Approximation algorithms: Linear and Integer Programming

Maria Serna

Spring 2024

LP and IP
(2) Relax and round
(3) LP Duality

Linear programming

- In a linear programming problem, we are given a set of variables, an objective linear function a set of linear constrains and want to assign real values to the variables as to:

Linear programming

- In a linear programming problem, we are given a set of variables, an objective linear function a set of linear constrains and want to assign real values to the variables as to:
- satisfy the set of linear inequalities (equations or constraints),

Linear programming

- In a linear programming problem, we are given a set of variables, an objective linear function a set of linear constrains and want to assign real values to the variables as to:
- satisfy the set of linear inequalities (equations or constraints),
- maximize or minimize the objective function.

Linear programming

- In a linear programming problem, we are given a set of variables, an objective linear function a set of linear constrains and want to assign real values to the variables as to:
- satisfy the set of linear inequalities (equations or constraints),
- maximize or minimize the objective function.
- LP is a pure algebraic problem.

Linear programming: An example

$$
\max x_{1}+6 x_{2}
$$

subject to

$$
\begin{aligned}
& x_{1} \leq 200 \\
& x_{2} \leq 300 \\
& x_{1}+x_{2} \leq 400 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Linear programming: feasible region

- A linear equality defines a hyperplane.
- A linear inequality defines a half-space.

Linear programming: feasible region

- A linear equality defines a hyperplane.
- A linear inequality defines a half-space.
- The solutions to the linear constraints lie inside a feasible region limited by the polytope (convex polygon in \mathbb{R}^{2}) defined by the linear constraints.

Linear programming: feasible region

- A linear equality defines a hyperplane.
- A linear inequality defines a half-space.
- The solutions to the linear constraints lie inside a feasible region limited by the polytope (convex polygon in \mathbb{R}^{2}) defined by the linear constraints.

Linear programming: feasible region

- A linear equality defines a hyperplane.
- A linear inequality defines a half-space.
- The solutions to the linear constraints lie inside a feasible region limited by the polytope (convex polygon in \mathbb{R}^{2}) defined by the linear constraints.

Linear programming: infeasibility

- A linear programming is infeasible if

Linear programming: infeasibility

- A linear programming is infeasible if
- The constrains are so tight that it is impossible to satisfy all of them.
For ex. $x \geq 2$ and $x \leq 1$

Linear programming: infeasibility

- A linear programming is infeasible if
- The constrains are so tight that it is impossible to satisfy all of them.
For ex. $x \geq 2$ and $x \leq 1$
- The constrains are so loose that the feasible region is unbounded allowing the objective function to go to ∞. For ex. max $x_{1}+x_{2}$ subject to $x_{1}, x_{2} \geq 0$

Linear programming: optimum

- In a feasible linear programming the optimum is achieved at a vertex of the feasible region.

Linear programming: optimum

- In a feasible linear programming the optimum is achieved at a vertex of the feasible region.

Linear programming: optimum

- In a feasible linear programming the optimum is achieved at a vertex of the feasible region.

Linear programming: optimum

- In a feasible linear programming the optimum is achieved at a vertex of the feasible region.

Linear programming: optimum

- In a feasible linear programming the optimum is achieved at a vertex of the feasible region.

Linear programming: optimum

- In a feasible linear programming the optimum is achieved at a vertex of the feasible region.

Linear programming: standard formulation

A LP has many degrees of freedom.

Linear programming: standard formulation

A LP has many degrees of freedom.

- maximization or minimization.

Linear programming: standard formulation

A LP has many degrees of freedom.

- maximization or minimization.
- constrains could be $=, \geq, \leq,<$ or $>$.

Linear programming: standard formulation

A LP has many degrees of freedom.

- maximization or minimization.
- constrains could be $=, \geq, \leq,<$ or $>$.
- variables are often restricted to be non-negative, but they also could be unrestricted.

Linear programming: standard formulation

A LP has many degrees of freedom.

- maximization or minimization.
- constrains could be $=, \geq, \leq,<$ or $>$.
- variables are often restricted to be non-negative, but they also could be unrestricted.
- standard form?

Linear programming: standard formulation

- From max to min (or min to max)

Linear programming: standard formulation

- From max to min (or min to max) multiply by -1 the coefficients of the objective function.

Linear programming: standard formulation

- From max to min (or min to max) multiply by -1 the coefficients of the objective function.
- To reverse an inequality (for ex. \geq to \leq)

Linear programming: standard formulation

- From max to min (or min to max) multiply by -1 the coefficients of the objective function.
- To reverse an inequality (for ex. \geq to \leq) multiply all coefficients and the independent term by -1 .

Linear programming: standard formulation

- From max to min (or min to max) multiply by -1 the coefficients of the objective function.
- To reverse an inequality (for ex. \geq to \leq) multiply all coefficients and the independent term by -1 .
- From $<$ to \leq (or to $=$)

Linear programming: standard formulation

- From max to min (or min to max) multiply by -1 the coefficients of the objective function.
- To reverse an inequality (for ex. \geq to \leq) multiply all coefficients and the independent term by -1 .
- From $<$ to \leq (or to $=$)
create a new positive variable and add it with coefficient 1 to the left par of the inequality.

Linear programming: standard formulation

- From max to min (or min to max) multiply by -1 the coefficients of the objective function.
- To reverse an inequality (for ex. \geq to \leq) multiply all coefficients and the independent term by -1 .
- From $<$ to \leq (or to $=$)
create a new positive variable and add it with coefficient 1 to the left par of the inequality.
- From $=$ to \leq (or to \geq)

Linear programming: standard formulation

- From max to min (or min to max) multiply by -1 the coefficients of the objective function.
- To reverse an inequality (for ex. \geq to \leq) multiply all coefficients and the independent term by -1 .
- From $<$ to \leq (or to $=$)
create a new positive variable and add it with coefficient 1 to the left par of the inequality.
- From $=$ to \leq (or to \geq)
put two versions one with \leq and the other with \geq, multiply the last one by -1 .

Linear programming: standard formulation

- From max to min (or min to max) multiply by -1 the coefficients of the objective function.
- To reverse an inequality (for ex. \geq to \leq) multiply all coefficients and the independent term by -1 .
- From $<$ to \leq (or to $=$)
create a new positive variable and add it with coefficient 1 to the left par of the inequality.
- From $=$ to \leq (or to \geq)
put two versions one with \leq and the other with \geq, multiply the last one by -1 .
- From x unrestricted to non-negative variables,

Linear programming: standard formulation

- From max to min (or min to max) multiply by -1 the coefficients of the objective function.
- To reverse an inequality (for ex. \geq to \leq) multiply all coefficients and the independent term by -1 .
- From $<$ to \leq (or to $=$)
create a new positive variable and add it with coefficient 1 to the left par of the inequality.
- From $=$ to \leq (or to \geq)
put two versions one with \leq and the other with \geq, multiply the last one by -1 .
- From x unrestricted to non-negative variables, create two new variables x^{+}and x^{-}, both non negative, replace x by $x^{+}-x^{-}$.

Linear programming: standard formulation

LP standard form

$$
\begin{array}{ll}
\min & c^{T} x \\
\text { s.t. } & A x \geq b \\
& x \geq 0
\end{array}
$$

Where

- $x=\left(x_{1}, \ldots, x_{n}\right), c=\left(c_{1}, \ldots, c_{n}\right)$.
- $b^{T}=\left(b_{1}, \ldots, b_{m}\right)$
- A is a $n \times m$ matrix.

Linear programming: problem

Given

- $c=\left(c_{1}, \ldots, c_{n}\right)$,
- $b^{T}=\left(b_{1}, \ldots, b_{m}\right)$,
- and a $n \times m$ matrix A.
find $x=\left(x_{1}, \ldots, x_{n}\right) \geq 0$, so that
- $A x \geq b$ and $c^{T} x$ is minimized.

