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Linear programming

In a linear programming problem, we are given a set of
variables, an objective linear function a set of linear constrains
and want to assign real values to the variables as to:

satisfy the set of linear inequalities (equations or constraints),
maximize or minimize the objective function.

LP is a pure algebraic problem.
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Linear programming: An example

max x1 + 6x2

subject to

x1 ≤ 200

x2 ≤ 300

x1 + x2 ≤ 400

x1, x2 ≥ 0
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Linear programming: feasible region

A linear equality defines a hyperplane.

A linear inequality defines a half-space.

The solutions to the linear constraints lie inside a feasible
region limited by the polytope (convex polygon in R2) defined
by the linear constraints.

x1

x2
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Linear programming: infeasibility

A linear programming is infeasible if

The constrains are so tight that it is impossible to satisfy all of
them.
For ex. x ≥ 2 and x ≤ 1
The constrains are so loose that the feasible region is
unbounded allowing the objective function to go to ∞ .
For ex. max x1 + x2 subject to x1, x2 ≥ 0
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Linear programming: optimum

In a feasible linear programming the optimum is achieved at a
vertex of the feasible region.

x1

x2
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Linear programming: standard formulation

A LP has many degrees of freedom.

maximization or minimization.

constrains could be =, ≥, ≤, < or >.

variables are often restricted to be non-negative, but they also
could be unrestricted.

standard form?
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Linear programming: standard formulation

From max to min (or min to max)

multiply by -1 the coefficients of the objective function.

To reverse an inequality (for ex. ≥ to ≤)
multiply all coefficients and the independent term by -1.

From < to ≤ (or to =)
create a new positive variable and add it with coefficient 1 to
the left par of the inequality.

From = to ≤ (or to ≥)
put two versions one with ≤ and the other with ≥, multiply
the last one by −1.

From x unrestricted to non-negative variables,
create two new variables x+ and x−, both non negative,
replace x by x+ − x−.
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Linear programming: standard formulation

LP standard form

min cT x

s.t. Ax ≥ b

x ≥ 0

Where

x = (x1, . . . , xn), c = (c1, . . . , cn).

bT = (b1, . . . , bm)

A is a n ×m matrix.

AA-GEI: Approx, Param and Stream Approximation algorithms: Linear and Integer Programming



LP and IP
Relax and round

LP Duality

Linear Programming
Integer Programming

Linear programming: problem

Given

c = (c1, . . . , cn),

bT = (b1, . . . , bm),

and a n ×m matrix A.

find x = (x1, . . . , xn) ≥ 0, so that

Ax ≥ b and cT x is minimized.
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Linear programming: algorithms

We can solve Linear Programming in polynomial time

Simplex method: Dantzig in 1947
(exponential time Klee and Minty 1972)

Ellipsoid method: Khachiyan 1979 (O(n6))

Interior-point method: Karmarkar 1984 (O(n3))

Most used algorithm is still Simplex (fast on average).

Many commercial LP solvers CPLEX and open source Gurobi
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Integer programming

An integer programming (IP) problem is a linear programming
problem with the additional restriction that the values of the
variables must be integers.

A mixed integer programming (MIP) problem is a linear
programming problem with the additional restriction that, the
values of some variables must be integers.

Many NPO problems can be easily expressed as IP or MIP
problems

IP is NP-hard

AA-GEI: Approx, Param and Stream Approximation algorithms: Linear and Integer Programming



LP and IP
Relax and round

LP Duality

Linear Programming
Integer Programming

Integer programming

An integer programming (IP) problem is a linear programming
problem with the additional restriction that the values of the
variables must be integers.

A mixed integer programming (MIP) problem is a linear
programming problem with the additional restriction that, the
values of some variables must be integers.

Many NPO problems can be easily expressed as IP or MIP
problems

IP is NP-hard

AA-GEI: Approx, Param and Stream Approximation algorithms: Linear and Integer Programming



LP and IP
Relax and round

LP Duality

Linear Programming
Integer Programming

Integer programming

An integer programming (IP) problem is a linear programming
problem with the additional restriction that the values of the
variables must be integers.

A mixed integer programming (MIP) problem is a linear
programming problem with the additional restriction that, the
values of some variables must be integers.

