual
max $\sum_{e \in E} z_e$
s.t. $\sum_{i \in e} z_e \le 1$ for all $i \in V$
 $z_e \ge 0$ for all $e \in E$

- Start with the integer infeasible primal solution x = 0, and the dual feasible solution z = 0.
- Repeat while some constraint in primal is unsatisfied:
 - Increase all (unfrozen) variables z_e until some dual constraint becomes tight (say, for vertex *i*).
 - Set x_i = 1. Freeze all the variables z_e such that i ∈ e.

Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

Vertex cover: Primal-Dual approximation

Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

Vertex cover: Primal-Dual approximation

• When the process stops, we have increased the variables *z_e* suitably.

・ロト ・回ト ・ヨト ・ヨト

Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

Vertex cover: Primal-Dual approximation

- When the process stops, we have increased the variables *z_e* suitably.
- Some vertices *i* were chosen $(x_i = 1)$

- When the process stops, we have increased the variables *z_e* suitably.
- Some vertices *i* were chosen $(x_i = 1)$
- This set *S* of vertices is our output.

- When the process stops, we have increased the variables *z_e* suitably.
- Some vertices *i* were chosen $(x_i = 1)$
- This set *S* of vertices is our output.
- Is S a vertex cover?

- When the process stops, we have increased the variables *z_e* suitably.
- Some vertices *i* were chosen $(x_i = 1)$
- This set *S* of vertices is our output.
- Is S a vertex cover?

Otherwise, we would have continued as some primal constraint were still unsatisfied.

- When the process stops, we have increased the variables *z_e* suitably.
- Some vertices *i* were chosen $(x_i = 1)$
- This set *S* of vertices is our output.
- Is S a vertex cover?

Otherwise, we would have continued as some primal constraint were still unsatisfied.

• Cost of the solution?

< ロ > < 同 > < 三 > < 三 >

- When the process stops, we have increased the variables *z_e* suitably.
- Some vertices *i* were chosen $(x_i = 1)$
- This set *S* of vertices is our output.
- Is S a vertex cover?

Otherwise, we would have continued as some primal constraint were still unsatisfied.

• Cost of the solution?

At the end of the algorithm x, z are feasible.

< ロ > < 同 > < 三 > < 三 >

- When the process stops, we have increased the variables *z_e* suitably.
- Some vertices *i* were chosen $(x_i = 1)$
- This set *S* of vertices is our output.
- Is S a vertex cover?

Otherwise, we would have continued as some primal constraint were still unsatisfied.

• Cost of the solution? At the end of the algorithm x, z are feasible. Relaxed complementary slackness?.

Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

Primal-Dual approximation: relaxed complementary conditions

Two conditions hold:

Primal-Dual approximation: relaxed complementary conditions

Two conditions hold:

• Primal:

If $x_i > 0$, we have frozen $x_i = 1$ at some step,

Primal-Dual approximation: relaxed complementary conditions

Two conditions hold:

• Primal:

If $x_i > 0$, we have frozen $x_i = 1$ at some step, then $\sum_{i \in e} z_e = 1$.

Two conditions hold:

• Primal:

If $x_i > 0$, we have frozen $x_i = 1$ at some step, then $\sum_{i \in e} z_e = 1$.

• Dual:

If $z_e > 0$, z_e is increased. We do not know if it is because for one or both endpoints the constraints got tight, but

Two conditions hold:

• Primal:

If $x_i > 0$, we have frozen $x_i = 1$ at some step, then $\sum_{i \in e} z_e = 1$.

• Dual:

If $z_e > 0$, z_e is increased. We do not know if it is because for one or both endpoints the constraints got tight, but $x_i + x_j \le 2 \le 2c_i$, for e = (i, j).

Two conditions hold:

• Primal:

If $x_i > 0$, we have frozen $x_i = 1$ at some step, then $\sum_{i \in e} z_e = 1$.

• Dual:

If $z_e > 0$, z_e is increased. We do not know if it is because for one or both endpoints the constraints got tight, but $x_i + x_j \le 2 \le 2c_i$, for e = (i, j).

• So, relaxed complementary slackness conditions hold for r = 2.

A D D A D D A D D A D D A

Two conditions hold:

• Primal:

If $x_i > 0$, we have frozen $x_i = 1$ at some step, then $\sum_{i \in e} z_e = 1$.

• Dual:

If $z_e > 0$, z_e is increased. We do not know if it is because for one or both endpoints the constraints got tight, but $x_i + x_j \le 2 \le 2c_i$, for e = (i, j).

• So, relaxed complementary slackness conditions hold for r = 2. A 2-approximation O.