Linear programming: algorithms

Linear programming: algorithms

We can solve Linear Programming in polynomial time

Linear programming: algorithms

We can solve Linear Programming in polynomial time

Linear programming: algorithms

We can solve Linear Programming in polynomial time

- Simplex method: Dantzig in 1947 (exponential time Klee and Minty 1972)

Linear programming: algorithms

We can solve Linear Programming in polynomial time

- Simplex method: Dantzig in 1947 (exponential time Klee and Minty 1972)
- Ellipsoid method: Khachiyan $1979\left(O\left(n^{6}\right)\right)$

Linear programming: algorithms

We can solve Linear Programming in polynomial time

- Simplex method: Dantzig in 1947 (exponential time Klee and Minty 1972)
- Ellipsoid method: Khachiyan $1979\left(O\left(n^{6}\right)\right)$
- Interior-point method: Karmarkar $1984\left(O\left(n^{3}\right)\right)$

Linear programming: algorithms

We can solve Linear Programming in polynomial time

- Simplex method: Dantzig in 1947 (exponential time Klee and Minty 1972)
- Ellipsoid method: Khachiyan $1979\left(O\left(n^{6}\right)\right)$
- Interior-point method: Karmarkar $1984\left(O\left(n^{3}\right)\right)$
- Most used algorithm is still Simplex (fast on average).
- Many commercial LP solvers CPLEX and open source Gurobi

Integer programming

Integer programming

- An integer programming (IP) problem is a linear programming problem with the additional restriction that the values of the variables must be integers.

Integer programming

- An integer programming (IP) problem is a linear programming problem with the additional restriction that the values of the variables must be integers.
- A mixed integer programming (MIP) problem is a linear programming problem with the additional restriction that, the values of some variables must be integers.

Integer programming

- An integer programming (IP) problem is a linear programming problem with the additional restriction that the values of the variables must be integers.
- A mixed integer programming (MIP) problem is a linear programming problem with the additional restriction that, the values of some variables must be integers.
- Many NPO problems can be easily expressed as IP or MIP problems

Integer programming

- An integer programming (IP) problem is a linear programming problem with the additional restriction that the values of the variables must be integers.
- A mixed integer programming (MIP) problem is a linear programming problem with the additional restriction that, the values of some variables must be integers.
- Many NPO problems can be easily expressed as IP or MIP problems
- IP is NP-hard

Max SAT as integer program

- Max Sat: Input a set of m clauses on n variables, find an assignment that maximizes the number of satisfied clauses.

Max SAT as integer program

- Max Sat: Input a set of m clauses on n variables, find an assignment that maximizes the number of satisfied clauses.
- For a clause j, the set of variables that appear in C_{j}
- positive is $P(j)$
- negative is $N(j)$

Max SAT as integer program

- Max Sat: Input a set of m clauses on n variables, find an assignment that maximizes the number of satisfied clauses.
- For a clause j, the set of variables that appear in C_{j}
- positive is $P(j)$
- negative is $N(j)$
- We consider $n+m$ integer variables,

Max SAT as integer program

- Max Sat: Input a set of m clauses on n variables, find an assignment that maximizes the number of satisfied clauses.
- For a clause j, the set of variables that appear in C_{j}
- positive is $P(j)$
- negative is $N(j)$
- We consider $n+m$ integer variables,
- x_{1}, \ldots, x_{n}, one per each variable

Max SAT as integer program

- Max Sat: Input a set of m clauses on n variables, find an assignment that maximizes the number of satisfied clauses.
- For a clause j, the set of variables that appear in C_{j}
- positive is $P(j)$
- negative is $N(j)$
- We consider $n+m$ integer variables,
- x_{1}, \ldots, x_{n}, one per each variable
- y_{1}, \ldots, y_{m}, one per each clause

Max SAT as integer program

- Max Sat: Input a set of m clauses on n variables, find an assignment that maximizes the number of satisfied clauses.
- For a clause j, the set of variables that appear in C_{j}
- positive is $P(j)$
- negative is $N(j)$
- We consider $n+m$ integer variables,
- x_{1}, \ldots, x_{n}, one per each variable
- y_{1}, \ldots, y_{m}, one per each clause

The variables will be restricted to have values in $\{0,1\}$ This is a simplification of saying that they must hold integer values and that all of them are ≤ 1.

Max SAT as integer program

$$
\begin{array}{ll}
& \text { Max SAT-IP } \\
\max & \sum_{j=1}^{m} y_{j} \\
\text { s.t. } & \sum_{i \in P(j)} x_{i}+\sum_{i \in N(j)}\left(1-x_{i}\right) \geq y_{j} \quad 1 \leq j \leq m \\
& y_{j} \in\{0,1\} \quad 1 \leq j \leq m \\
& x_{i} \in\{0,1\} \quad 1 \leq i \leq n
\end{array}
$$

The size of the IP is polynomial in the size of the Max SAT,

Max SAT as integer program

$$
\begin{array}{ll}
& \text { Max SAT-IP } \\
\max & \sum_{j=1}^{m} y_{j} \\
\text { s.t. } & \sum_{i \in P(j)} x_{i}+\sum_{i \in N(j)}\left(1-x_{i}\right) \geq y_{j} \quad 1 \leq j \leq m \\
& y_{j} \in\{0,1\} \quad 1 \leq j \leq m \\
& x_{i} \in\{0,1\} \quad 1 \leq i \leq n
\end{array}
$$

The size of the IP is polynomial in the size of the Max SAT, so the transformation is a polynomial Turing reduction from Max SAT to IP.

Vertex cover as integer program

VC
Given a graph $G=(V, E)$ we want to find a set $S \subset V$ with minimum cardinality, so that every edge in G has at least one end point in S.

Vertex cover as integer program

VC
Given a graph $G=(V, E)$ we want to find a set $S \subset V$ with minimum cardinality, so that every edge in G has at least one end point in S.

VC-IP

$$
\begin{array}{ll}
\min & \sum_{i=1}^{n} x_{i} \\
\text { s.t. } & x_{i}+x_{j} \geq 1 \quad \text { for all }(i, j) \in E \\
& x_{i} \in\{0,1\} \quad \text { for all } i \in V
\end{array}
$$

Weighted Vertex cover as integer program

WVC
Given a graph $G=(V, A)$ with weights w associated to the vertices, we want to find a set $S \subset V$ with minimum weight, so that every edge in G has at least one end point in S.

Weighted Vertex cover as integer program

WVC
Given a graph $G=(V, A)$ with weights w associated to the vertices, we want to find a set $S \subset V$ with minimum weight, so that every edge in G has at least one end point in S.

VC-IP
$\min \sum_{i=1}^{n} w_{i} x_{i}$
s.t. $\quad x_{i}+x_{j} \geq 1 \quad$ for all $(i, j) \in E$
$x_{i} \in\{0,1\} \quad$ for all $i \in V$

Exercise

Try to write a LP or IP formulation for the problems

- Min Weighted Matching
- Set cover
- Max Flow

(2) Relax and round

Relaxation and rounding

- Many real-life problems can be modeled as Integer Linear Programs (IP).
- The IP can be relaxed to a linear program (LP) by eliminating the integrity constraints.

Relaxation and rounding

- Many real-life problems can be modeled as Integer Linear Programs (IP).
- The IP can be relaxed to a linear program (LP) by eliminating the integrity constraints.
- By doing so the optimum cost can only improve, i.e., opt of LP is better than opt of IP.

Relaxation and rounding

- Many real-life problems can be modeled as Integer Linear Programs (IP).
- The IP can be relaxed to a linear program (LP) by eliminating the integrity constraints.
- By doing so the optimum cost can only improve, i.e., opt of LP is better than opt of IP.
- We can solve the LP in polynomial time.