Many NPO problems can be easily expressed as IP or MIP
problems

IP is NP-hard

AA-GEI: Approx, Param and Stream Approximation algorithms: Linear and Integer Programming



LP and IP
Relax and round

LP Duality

Linear Programming
Integer Programming

Integer programming

An integer programming (IP) problem is a linear programming
problem with the additional restriction that the values of the
variables must be integers.

A mixed integer programming (MIP) problem is a linear
programming problem with the additional restriction that, the
values of some variables must be integers.

Many NPO problems can be easily expressed as IP or MIP
problems

IP is NP-hard

AA-GEI: Approx, Param and Stream Approximation algorithms: Linear and Integer Programming



LP and IP
Relax and round

LP Duality

Linear Programming
Integer Programming

Integer programming

An integer programming (IP) problem is a linear programming
problem with the additional restriction that the values of the
variables must be integers.

A mixed integer programming (MIP) problem is a linear
programming problem with the additional restriction that, the
values of some variables must be integers.

Many NPO problems can be easily expressed as IP or MIP
problems

IP is NP-hard

AA-GEI: Approx, Param and Stream Approximation algorithms: Linear and Integer Programming



LP and IP
Relax and round

LP Duality

Linear Programming
Integer Programming

Max SAT as integer program

Max Sat: Input a set of m clauses on n variables, find an
assignment that maximizes the number of satisfied clauses.

For a clause j , the set of variables that appear in Cj

positive is P(j)
negative is N(j)

We consider n +m integer variables,

x1, . . . , xn, one per each variable
y1, . . . , ym, one per each clause

The variables will be restricted to have values in {0, 1}
This is a simplification of saying that they must hold integer
values and that all of them are ≤ 1.
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Max SAT as integer program

Max SAT-IP

max
m∑
j=1

yj

s.t.
∑

i∈P(j)

xi +
∑

i∈N(j)

(1− xi ) ≥ yj 1 ≤ j ≤ m

yj ∈ {0, 1} 1 ≤ j ≤ m

xi ∈ {0, 1} 1 ≤ i ≤ n

The size of the IP is polynomial in the size of the Max SAT,

so the
transformation is a polynomial Turing reduction from Max SAT to
IP.
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cardinality, so that every edge in G has at least one end point in S .
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xi ∈ {0, 1} for all i ∈ V
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Exercise

Try to write a LP or IP formulation for the problems

Min Weighted Matching

Set cover

Max Flow
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1 LP and IP

2 Relax and round

3 LP Duality
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LP and IP
Relax and round

LP Duality

A basic case
Min 2-SAT
Randomized rounding

Relaxation and rounding

Many real-life problems can be modeled as Integer Linear
Programs (IP).

The IP can be relaxed to a linear program (LP) by eliminating
the integrity constraints.

By doing so the optimum cost can only improve, i.e.,
opt of LP is better than opt of IP.

We can solve the LP in polynomial time.

The LP optimal solution might not be integral, when possible,
transform it to get a feasible integer solution not far from opt
of IP.
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LP and IP
Relax and round

LP Duality

A basic case
Min 2-SAT
Randomized rounding

Vertex cover: another approximation algorithm

Lemma

VC-LP has an optimal solution x∗ such that xi ∈ {0, 1, 1/2}.
Furthermore, such a solution can be computed in polynomial time.

Proof.

Let y be an optimal solution s.t. not all its coordinates are in {0, 1, 1/2}.
Set ϵ = minyi /∈{0,1,1/2}{yi , |yi − 1/2|, 1− yi}. Consider

y ′
i =


yi − ϵ 0 < yi < 1/2

yi + ϵ 1/2 < yi < 1

yi otherwise

y ′′
i =


yi + ϵ 0 < yi < 1/2

yi − ϵ 1/2 < yi < 1

yi otherwise∑
yi = (

∑
y ′
i +

∑
y ′′
i )/2, so both are optimal solutions. One of them

has more {0, 1, 1/2} coordinates than y .
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LP and IP
Relax and round