A D D A D D A D D A D D A

Primal-Dual for weighted vertex cover

WVC

Given a vertex weighted graph G = (V, A, c) we want to find a set $S \subset V$ with minimum weight, so that every edge in G has at least one end point in S.

- The problem is NP-hard and belongs to NPO.
- Can we formulate WVC as an IP problem?

Primal-Dual for weighted vertex cover

WVC

Given a vertex weighted graph G = (V, A, c) we want to find a set $S \subset V$ with minimum weight, so that every edge in G has at least one end point in S.

- The problem is NP-hard and belongs to NPO.
- Can we formulate WVC as an IP problem?
- Variables: $x_1 \dots x_n$, $x_i = 1$ iff $i \in S$.

Primal-Dual for weighted vertex cover

WVC

Given a vertex weighted graph G = (V, A, c) we want to find a set $S \subset V$ with minimum weight, so that every edge in G has at least one end point in S.

- The problem is NP-hard and belongs to NPO.
- Can we formulate WVC as an IP problem?
- Variables: $x_1 \dots x_n$, $x_i = 1$ iff $i \in S$.
- Objective functon: $\sum_{i=1}^{n} c_i x_i$.

Primal-Dual for weighted vertex cover

WVC

Given a vertex weighted graph G = (V, A, c) we want to find a set $S \subset V$ with minimum weight, so that every edge in G has at least one end point in S.

- The problem is NP-hard and belongs to NPO.
- Can we formulate WVC as an IP problem?
- Variables: $x_1 \dots x_n$, $x_i = 1$ iff $i \in S$.
- Objective functon: $\sum_{i=1}^{n} c_i x_i$.
- Restrictions: for every edge $(i,j) \in E$, $x_i + x_j \ge 1$
- $x_i \in \{0, 1\}$
- The IP can be computed in polytime.

Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

Weighted vertex cover: LP relaxation

IP		LP	
min	$\sum_{i=1}^{n} c_i x_i$	min $\sum_{i=1}^{n} c_i x_i$	
s.t.	$x_i + x_j \ge 1$ for all $(i, j) \in E$	s.t. $x_i + x_j \ge 1$ for $all(i,j) \in E$	Ξ
	$x_i \in \{0,1\}$ for all $i \in V$	$x_i \geq 0$ for all $i \in V$	

Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

イロン イロン イヨン イヨン 三日

Weighted vertex cover: Primal-Dual approximation

LP primal
min
$$\sum_{i=1}^{n} c_i x_i$$

s.t. $x_i + x_j \ge 1$ for all $(i, j) \in E$
 $x_i \ge 0$ for all $i \in V$

LP dual

 $\begin{array}{ll} \max & \sum_{e \in E} z_e \\ \text{s.t.} & \sum_{i \in e} z_e \leq c_i \quad \text{for all } i \in V \\ & z_e \geq 0 \quad \text{for all } e \in E \end{array}$

Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

Weighted vertex cover: Primal-Dual approximation

LP primal
min
$$\sum_{i=1}^{n} c_i x_i$$

s.t. $x_i + x_j \ge 1$ for all $(i, j) \in E$
 $x_i \ge 0$ for all $i \in V$
LP dual
max $\sum z_e$

s.t.
$$\sum_{i \in e} z_e \leq c_i$$
 for all $i \in V$
 $z_e \geq 0$ for all $e \in E$

e∈F

- Start with the integer infeasible primal solution x = 0, and the dual feasible solution z = 0.
- Repeat while some constraint in primal is unsatisfied:
 - Increase all (unfrozen) variables z_e until some dual constraint becomes tight (say, for vertex i).
 - Set $x_i = 1$. Freeze all the variables z_e such that $i \in e$.

Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

Weighted vertex cover: Primal-Dual approximation

・ロト ・回ト ・ヨト ・ヨト

Weighted vertex cover: Primal-Dual approximation

- When the process stops, we have increased the variables *z_e* suitably.
- Some vertices *i* were chosen $(x_i = 1)$
- This set S of vertices is our output and again is a vertex cover.
- Cost of the solution? *x*, *z* are feasible.

Weighted vertex cover: Primal-Dual approximation

- When the process stops, we have increased the variables *z_e* suitably.
- Some vertices *i* were chosen $(x_i = 1)$
- This set S of vertices is our output and again is a vertex cover.
- Cost of the solution? *x*, *z* are feasible. Relaxed complementary slackness conditions?

・ロト ・回ト ・ヨト ・ヨト

Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

Primal-Dual approximation: relaxed complementary conditions

Two conditions hold:

・ロト ・回ト ・ヨト ・ヨト

Primal-Dual approximation: relaxed complementary conditions

Two conditions hold:

• Primal:

If $x_i > 0$, we have frozen $x_i = 1$ at some step,

Primal-Dual approximation: relaxed complementary conditions

Two conditions hold:

• Primal:

If $x_i > 0$, we have frozen $x_i = 1$ at some step, then $\sum_{i \in e} z_e = c_i$.