Relaxation and rounding

- Many real-life problems can be modeled as Integer Linear Programs (IP).
- The IP can be relaxed to a linear program (LP) by eliminating the integrity constraints.
- By doing so the optimum cost can only improve, i.e., opt of LP is better than opt of IP.
- We can solve the LP in polynomial time.
- The LP optimal solution might not be integral, when possible, transform it to get a feasible integer solution not far from opt of IP.

Vertex cover

VC
Given a graph $G=(V, A)$ we want to find a set $S \subset V$ with minimum cardinality, so that every edge in G has at least one end point in S.

VC-IP

$$
\begin{array}{ll}
\min & \sum_{i=1}^{n} x_{i} \\
\text { s.t. } & x_{i}+x_{j} \geq 1 \quad \text { for all }(i, j) \in E \\
& x_{i} \in\{0,1\} \quad \text { for all } i \in V
\end{array}
$$

Vertex cover

VC
Given a graph $G=(V, A)$ we want to find a set $S \subset V$ with minimum cardinality, so that every edge in G has at least one end point in S.

$$
\begin{array}{ll}
\text { VC-IP } \\
\min & \sum_{i=1}^{n} x_{i} \\
\text { s.t. } & x_{i}+x_{j} \geq 1 \quad \text { for all }(i, j) \in E \\
& x_{i} \in\{0,1\} \quad \text { for all } i \in V
\end{array}
$$

$$
\min \quad \sum_{i=1}^{n} x_{i}
$$

s.t. $\quad x_{i}+x_{j} \geq 1 \quad$ for $\operatorname{all}(i, j) \in E$ $x_{i} \geq 0 \quad$ for all $i \in V$

Vertex cover: another approximation algorithm

Vertex cover: another approximation algorithm

Lemma

VC-LP has an optimal solution x^{*} such that $x_{i} \in\{0,1,1 / 2\}$. Furthermore, such a solution can be computed in polynomial time.

Proof.

Vertex cover: another approximation algorithm

Lemma

VC-LP has an optimal solution x^{*} such that $x_{i} \in\{0,1,1 / 2\}$. Furthermore, such a solution can be computed in polynomial time.

Proof.

Let y be an optimal solution s.t. not all its coordinates are in $\{0,1,1 / 2\}$.

Vertex cover: another approximation algorithm

Lemma

VC-LP has an optimal solution x^{*} such that $x_{i} \in\{0,1,1 / 2\}$. Furthermore, such a solution can be computed in polynomial time.

Proof.

Let y be an optimal solution s.t. not all its coordinates are in $\{0,1,1 / 2\}$. Set $\epsilon=\min _{y_{i} \notin\{0,1,1 / 2\}}\left\{y_{i},\left|y_{i}-1 / 2\right|, 1-y_{i}\right\}$. Consider

Vertex cover: another approximation algorithm

Lemma

VC-LP has an optimal solution x^{*} such that $x_{i} \in\{0,1,1 / 2\}$. Furthermore, such a solution can be computed in polynomial time.

Proof.

Let y be an optimal solution s.t. not all its coordinates are in $\{0,1,1 / 2\}$. Set $\epsilon=\min _{y_{i} \notin\{0,1,1 / 2\}}\left\{y_{i},\left|y_{i}-1 / 2\right|, 1-y_{i}\right\}$. Consider

$$
y_{i}^{\prime}=\left\{\begin{array}{ll}
y_{i}-\epsilon & 0<y_{i}<1 / 2 \\
y_{i}+\epsilon & 1 / 2<y_{i}<1 \\
y_{i} & \text { otherwise }
\end{array} \quad y_{i}^{\prime \prime}= \begin{cases}y_{i}+\epsilon & 0<y_{i}<1 / 2 \\
y_{i}-\epsilon & 1 / 2<y_{i}<1 \\
y_{i} & \text { otherwise }\end{cases}\right.
$$

Vertex cover: another approximation algorithm

Lemma

VC-LP has an optimal solution x^{*} such that $x_{i} \in\{0,1,1 / 2\}$. Furthermore, such a solution can be computed in polynomial time.

Proof.

Let y be an optimal solution s.t. not all its coordinates are in $\{0,1,1 / 2\}$. Set $\epsilon=\min _{y_{i} \notin\{0,1,1 / 2\}}\left\{y_{i},\left|y_{i}-1 / 2\right|, 1-y_{i}\right\}$. Consider

$$
y_{i}^{\prime}=\left\{\begin{array}{ll}
y_{i}-\epsilon & 0<y_{i}<1 / 2 \\
y_{i}+\epsilon & 1 / 2<y_{i}<1 \\
y_{i} & \text { otherwise }
\end{array} \quad y_{i}^{\prime \prime}= \begin{cases}y_{i}+\epsilon & 0<y_{i}<1 / 2 \\
y_{i}-\epsilon & 1 / 2<y_{i}<1 \\
y_{i} & \text { otherwise }\end{cases}\right.
$$

$\sum y_{i}=\left(\sum y_{i}^{\prime}+\sum y_{i}^{\prime \prime}\right) / 2$, so both are optimal solutions.

Vertex cover: another approximation algorithm

Lemma

VC-LP has an optimal solution x^{*} such that $x_{i} \in\{0,1,1 / 2\}$. Furthermore, such a solution can be computed in polynomial time.

Proof.

Let y be an optimal solution s.t. not all its coordinates are in $\{0,1,1 / 2\}$. Set $\epsilon=\min _{y_{i} \notin\{0,1,1 / 2\}}\left\{y_{i},\left|y_{i}-1 / 2\right|, 1-y_{i}\right\}$. Consider

$$
y_{i}^{\prime}=\left\{\begin{array}{ll}
y_{i}-\epsilon & 0<y_{i}<1 / 2 \\
y_{i}+\epsilon & 1 / 2<y_{i}<1 \\
y_{i} & \text { otherwise }
\end{array} \quad y_{i}^{\prime \prime}= \begin{cases}y_{i}+\epsilon & 0<y_{i}<1 / 2 \\
y_{i}-\epsilon & 1 / 2<y_{i}<1 \\
y_{i} & \text { otherwise }\end{cases}\right.
$$

$\sum y_{i}=\left(\sum y_{i}^{\prime}+\sum y_{i}^{\prime \prime}\right) / 2$, so both are optimal solutions. One of them has more $\{0,1,1 / 2\}$ coordinates than y.

Vertex cover: another approximation algorithm

Lemma

VC-LP has an optimal solution x^{*} such that $x_{i} \in\{0,1,1 / 2\}$. Furthermore, such a solution can be computed in polynomial time.

Proof.

Let y be an optimal solution s.t. not all its coordinates are in $\{0,1,1 / 2\}$. Set $\epsilon=\min _{y_{i} \notin\{0,1,1 / 2\}}\left\{y_{i},\left|y_{i}-1 / 2\right|, 1-y_{i}\right\}$. Consider

$$
y_{i}^{\prime}=\left\{\begin{array}{ll}
y_{i}-\epsilon & 0<y_{i}<1 / 2 \\
y_{i}+\epsilon & 1 / 2<y_{i}<1 \\
y_{i} & \text { otherwise }
\end{array} \quad y_{i}^{\prime \prime}= \begin{cases}y_{i}+\epsilon & 0<y_{i}<1 / 2 \\
y_{i}-\epsilon & 1 / 2<y_{i}<1 \\
y_{i} & \text { otherwise }\end{cases}\right.
$$

$\sum y_{i}=\left(\sum y_{i}^{\prime}+\sum y_{i}^{\prime \prime}\right) / 2$, so both are optimal solutions. One of them has more $\{0,1,1 / 2\}$ coordinates than y.