LP Duality

A basic case
Min 2-SAT
Randomized rounding

Vertex cover

function Relax+Round VC(G )
Construct the LP-VC associated G
Let y be an optimal relaxed solution (of the LP instance)
Using the previous lemma, construct an optimal relaxed

solution y ′ such that y ′i ∈ {0, 1, 1/2}
Let x defined as xi = 0 if y ′i = 0, xi = 1 otherwise.
return (x)

Relax+Round VC

runs in polynomial time

x defines a vertex cover∑n
i=1 xi ≤ 2

∑n
i=1 y

′
i ≤ 2opt

is a 2-approximation for VC.
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LP and IP
Relax and round

LP Duality

A basic case
Min 2-SAT
Randomized rounding

Weighted vertex cover: Relax+Round approximation

LP WVC

min
n∑

i=1

wixi

s.t. xi + xj ≥ 1 for all(i , j) ∈ E

xi ≥ 0 for all i ∈ V

function WVC(G , c)
Construct the LP WVC, I
y = LP.solve(I )
for i = 1, . . . , n do

if yi < 1/2 then
xi = 0

else
xi = 1

return (x)

Relax+Round WVC

runs in polynomial time

x defines a vertex cover∑n
i=1 wixi ≤ 2

∑n
i=1 wiyi ≤ 2opt

is a 2-approximation for WVC.
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LP and IP
Relax and round

LP Duality

A basic case
Min 2-SAT
Randomized rounding

Minimum 2-Satisfiability

min 2-sat
Given a Boolean formula in 2-CNF, determine whether it is satisfi-
able and, in such a case, find a satisfying assignment with minimum
number of true variables.

2-SAT can be solved in polynomial time.

Min 2-SAT is NP-hard.

Min 2-SAT IP formulation?
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LP and IP
Relax and round

LP Duality

A basic case
Min 2-SAT
Randomized rounding

Minimum 2-Satisfiability: IP formulation

Suppose that F has n variables x1, . . . xn and m clauses with 2
literals per clause

IP Min 2-SAT

min
n∑

i=1

xi

s.t. xi + xj ≥ 1 for all clauses (xi ∨ xj) ∈ F

(1− xi ) + xj ≥ 1 for all clauses (x i ∨ xj) ∈ F

(1− xi ) + (1− xj) ≥ 1 for all clauses (x i ∨ x j) ∈ F

xi ∈ {0, 1} 1 ≤ i ≤ n

LP Min 2-SAT is obtaining replacing xi ∈ {0, 1} by xi ≥ 0.
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LP Duality

A basic case
Min 2-SAT
Randomized rounding

Minimum 2-Satisfiability: LP relaxation

LP Min 2-SAT

min
n∑

i=1

xi

s.t. xi + xj ≥ 1 for all clauses (xi ∨ xj) ∈ F

(1− xi ) + xj ≥ 1 for all clauses (x i ∨ xj) ∈ F

(1− xi ) + (1− xj) ≥ 1 for all clauses (x i ∨ x j) ∈ F

xi ≥ 0 1 ≤ i ≤ n

Let y be an optimal solution to LP Min 2-SAT.

Can we use the same rounding scheme as for WVC?

Setting xi = 1 if yi > 1/2 and xi = 0 if yi < 1/2 is safe, all
clauses with at least one literal with value > 1/2 will be
satisfied.

When yi = 1/2?
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LP and IP
Relax and round

LP Duality

A basic case
Min 2-SAT
Randomized rounding

Minimum 2-Satisfiability: LP relaxation

Let y be an optimal solution to IP Min 2-SAT.

What to do when yi = 1/2? 1? 0?

If F contains the clauses (xi ∨ xj) and (x i ∨ x j) and
yi = yj = 1/2, neither xi = xj = 1 nor xi = xj = 0 satisfy the
formula.

F1 = clauses whose two variables have y value = 1/2.

Rounding those values to 1 or 0 would keep the approximation
ratio to 2, provided the constructed solution x to Min 2-SAT
is still a satisfying assignment.