Two conditions hold:

• Primal:

If $x_i > 0$, we have frozen $x_i = 1$ at some step, then $\sum_{i \in e} z_e = c_i$.

• Dual:

If $z_e > 0$, z_e is increased. We do not know if it is because for one or both endpoints the constraints got tight, but $x_i + x_j \le 2 \le 2c_i$, for e = (i, j).

Two conditions hold:

• Primal:

If $x_i > 0$, we have frozen $x_i = 1$ at some step, then $\sum_{i \in e} z_e = c_i$.

• Dual:

If $z_e > 0$, z_e is increased. We do not know if it is because for one or both endpoints the constraints got tight, but $x_i + x_j \le 2 \le 2c_i$, for e = (i, j).

• So, relaxed complementary conditions hold for *r* = 2 and we have a 2-approximation for WVC.

A D D A D D A D D A D D A

Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

Primal-Dual approximation: generalizing the approach

AA-GEI: Approx, Param and Stream Linear Programming approximation: Primal Dual algorithms

Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

Primal-Dual approximation: generalizing the approach

• In the algorithm, we increased the (active) dual variables simultaneously.

Primal-Dual approximation: generalizing the approach

- In the algorithm, we increased the (active) dual variables simultaneously.
- Trying to get the highest (the best) lower bound that we can get for the primal minimization objective.

Primal-Dual approximation: generalizing the approach

- In the algorithm, we increased the (active) dual variables simultaneously.
- Trying to get the highest (the best) lower bound that we can get for the primal minimization objective.
 In general, this step can be implemented solving another LP program!

Primal-Dual approximation: generalizing the approach

- In the algorithm, we increased the (active) dual variables simultaneously.
- Trying to get the highest (the best) lower bound that we can get for the primal minimization objective.
 In general, this step can be implemented solving another LP program!
- We can also increase edge variables one by one. This leads to another primal-dual approximation algorithm **PRICING METHOD**

Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

Pricing method: another view of Primal-Dual

Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

Pricing method: another view of Primal-Dual

• Each edge must be covered by some vertex.

・ロト ・回ト ・ヨト ・ヨト

Matchings in bipartite graphs Approximating Vertex Cover Weighted Vertex Cover Pricing method

Pricing method: another view of Primal-Dual

- Each edge must be covered by some vertex.
- Edge e = (i, j) pays price $z_e \ge 0$ to use both vertex *i* and *j*.

Pricing method: another view of Primal-Dual

- Each edge must be covered by some vertex.
- Edge e = (i, j) pays price $z_e \ge 0$ to use both vertex *i* and *j*.
- Fairness: Edges incident to vertex *i* should pay $\leq c_i$ in total.

Pricing method: another view of Primal-Dual

- Each edge must be covered by some vertex.
- Edge e = (i, j) pays price $z_e \ge 0$ to use both vertex *i* and *j*.
- Fairness: Edges incident to vertex *i* should pay $\leq c_i$ in total.
- Prices z_e are fair if, for any vertex cover S, $\sum_e z_e \le w(S)$.

Pricing method: another view of Primal-Dual

- Each edge must be covered by some vertex.
- Edge e = (i, j) pays price $z_e \ge 0$ to use both vertex *i* and *j*.
- Fairness: Edges incident to vertex *i* should pay $\leq c_i$ in total.
- Prices z_e are fair if, for any vertex cover S, $\sum_e z_e \le w(S)$.
- A vertex is tight with respect to a pricing z if $\sum_{i \in e} z_e = c_i$.

Pricing algorithm

Set prices and find vertex cover simultaneously.

```
function PRICING WVC(G, c)

S = \emptyset;

for e \in E do

z[e] = 0 % initial price is 0

while there is (i,j) \in E so that neither i nor j is tight do

select such an edge e = (i,j)

Increase z[e] until i or j became tight.

Add to S the vertex (vertices) that became tight.

return S
```

Pricing algorithm

Theorem

PRICING WVC is a 2-approximation for WVC.

・ロト ・回ト ・ヨト ・ヨト

Pricing algorithm

Theorem

PRICING WVC is a 2-approximation for WVC.

• Follows directly from primal-dual arguments.

Pricing algorithm

Theorem

PRICING WVC is a 2-approximation for WVC.

- Follows directly from primal-dual arguments.
- However, **PRICING WVC** is a greedy algorithm.

Pricing algorithm

Theorem

PRICING WVC is a 2-approximation for WVC.

- Follows directly from primal-dual arguments.
- However, **PRICING WVC** is a greedy algorithm.
- No LP solver has been used!