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Primal Dual

Many real-life problems can be modeled as Integer Linear
Programs (IP).

Since IPs are NP-hard to solve, they are often relaxed to a
linear program (shortened as LP).

Modus operandi: solve the linear program in polynomial time,
and extract useful information about an integer optimum
solution.

However, for certain problems, we do not need to even solve
the LP to get good (reasonable approximation factor or even
optimal) solutions to our problem using duality to control
improvements.
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History

George Dantzig started linear programming (1947) , and his
ideas contain the first germs of primal dual algorithms. The
Hungarian method was an application of the paradigm.

Jack R. Edmonds gave the first (sophisticated) application of
the paradigm in his work on maximum weight matchings in
arbitrary graphs (1965).

Bar-Yehuda and Even first enunciated the paradigm in their
work on the weighted Vertex Cover problem (1981).

Dantzig Edmonds
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Primal, Dual and Weak Duality

Consider a LP in n variables x = (x1, . . . , xn) with m constraints
represented by matrix A, independent terms b, and objective
function b.

Primal

min cT x

s.t. Ax ≥ b

x ≥ 0

The dual is an effort to construct the best lower bound for the
primal objective function.
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Searching for a lower bound: The best one?

LP (PRIMAL)

min cT x

s.t. Ax ≥ b

x ≥ 0

if x∗ opt, yTAx is a general
linear combination of equa-
tions, if we can select y so
that
yTAx∗ = cT x∗,
cT x∗ ≥ yTb

The best lower bound, for
any x?

max bT y

s.t. AT y = c

y ≥ 0

But as we are maximizing
this is equivalent to

max bT y

s.t. AT y ≤ c DUAL

y ≥ 0
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Primal - Dual: an example

Working from the dual trying to get the best lower bound we
come back to the primal.

Another example that you know is the pair MaxFlow-MinCut
if you write the LP formulation of MaxFlow you can check
that the dual is a LP formulation for MinCut
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Strong and Weak duality theorem

There are additional conditions for a pair (x , y) of primal-dual
optimal/feasible solutions.

Theorem (Strong duality)

If the primal has an optimal solution x∗ then the dual has an
optimal solution y∗ such that cT x∗ = bT y∗

Theorem (Weak Duality)

For every feasible solution x to the primal and every solution z to
the dual,

n∑
i=1

cixi ≥
m∑
j=1

bjzj
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Conditions for optimality: Complementary slackness

Let x be a feasible solution to the primal and let z be a feasible
solution to the dual.

Primal complementary slackness

If xi > 0, then
∑m

j=1 aijzj = ci .

Dual complementary slackness

If zj > 0, then
∑n

i=1 aijxi = bj .
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Conditions for optimality: Complementary slackness

Theorem

If (x , y) satisfies complementary slackness, then x and y are
optimal solutions for primal and dual problems, respectively.

Proof.
n∑

i=1

cixi =
n∑

i=1

(
m∑
j=1

aijzj)xi =
m∑
j=1

(
n∑

i=1

aijxi )zj =
m∑
j=1

bjzj
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Relaxed complementary slackness

Let x be a feasible solution to the primal and let z be a feasible
solution to the dual.

Primal relaxed complementary slackness

If xi > 0, then
∑m

j=1 aijzj ≥ ci/α.

Dual relaxed complementary slackness

If zj > 0, then
∑n

i=1 aijxi ≤ β bj .

for some factors α, β ≥ 1

If x is integral and primal and dual relaxed complementary
slackness hold?
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Relaxed complementary slackness

Theorem

Let Π be a minimization integer program and Π-LP its
LP-relaxation. Suppose a primal (integer) feasible solution x of Π
and a dual feasible solution y of Π-LP satisfy the primal-dual
relaxed complementary slackness, for some α, β > 1, and x is
integral, then x is a αβ-approximation.
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Relaxed complementary slackness

Proof.

n∑
i=1

cixi ≤ α

n∑
i=1

(
m∑
j=1

aijzj)xi = α

m∑
j=1

(
n∑

i=1

aijxi )zj ≤ αβ

m∑
j=1

bjzj

By weak duality
∑m

j=1 bjzj ≤
∑n

i=1 cix
′
i for any feasible x ′, in

particular for the optimal solution of the IP, therefore

n∑
i=1

cixi ≤ αβ

m∑
j=1

bjzj ≤ αβ opt
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