Any satisfying assignment for the clauses in F1 and get a
2-approximation

AA-GEI: Approx, Param and Stream Approximation algorithms: Linear and Integer Programming
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Relax and round

LP Duality

A basic case
Min 2-SAT
Randomized rounding

Minimum 2-Satisfiability: Relax+Round approximation

function Relax+Round Min 2-SAT(F )
if F is not satisfiable then return false
Construct the LP Min 2-SAT, I
y = LP.solve(I )
for i = 1, . . . , n do

if y ′i < 1/2 then xi = 0

if y ′i > 1/2 then xi = 1

F1 = clauses with both y values = 1/2.
Let J = {j | xj ∈ F1}
for i=1,. . . , n do

if yi = 1/2 and i ̸∈ J then xi = 1

Complete x with a satisfying assignment for F1
return (x)
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Relax and round

LP Duality

A basic case
Min 2-SAT
Randomized rounding

Minimum 2-Satisfiability: Relax+Round approximation

Theorem

Relax+Round Min 2-SAT is a 2-approximation for Min
2-SAT.
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LP and IP
Relax and round

LP Duality

A basic case
Min 2-SAT
Randomized rounding

Max Satisfiability

max sat
Given a Boolean formula in CNF and weights for each clause, find a
Boolean assignment to maximize the weight of the satisfied clauses.

Suppose that F has n variables x1, . . . xn and m clauses C1, . . . ,Cm.

IP Max SAT

max
m∑
j=1

wjzj

s.t.
∑
xi∈Cj

yi +
∑
x i∈Cj

(1− yi ) ≥ zj ȷ = 1, . . . ,m

yi ∈ {0, 1} 1 ≤ i ≤ n

zj ∈ {0, 1} 1 ≤ j ≤ m

LP Max SAT is obtaining replacing a ∈ {0, 1} by 0 ≤ a ≤ 1.
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LP and IP
Relax and round

LP Duality

A basic case
Min 2-SAT
Randomized rounding

Max Satisfiability: Relax+RRound

function Relax+RRound(F )
Construct the LP Max SAT, I
(y , z) = LP.solve(I )
for i=1,. . . , n do

Set xi = 1 with probability yi

return (x)

The optimal LP solution is used as an indicator of the
probability that the variable has to been set to 1.

The performance of a randomized algorithm is the expected
number of satisfiable clause.

This expectation has to be compared with opt.
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LP Duality

A basic case
Min 2-SAT
Randomized rounding

Max Satisfiability: Relax+RRound

Let (y∗, z∗) be an optimal solution of LP Max SAT

Let Zj be the indicator random variable for the event that
clause Cj is satisfied.

Assume that Cj has k-literals and that ℓ of them are negated
variables.

Lemma

For any 1 ≤ j ≤ m, E [Zj ] ≥ z∗j (1− 1/e).

Recall (a1 . . . ak)
1/k ≤ (a1 + · · ·+ ak)/k or equivalently

(a1 . . . ak) ≤ ((a1 + · · ·+ ak)/k)
k
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Max Satisfiability: Relax+RRound

Proof.

Zj is an indicator random variable, and so
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Max Satisfiability: Relax+RRound approximation

Theorem

Relax+RRound is a e/(e − 1)-approximation for Max SAT.

Proof.

Let (y∗, z∗) be an optimal solution of LP Max SAT

Let Zj be the indicator r.v.a for clause Cj is satisfied.

Let W be the r.v. weight of satisfied clauses:
W =

∑m
j=1 wjZj .

E [W ] =
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j=1 wjE [Zj ] ≥ (1− 1/e)
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∗
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LP Duality

A basic case
Min 2-SAT
Randomized rounding

Max Satisfiability:RandAssign

function RandAssign(F )
for i=1,. . . , n do

Set xi = 1 with probability 1/2

return (x)

Theorem

RandAssign is a 2-approximation for Max SAT.

Proof.

E [W ] =
∑m

j=1 wjE [Zj ] =
∑m

j=1 wj

(
1− (12)

kj
)
≥ 1

2

∑m
j=1 wj ≥

1
2opt.

We move from r = 2 (RandAssign) to r = 1.581977
(Relax+RRound).
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A basic case
Min 2-SAT
Randomized rounding

Max Satisfiability:Best2

function Best2(F )
x1,W1 = RandAssign(F )
x2,W2 = Relax+RRound(F )
if W1 ≥ W2 then

return (x1)
else

return (x2)

Theorem

Best2 is a 4/3 (1.33333)-approximation for Max SAT.
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Proof.
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