Vertex cover

Vertex cover

function Relax+Round VC(G)
Construct the LP-VC associated G
Let y be an optimal relaxed solution (of the LP instance)

Vertex cover

function Relax+Round $\operatorname{VC}(G)$
Construct the LP-VC associated G
Let y be an optimal relaxed solution (of the LP instance) Using the previous lemma, construct an optimal relaxed solution y^{\prime} such that $y_{i}^{\prime} \in\{0,1,1 / 2\}$

Vertex cover

function Relax+Round $\operatorname{VC}(G)$
Construct the LP-VC associated G
Let y be an optimal relaxed solution (of the LP instance) Using the previous lemma, construct an optimal relaxed solution y^{\prime} such that $y_{i}^{\prime} \in\{0,1,1 / 2\}$
Let x defined as $x_{i}=0$ if $y_{i}^{\prime}=0, x_{i}=1$ otherwise. return (x)

Vertex cover

function Relax + Round VC(G)
Construct the LP-VC associated G
Let y be an optimal relaxed solution (of the LP instance) Using the previous lemma, construct an optimal relaxed solution y^{\prime} such that $y_{i}^{\prime} \in\{0,1,1 / 2\}$
Let x defined as $x_{i}=0$ if $y_{i}^{\prime}=0, x_{i}=1$ otherwise. return (x)
Relax+Round VC

Vertex cover

function Relax + Round VC(G)
Construct the LP-VC associated G
Let y be an optimal relaxed solution (of the LP instance) Using the previous lemma, construct an optimal relaxed solution y^{\prime} such that $y_{i}^{\prime} \in\{0,1,1 / 2\}$
Let x defined as $x_{i}=0$ if $y_{i}^{\prime}=0, x_{i}=1$ otherwise. return (x)

Relax+Round VC

- runs in polynomial time

Vertex cover

function Relax+Round $\operatorname{VC}(G)$
Construct the LP-VC associated G
Let y be an optimal relaxed solution (of the LP instance) Using the previous lemma, construct an optimal relaxed solution y^{\prime} such that $y_{i}^{\prime} \in\{0,1,1 / 2\}$
Let x defined as $x_{i}=0$ if $y_{i}^{\prime}=0, x_{i}=1$ otherwise. return (x)

Relax+Round VC

- runs in polynomial time
- x defines a vertex cover

Vertex cover

function Relax + Round $\operatorname{VC}(G)$
Construct the LP-VC associated G
Let y be an optimal relaxed solution (of the LP instance) Using the previous lemma, construct an optimal relaxed solution y^{\prime} such that $y_{i}^{\prime} \in\{0,1,1 / 2\}$
Let x defined as $x_{i}=0$ if $y_{i}^{\prime}=0, x_{i}=1$ otherwise. return (x)

Relax+Round VC

- runs in polynomial time
- x defines a vertex cover
- $\sum_{i=1}^{n} x_{i} \leq 2 \sum_{i=1}^{n} y_{i}^{\prime} \leq 2 \mathrm{opt}$

Vertex cover

function Relax + Round $\operatorname{VC}(G)$

Construct the LP-VC associated G
Let y be an optimal relaxed solution (of the LP instance) Using the previous lemma, construct an optimal relaxed solution y^{\prime} such that $y_{i}^{\prime} \in\{0,1,1 / 2\}$
Let x defined as $x_{i}=0$ if $y_{i}^{\prime}=0, x_{i}=1$ otherwise. return (x)

Relax+Round VC

- runs in polynomial time
- x defines a vertex cover
- $\sum_{i=1}^{n} x_{i} \leq 2 \sum_{i=1}^{n} y_{i}^{\prime} \leq 2 \mathrm{opt}$
- is a 2-approximation for VC.

Weighted vertex cover: Relax+Round approximation

$$
\begin{array}{ll}
\text { LP WVC } \\
\min & \sum_{i=1}^{n} w_{i} x_{i} \\
\text { s.t. } & x_{i}+x_{j} \geq 1 \quad \text { for all }(i, j) \in E \\
& x_{i} \geq 0 \text { for all } i \in V
\end{array}
$$

Weighted vertex cover: Relax+Round approximation

$$
\begin{array}{ll}
& \text { LP WVC } \\
\min & \sum_{i=1}^{n} w_{i} x_{i} \\
\text { s.t. } & x_{i}+x_{j} \geq 1 \quad \text { for } \operatorname{all}(i, j) \in E \\
& x_{i} \geq 0 \quad \text { for all } i \in V
\end{array}
$$

$$
\text { function } \mathrm{WVC}(G, c)
$$

Construct the LP WVC, I

$$
y=L P . \operatorname{solve}(I)
$$

$$
\text { for } i=1, \ldots, n \text { do }
$$

$$
\text { if } y_{i}<1 / 2 \text { then }
$$

$$
x_{i}=0
$$

else

$$
x_{i}=1
$$

return (x)

Weighted vertex cover: Relax+Round approximation

	function $\operatorname{WVC}(G, c)$
	Construct the LP WVC, I
LP WVC	$y=L P$.solve(I)
${ }^{n}$	for $i=1, \ldots, n$ do
$\min \quad \sum w_{i} x_{i}$	if $y_{i}<1 / 2$ then
$\sum_{i=1}$	$x_{i}=0$
s.t. $\quad x_{i}+x_{j} \geq 1 \quad$ for all $(i, j) \in E$	else
$x_{i} \geq 0 \quad$ for all $i \in V$	$x_{i}=1$
	return (x)
Relax + Round WVC	

Weighted vertex cover: Relax+Round approximation

	function $\operatorname{WVC}(G, c)$
	Construct the LP WVC, I
LP WVC	$y=L P$.solve(I)
\underline{n}	for $i=1, \ldots, n$ do
$\min \quad \sum w_{i} x_{i}$	if $y_{i}<1 / 2$ then
$\sum_{i=1}$	$x_{i}=0$
s.t. $x_{i}+x_{j} \geq 1 \quad$ for all $(i, j) \in E$	else
$x_{i} \geq 0 \quad$ for all $i \in V$	$x_{i}=1$
	return (x)
Relax + Round WVC	
- runs in polynomial time	

Weighted vertex cover: Relax+Round approximation

> - runs in polynomial time
> - x defines a vertex cover

Weighted vertex cover: Relax+Round approximation

$$
\begin{aligned}
& y=L P \text {.solve(} I \text {) } \\
& \text { for } i=1, \ldots, n \text { do } \\
& \text { if } y_{i}<1 / 2 \text { then } \\
& x_{i}=0 \\
& \text { else } \\
& x_{i}=1 \\
& \text { return (} x \text {) } \\
& \text { - runs in polynomial time } \\
& \text { - x defines a vertex cover } \\
& \text { - } \sum_{i=1}^{n} w_{i} x_{i} \leq 2 \sum_{i=1}^{n} w_{i} y_{i} \leq 2 \mathrm{opt}
\end{aligned}
$$

Weighted vertex cover: Relax+Round approximation

LP WVC
$\min \sum_{i=1}^{n} w_{i} x_{i}$
s.t. $\quad x_{i}+x_{j} \geq 1 \quad$ for $\operatorname{all}(i, j) \in E$

$$
x_{i} \geq 0 \quad \text { for all } i \in V
$$

$$
\begin{aligned}
& \text { function } \mathrm{WVC}(G, c) \\
& \text { Construct the LP WVC, } I \\
& y=L P . \text { solve }(I) \\
& \text { for } i=1, \ldots, n \text { do } \\
& \text { if } y_{i}<1 / 2 \text { then } \\
& x_{i}=0 \\
& \text { else } \\
& x_{i}=1 \\
& \text { return }(x)
\end{aligned}
$$

Relax+Round WVC

- runs in polynomial time
- x defines a vertex cover
- $\sum_{i=1}^{n} w_{i} x_{i} \leq 2 \sum_{i=1}^{n} w_{i} y_{i} \leq 2 \mathrm{opt}$
- is a 2-approximation for WVC.

Minimum 2-Satisfiability

MIN 2-SAT
Given a Boolean formula in 2-CNF, determine whether it is satisfiable and, in such a case, find a satisfying assignment with minimum number of true variables.

Minimum 2-Satisfiability

MIN 2-SAT
Given a Boolean formula in 2-CNF, determine whether it is satisfiable and, in such a case, find a satisfying assignment with minimum number of true variables.

- 2-SAT

Minimum 2-Satisfiability

MIN 2-SAT
Given a Boolean formula in 2-CNF, determine whether it is satisfiable and, in such a case, find a satisfying assignment with minimum number of true variables.

- 2-SAT can be solved in polynomial time.

Minimum 2-Satisfiability

MIN 2-SAT
Given a Boolean formula in 2-CNF, determine whether it is satisfiable and, in such a case, find a satisfying assignment with minimum number of true variables.

- 2-SAT can be solved in polynomial time.
- Min 2-SAT is NP-hard.

Minimum 2-Satisfiability

MIN 2-SAT
Given a Boolean formula in 2-CNF, determine whether it is satisfiable and, in such a case, find a satisfying assignment with minimum number of true variables.

- 2-SAT can be solved in polynomial time.
- Min 2-SAT is NP-hard.
- Min 2-SAT IP formulation?

Minimum 2-Satisfiability: IP formulation

Suppose that F has n variables $x_{1}, \ldots x_{n}$ and m clauses with 2 literals per clause

Minimum 2-Satisfiability: IP formulation

Suppose that F has n variables $x_{1}, \ldots x_{n}$ and m clauses with 2 literals per clause

$$
\begin{aligned}
& \text { IP Min 2-SAT } \\
& \min \sum_{i=1}^{n} x_{i}
\end{aligned}
$$

s.t.

$$
\begin{aligned}
& x_{i}+x_{j} \geq 1 \text { for all clauses }\left(x_{i} \vee x_{j}\right) \in F \\
&\left(1-x_{i}\right)+x_{j} \geq 1 \text { for all clauses }\left(\bar{x}_{i} \vee x_{j}\right) \in F \\
&\left(1-x_{i}\right)+\left(1-x_{j}\right) \geq 1 \text { for all clauses }\left(\bar{x}_{i} \vee \bar{x}_{j}\right) \in F \\
& x_{i} \in\{0,1\} \quad 1 \leq i \leq n
\end{aligned}
$$

Minimum 2-Satisfiability: IP formulation

Suppose that F has n variables $x_{1}, \ldots x_{n}$ and m clauses with 2 literals per clause

$$
\begin{array}{r}
\text { IP Min 2-SAT } \\
\min \sum_{i=1}^{n} x_{i}
\end{array}
$$

s.t.

$$
\begin{aligned}
x_{i}+x_{j} & \geq 1 \quad \text { for all clauses }\left(x_{i} \vee x_{j}\right) \in F \\
\left(1-x_{i}\right)+x_{j} & \geq 1 \quad \text { for all clauses }\left(\bar{x}_{i} \vee x_{j}\right) \in F \\
\left(1-x_{i}\right)+\left(1-x_{j}\right) & \geq 1 \quad \text { for all clauses }\left(\bar{x}_{i} \vee \bar{x}_{j}\right) \in F \\
x_{i} & \in\{0,1\} \quad 1 \leq i \leq n
\end{aligned}
$$

LP Min 2-SAT is obtaining replacing $x_{i} \in\{0,1\}$ by $x_{i} \geq 0$.

Minimum 2-Satisfiability: LP relaxation

$$
\begin{aligned}
& \text { LP Min 2-SAT } \\
& \min \sum_{i=1}^{n} x_{i}
\end{aligned}
$$

s.t.

$$
\begin{aligned}
& x_{i}+x_{j} \geq 1 \quad \text { for all clauses }\left(x_{i} \vee x_{j}\right) \in F \\
&\left(1-x_{i}\right)+x_{j} \geq 1 \quad \text { for all clauses }\left(\bar{x}_{i} \vee x_{j}\right) \in F \\
&\left(1-x_{i}\right)+\left(1-x_{j}\right) \geq 1 \quad \text { for all clauses }\left(\bar{x}_{i} \vee \bar{x}_{j}\right) \in F \\
& x_{i} \geq 0 \quad 1 \leq i \leq n
\end{aligned}
$$

Minimum 2-Satisfiability: LP relaxation

$$
\begin{aligned}
& \text { LP Min 2-SAT } \\
& \min \sum_{i=1}^{n} x_{i}
\end{aligned}
$$

s.t.

$$
\begin{aligned}
& x_{i}+x_{j} \geq 1 \quad \text { for all clauses }\left(x_{i} \vee x_{j}\right) \in F \\
&\left(1-x_{i}\right)+x_{j} \geq 1 \quad \text { for all clauses }\left(\bar{x}_{i} \vee x_{j}\right) \in F \\
&\left(1-x_{i}\right)+\left(1-x_{j}\right) \geq 1 \quad \text { for all clauses }\left(\bar{x}_{i} \vee \bar{x}_{j}\right) \in F \\
& x_{i} \geq 0 \quad 1 \leq i \leq n
\end{aligned}
$$

Minimum 2-Satisfiability: LP relaxation

$$
\begin{gathered}
\text { LP Min 2-SAT } \\
\min \quad \sum_{i=1}^{n} x_{i} \\
\text { s.t. } \quad x_{i}+x_{j} \geq 1 \quad \text { for all clauses }\left(x_{i} \vee x_{j}\right) \in F \\
\left(1-x_{i}\right)+x_{j} \geq 1 \quad \text { for all clauses }\left(\bar{x}_{i} \vee x_{j}\right) \in F \\
\left(1-x_{i}\right)+\left(1-x_{j}\right) \geq 1 \quad \text { for all clauses }\left(\bar{x}_{i} \vee \bar{x}_{j}\right) \in F \\
x_{i} \geq 0 \quad 1 \leq i \leq n
\end{gathered}
$$

- Let y be an optimal solution to LP Min 2-SAT.

Minimum 2-Satisfiability: LP relaxation

> LP Min 2-SAT

$$
\min \quad \sum_{i=1}^{n} x_{i}
$$

s.t.

$$
\begin{aligned}
& x_{i}+x_{j} \geq 1 \quad \text { for all clauses }\left(x_{i} \vee x_{j}\right) \in F \\
&\left(1-x_{i}\right)+x_{j} \geq 1 \quad \text { for all clauses }\left(\bar{x}_{i} \vee x_{j}\right) \in F \\
&\left(1-x_{i}\right)+\left(1-x_{j}\right) \geq 1 \quad \text { for all clauses }\left(\bar{x}_{i} \vee \bar{x}_{j}\right) \in F \\
& x_{i} \geq 0 \quad 1 \leq i \leq n
\end{aligned}
$$

- Let y be an optimal solution to LP Min 2-SAT.
- Can we use the same rounding scheme as for WVC?

Minimum 2-Satisfiability: LP relaxation

$$
\begin{array}{r}
\text { LP Min 2-SAT } \\
\min \sum_{i=1}^{n} x_{i}
\end{array}
$$

s.t.

$$
\begin{aligned}
& x_{i}+x_{j} \geq 1 \quad \text { for all clauses }\left(x_{i} \vee x_{j}\right) \in F \\
&\left(1-x_{i}\right)+x_{j} \geq 1 \quad \text { for all clauses }\left(\bar{x}_{i} \vee x_{j}\right) \in F \\
&\left(1-x_{i}\right)+\left(1-x_{j}\right) \geq 1 \quad \text { for all clauses }\left(\bar{x}_{i} \vee \bar{x}_{j}\right) \in F \\
& x_{i} \geq 0 \quad 1 \leq i \leq n
\end{aligned}
$$

- Let y be an optimal solution to LP Min 2-SAT.
- Can we use the same rounding scheme as for WVC?
- Setting $x_{i}=1$ if $y_{i}>1 / 2$ and $x_{i}=0$ if $y_{i}<1 / 2$ is safe, all clauses with at least one literal with value $>1 / 2$ will be satisfied.

Minimum 2-Satisfiability: LP relaxation

$$
\begin{array}{r}
\text { LP Min 2-SAT } \\
\min \sum_{i=1}^{n} x_{i}
\end{array}
$$

s.t.

$$
\begin{aligned}
& x_{i}+x_{j} \geq 1 \quad \text { for all clauses }\left(x_{i} \vee x_{j}\right) \in F \\
&\left(1-x_{i}\right)+x_{j} \geq 1 \quad \text { for all clauses }\left(\bar{x}_{i} \vee x_{j}\right) \in F \\
&\left(1-x_{i}\right)+\left(1-x_{j}\right) \geq 1 \quad \text { for all clauses }\left(\bar{x}_{i} \vee \bar{x}_{j}\right) \in F \\
& x_{i} \geq 0 \quad 1 \leq i \leq n
\end{aligned}
$$

- Let y be an optimal solution to LP Min 2-SAT.
- Can we use the same rounding scheme as for WVC?
- Setting $x_{i}=1$ if $y_{i}>1 / 2$ and $x_{i}=0$ if $y_{i}<1 / 2$ is safe, all clauses with at least one literal with value $>1 / 2$ will be satisfied.
- When $y_{i}=1 / 2$?

Minimum 2-Satisfiability: LP relaxation

- Let y be an optimal solution to IP Min 2-SAT.
- What to do when $y_{i}=1 / 2$? 1 ? 0 ?

Minimum 2-Satisfiability: LP relaxation

- Let y be an optimal solution to IP Min 2-SAT.
- What to do when $y_{i}=1 / 2$? 1 ? 0 ?
- If F contains the clauses $\left(x_{i} \vee x_{j}\right)$ and $\left(\bar{x}_{i} \vee \bar{x}_{j}\right)$ and $y_{i}=y_{j}=1 / 2$, neither $x_{i}=x_{j}=1$ nor $x_{i}=x_{j}=0$ satisfy the formula.

Minimum 2-Satisfiability: LP relaxation

- Let y be an optimal solution to IP Min 2-SAT.
- What to do when $y_{i}=1 / 2$? 1 ? 0 ?
- If F contains the clauses $\left(x_{i} \vee x_{j}\right)$ and $\left(\bar{x}_{i} \vee \bar{x}_{j}\right)$ and $y_{i}=y_{j}=1 / 2$, neither $x_{i}=x_{j}=1$ nor $x_{i}=x_{j}=0$ satisfy the formula.
- $F_{1}=$ clauses whose two variables have y value $=1 / 2$.

Minimum 2-Satisfiability: LP relaxation

- Let y be an optimal solution to IP Min 2-SAT.
- What to do when $y_{i}=1 / 2$? 1 ? 0 ?
- If F contains the clauses $\left(x_{i} \vee x_{j}\right)$ and $\left(\bar{x}_{i} \vee \bar{x}_{j}\right)$ and $y_{i}=y_{j}=1 / 2$, neither $x_{i}=x_{j}=1$ nor $x_{i}=x_{j}=0$ satisfy the formula.
- $F_{1}=$ clauses whose two variables have y value $=1 / 2$.
- Rounding those values to 1 or 0 would keep the approximation ratio to 2, provided the constructed solution x to Min 2-SAT is still a satisfying assignment.

Minimum 2-Satisfiability: LP relaxation

- Let y be an optimal solution to IP Min 2-SAT.
- What to do when $y_{i}=1 / 2$? 1 ? 0 ?
- If F contains the clauses $\left(x_{i} \vee x_{j}\right)$ and $\left(\bar{x}_{i} \vee \bar{x}_{j}\right)$ and $y_{i}=y_{j}=1 / 2$, neither $x_{i}=x_{j}=1$ nor $x_{i}=x_{j}=0$ satisfy the formula.
- $F_{1}=$ clauses whose two variables have y value $=1 / 2$.
- Rounding those values to 1 or 0 would keep the approximation ratio to 2, provided the constructed solution x to Min 2-SAT is still a satisfying assignment.
- Any satisfying assignment for the clauses in F_{1} and get a 2-approximation $;$

Minimum 2-Satisfiability: Relax+Round approximation

function Relax + Round Min 2-SAT(F)
if F is not satisfiable then return false
Construct the LP Min 2-SAT, I
$y=L P$.solve(I)
for $i=1, \ldots, n$ do
if $y_{i}^{\prime}<1 / 2$ then $x_{i}=0$
if $y_{i}^{\prime}>1 / 2$ then $x_{i}=1$
$F_{1}=$ clauses with both y values $=1 / 2$.
Let $J=\left\{j \mid x_{j} \in F_{1}\right\}$
for $\mathrm{i}=1, \ldots, \mathrm{n}$ do
if $y_{i}=1 / 2$ and $i \notin J$ then $x_{i}=1$
Complete x with a satisfying assignment for F_{1} return (x)

Minimum 2-Satisfiability: Relax+Round approximation

Theorem
Relax+Round Min 2-SAT is a 2-approximation for Min 2-SAT.

Max Satisfiability

MAX SAT
Given a Boolean formula in CNF and weights for each clause, find a Boolean assignment to maximize the weight of the satisfied clauses.

Max Satisfiability

MAX SAT
Given a Boolean formula in CNF and weights for each clause, find a Boolean assignment to maximize the weight of the satisfied clauses.

Suppose that F has n variables $x_{1}, \ldots x_{n}$ and m clauses C_{1}, \ldots, C_{m}.

Max Satisfiability

MAX SAT

Given a Boolean formula in CNF and weights for each clause, find a Boolean assignment to maximize the weight of the satisfied clauses.

Suppose that F has n variables $x_{1}, \ldots x_{n}$ and m clauses C_{1}, \ldots, C_{m}.

$$
\begin{gathered}
\text { IP } \operatorname{Max} \operatorname{SAT} \\
\max \quad \sum_{j=1}^{m} w_{j} z_{j} \\
\text { s.t. } \quad \sum_{x_{i} \in C_{j}} y_{i}+\sum_{\bar{x}_{i} \in C_{j}}\left(1-y_{i}\right) \geq z_{j} \quad \mathrm{~J}=1, \ldots, m \\
y_{i} \in\{0,1\} \quad 1 \leq i \leq n \\
z_{j} \in\{0,1\} \quad 1 \leq j \leq m
\end{gathered}
$$

Max Satisfiability

MAX SAT

Given a Boolean formula in CNF and weights for each clause, find a Boolean assignment to maximize the weight of the satisfied clauses.

Suppose that F has n variables $x_{1}, \ldots x_{n}$ and m clauses C_{1}, \ldots, C_{m}.

$$
\begin{gathered}
\text { IP Max SAT } \\
\max \quad \sum_{j=1}^{m} w_{j} z_{j} \\
\text { s.t. } \quad \sum_{x_{i} \in C_{j}} y_{i}+\sum_{\bar{x}_{i} \in C_{j}}\left(1-y_{i}\right) \geq z_{j} \quad \mathrm{~J}=1, \ldots, m \\
y_{i} \in\{0,1\} \quad 1 \leq i \leq n \\
z_{j} \in\{0,1\} \quad 1 \leq j \leq m
\end{gathered}
$$

LP Max SAT is obtaining replacing $a \in\{0,1\}$ by $0 \leq a \leq 1$.

Max Satisfiability: Relax+RRound

Max Satisfiability: Relax+RRound

```
function Relax + RRound \((F)\)
    Construct the LP Max SAT, I
    \((y, z)=L P\).solve (I)
    for \(\mathrm{i}=1, \ldots, \mathrm{n}\) do
    Set \(x_{i}=1\) with probability \(y_{i}\)
    return ( \(x\) )
```


Max Satisfiability: Relax+RRound

function Relax + RRound (F)
Construct the LP Max SAT, I

$$
\begin{aligned}
& (y, z)=L P \text {.solve }(I) \\
& \text { for } \mathrm{i}=1, \ldots, \mathrm{n} \text { do } \\
& \quad \text { Set } x_{i}=1 \text { with probability } y_{i} \\
& \text { return }(x)
\end{aligned}
$$

- The optimal LP solution is used as an indicator of the probability that the variable has to been set to 1 .

Max Satisfiability: Relax+RRound

function Relax + RRound (F)
Construct the LP Max SAT, I

```
(y,z)=LP.solve(I)
for i=1,\ldots,n do
    Set }\mp@subsup{x}{i}{}=1\mathrm{ with probability }\mp@subsup{y}{i}{
    return (x)
```

- The optimal LP solution is used as an indicator of the probability that the variable has to been set to 1 .
- The performance of a randomized algorithm is the expected number of satisfiable clause.

Max Satisfiability: Relax+RRound

function Relax + RRound (F)
Construct the LP Max SAT, I
$(y, z)=L P$.solve (I)
for $\mathrm{i}=1, \ldots, \mathrm{n}$ do
Set $x_{i}=1$ with probability y_{i}
return (x)

- The optimal LP solution is used as an indicator of the probability that the variable has to been set to 1 .
- The performance of a randomized algorithm is the expected number of satisfiable clause.
- This expectation has to be compared with opt.

Max Satisfiability: Relax+RRound

Max Satisfiability: Relax+RRound

- Let $\left(y^{*}, z^{*}\right)$ be an optimal solution of LP Max SAT
- Let Z_{j} be the indicator random variable for the event that clause C_{j} is satisfied.
- Assume that C_{j} has k-literals and that ℓ of them are negated variables.

Max Satisfiability: Relax+RRound

- Let $\left(y^{*}, z^{*}\right)$ be an optimal solution of LP Max SAT
- Let Z_{j} be the indicator random variable for the event that clause C_{j} is satisfied.
- Assume that C_{j} has k-literals and that ℓ of them are negated variables.

Lemma

For any $1 \leq j \leq m, E\left[Z_{j}\right] \geq z_{j}^{*}(1-1 / e)$.

Max Satisfiability: Relax+RRound

- Let $\left(y^{*}, z^{*}\right)$ be an optimal solution of LP Max SAT
- Let Z_{j} be the indicator random variable for the event that clause C_{j} is satisfied.
- Assume that C_{j} has k-literals and that ℓ of them are negated variables.

Lemma

For any $1 \leq j \leq m, E\left[Z_{j}\right] \geq z_{j}^{*}(1-1 / e)$.
Recall $\left(a_{1} \ldots a_{k}\right)^{1 / k} \leq\left(a_{1}+\cdots+a_{k}\right) / k$

Max Satisfiability: Relax+RRound

- Let $\left(y^{*}, z^{*}\right)$ be an optimal solution of LP Max SAT
- Let Z_{j} be the indicator random variable for the event that clause C_{j} is satisfied.
- Assume that C_{j} has k-literals and that ℓ of them are negated variables.

Lemma

For any $1 \leq j \leq m, E\left[Z_{j}\right] \geq z_{j}^{*}(1-1 / e)$.
Recall $\left(a_{1} \ldots a_{k}\right)^{1 / k} \leq\left(a_{1}+\cdots+a_{k}\right) / k$ or equivalently $\left(a_{1} \ldots a_{k}\right) \leq\left(\left(a_{1}+\cdots+a_{k}\right) / k\right)^{k}$

Max Satisfiability: Relax+RRound

Proof.

Max Satisfiability: Relax+RRound

Proof.
Z_{j} is an indicator random variable, and so
$E\left[Z_{j}\right]=\operatorname{Pr}\left[Z_{j}=1\right]=1-\operatorname{Pr}\left[Z_{j}=0\right]$

Max Satisfiability: Relax+RRound

Proof.

Z_{j} is an indicator random variable, and so
$E\left[Z_{j}\right]=\operatorname{Pr}\left[Z_{j}=1\right]=1-\operatorname{Pr}\left[Z_{j}=0\right]$

$$
\begin{aligned}
\operatorname{Pr}\left[Z_{j}=0\right] & =\prod_{x_{i} \in C_{j}}\left(1-y_{i}^{*}\right) \cdot \prod_{\bar{x}_{i} \in C_{j}} y_{i}^{*} \leq\left(\frac{(k-\ell)-\sum_{x_{i} \in C_{j}} y_{i}^{*}+\sum_{\bar{x}_{i} \in C_{j}} y_{i}^{*}}{k}\right)^{k} \\
& \leq\left(\frac{\left(k-\sum_{x_{i} \in C_{j}} y_{i}^{*}-\sum_{\bar{x}_{i} \in C_{j}}\left(1-y_{i}^{*}\right)\right.}{k}\right)^{k} \leq\left(\frac{\left(k-z_{j}^{*}\right)}{k}\right)^{k} \leq\left(1-\frac{z_{j}^{*}}{k}\right)^{k} \\
E\left[Z_{j}\right] & \geq 1-\left(1-\frac{z_{j}^{*}}{k}\right)^{k} \geq z_{j}^{*}\left(1-\frac{1}{k}\right)^{k} \geq z_{j}^{*}(1-1 / e)
\end{aligned}
$$

Max Satisfiability: Relax+RRound

Proof.

Z_{j} is an indicator random variable, and so
$E\left[Z_{j}\right]=\operatorname{Pr}\left[Z_{j}=1\right]=1-\operatorname{Pr}\left[Z_{j}=0\right]$

$$
\begin{aligned}
& \operatorname{Pr}\left[Z_{j}=0\right]=\prod_{x_{i} \in C_{j}}\left(1-y_{i}^{*}\right) \cdot \prod_{\bar{x}_{i} \in C_{j}} y_{i}^{*} \leq\left(\frac{(k-\ell)-\sum_{x_{i} \in C_{j}} y_{i}^{*}+\sum_{\bar{x}_{i} \in C_{j}} y_{i}^{*}}{k}\right)^{k} \\
& \leq\left(\frac{\left(k-\sum_{x_{i} \in C_{j}} y_{i}^{*}-\sum_{\bar{x}_{i} \in C_{j}}\left(1-y_{i}^{*}\right)\right.}{k}\right)^{k} \leq\left(\frac{\left(k-z_{j}^{*}\right)}{k}\right)^{k} \leq\left(1-\frac{z_{j}^{*}}{k}\right)^{k} \\
& E\left[Z_{j}\right] \geq 1-\left(1-\frac{z_{j}^{*}}{k}\right)^{k} \geq z_{j}^{*}\left(1-\frac{1}{k}\right)^{k} \geq z_{j}^{*}(1-1 / e)
\end{aligned}
$$

Max Satisfiability: Relax+RRound approximation

Theorem
Relax + RRound is a e/(e-1)-approximation for Max SAT.

Max Satisfiability: Relax+RRound approximation

Theorem
RELAX + RRound is a e/(e-1)-approximation for MAX SAT.

Proof.

Max Satisfiability: Relax+RRound approximation

Theorem

RELAX + RRound is a e/(e-1)-approximation for MAX SAT.

Proof.

- Let $\left(y^{*}, z^{*}\right)$ be an optimal solution of LP Max SAT
- Let Z_{j} be the indicator r.v.a for clause C_{j} is satisfied.
- Let W be the r.v. weight of satisfied clauses:
$W=\sum_{j=1}^{m} w_{j} Z_{j}$.

Max Satisfiability: Relax+RRound approximation

Theorem

RELAX + RRound is a e/(e-1)-approximation for MAx SAT.

Proof.

- Let $\left(y^{*}, z^{*}\right)$ be an optimal solution of LP Max SAT
- Let Z_{j} be the indicator r.v.a for clause C_{j} is satisfied.
- Let W be the r.v. weight of satisfied clauses:
$W=\sum_{j=1}^{m} w_{j} Z_{j}$.
- $E[W]=\sum_{j=1}^{m} w_{j} E\left[Z_{j}\right] \geq(1-1 / e) \sum_{j=1}^{m} w_{j} z_{j}^{*} \geq(1-1 / e)$ opt

Max Satisfiability:RandAssign

Max Satisfiability:RandAssign

```
function RandAssign \((F)\)
    for \(\mathrm{i}=1, \ldots, \mathrm{n}\) do
        Set \(x_{i}=1\) with probability \(1 / 2\)
    return ( \(x\) )
```


Max Satisfiability:RandAssign

```
function RandAssign \((F)\)
    for \(\mathrm{i}=1, \ldots, \mathrm{n}\) do
        Set \(x_{i}=1\) with probability \(1 / 2\)
    return ( \(x\) )
```


Theorem

RandAssign is a 2-approximation for Max SAT.

Max Satisfiability:RandAssign

```
function RandAssign \((F)\)
    for \(\mathrm{i}=1, \ldots, \mathrm{n}\) do
        Set \(x_{i}=1\) with probability \(1 / 2\)
    return ( \(x\) )
```


Theorem

RandAssign is a 2-approximation for Max SAT.

Proof.

$E[W]=\sum_{j=1}^{m} w_{j} E\left[Z_{j}\right]=\sum_{j=1}^{m} w_{j}\left(1-\left(\frac{1}{2}\right)^{k_{j}}\right) \geq \frac{1}{2} \sum_{j=1}^{m} w_{j} \geq$ $\frac{1}{2}$ opt.

Max Satisfiability:RandAssign

```
function RandAssign(F)
    for i=1,\ldots,n do
        Set }\mp@subsup{x}{i}{}=1\mathrm{ with probability 1/2
    return (x)
```


Theorem

RandAssign is a 2-approximation for Max SAT.

Proof.

$E[W]=\sum_{j=1}^{m} w_{j} E\left[Z_{j}\right]=\sum_{j=1}^{m} w_{j}\left(1-\left(\frac{1}{2}\right)^{k_{j}}\right) \geq \frac{1}{2} \sum_{j=1}^{m} w_{j} \geq$ $\frac{1}{2}$ opt.

We move from $r=2$ (RANDASSIGN) to $r=1.581977$ (RELAX + RRound).

Max Satisfiability:Best2

```
function BEST2( \(F\) )
    \(x_{1}, W_{1}=\operatorname{RandAsSign}(F)\)
    \(x_{2}, W_{2}=\operatorname{RELAx}+\operatorname{RRound}(F)\)
    if \(W_{1} \geq W_{2}\) then
    return ( \(x_{1}\) )
    else
    return \(\left(x_{2}\right)\)
```


Max Satisfiability:Best2

```
function BEST2( \(F\) )
    \(x_{1}, W_{1}=\) RANDASSIGN \((F)\)
    \(x_{2}, W_{2}=\) Relax \(+\operatorname{RRound}(F)\)
    if \(W_{1} \geq W_{2}\) then
        return ( \(x_{1}\) )
    else
        return \(\left(x_{2}\right)\)
```


Theorem

Best2 is a 4/3 (1.33333)-approximation for MAx SAT.

Max Satisfiability:Best2

Max Satisfiability:Best2

Proof.

Max Satisfiability:Best2

Proof.

- $\left.E[W]=E\left[\max \left\{W_{1}, W_{2}\right\}\right] \geq E\left[\left(W_{1}+W_{2}\right) / 2\right\}\right]$.

Max Satisfiability:Best2

Proof.

- $\left.E[W]=E\left[\max \left\{W_{1}, W_{2}\right\}\right] \geq E\left[\left(W_{1}+W_{2}\right) / 2\right\}\right]$.

$$
\begin{aligned}
E[W] & \geq \sum_{j=1}^{m} w_{j}\left[\frac{1}{2}\left(1-\left(\frac{1}{2}\right)^{k_{j}}\right)+\frac{1}{2} z_{j}^{*}\left(1-\left(\frac{1}{k_{j}}\right)^{k_{j}}\right)\right] \\
& \geq \sum_{j=1}^{m} w_{j} \frac{3}{4} z_{j}^{*} \geq \frac{3}{4} \sum_{j=1}^{m} w_{j} z_{j}^{*} \geq \frac{3}{4} \mathrm{opt} .
\end{aligned}
$$

Max Satisfiability:Best2

Proof.

- Is $\left[\frac{1}{2}\left(1-\left(\frac{1}{2}\right)^{k_{j}}\right)+\frac{1}{2} z_{j}^{*}\left(1-\left(\frac{1}{k_{j}}\right)^{k_{j}}\right)\right] \geq \frac{3}{4} z_{j}^{*}$?

Max Satisfiability:Best2

Proof.

- Is $\left[\frac{1}{2}\left(1-\left(\frac{1}{2}\right)^{k_{j}}\right)+\frac{1}{2} z_{j}^{*}\left(1-\left(\frac{1}{k_{j}}\right)^{k_{j}}\right)\right] \geq \frac{3}{4} z_{j}^{*}$?
- $k_{j}=1: \frac{1}{2} \frac{1}{2}+\frac{1}{2} z_{j}^{*} \geq \frac{3}{4} z_{j}^{*}$.

Max Satisfiability:Best2

Proof.

- Is $\left[\frac{1}{2}\left(1-\left(\frac{1}{2}\right)^{k_{j}}\right)+\frac{1}{2} z_{j}^{*}\left(1-\left(\frac{1}{k_{j}}\right)^{k_{j}}\right)\right] \geq \frac{3}{4} z_{j}^{*}$?
- $k_{j}=1: \frac{1}{2} \frac{1}{2}+\frac{1}{2} z_{j}^{*} \geq \frac{3}{4} z_{j}^{*}$.
- $k_{j}=2: \frac{1}{2} \frac{3}{4}+\frac{1}{2} \frac{3}{4} z_{j}^{*} \geq \frac{3}{4} z_{j}^{*}$.

Max Satisfiability:Best2

Proof.

- Is $\left[\frac{1}{2}\left(1-\left(\frac{1}{2}\right)^{k_{j}}\right)+\frac{1}{2} z_{j}^{*}\left(1-\left(\frac{1}{k_{j}}\right)^{k_{j}}\right)\right] \geq \frac{3}{4} z_{j}^{*}$?
- $k_{j}=1: \frac{1}{2} \frac{1}{2}+\frac{1}{2} z_{j}^{*} \geq \frac{3}{4} z_{j}^{*}$.
- $k_{j}=2: \frac{1}{2} \frac{3}{4}+\frac{1}{2} \frac{3}{4} z_{j}^{*} \geq \frac{3}{4} z_{j}^{*}$.
- $k_{j} \geq 3$: the minimum possible of each term is

$$
\frac{1}{2} \frac{7}{8}+\frac{1}{2}\left(1-\frac{1}{e}\right) z_{j}^{*} \geq \frac{3}{4} z_{j}^{*}
$$

Max Satisfiability:Best2

Proof.

- Is $\left[\frac{1}{2}\left(1-\left(\frac{1}{2}\right)^{k_{j}}\right)+\frac{1}{2} z_{j}^{*}\left(1-\left(\frac{1}{k_{j}}\right)^{k_{j}}\right)\right] \geq \frac{3}{4} z_{j}^{*}$?
- $k_{j}=1: \frac{1}{2} \frac{1}{2}+\frac{1}{2} z_{j}^{*} \geq \frac{3}{4} z_{j}^{*}$.
- $k_{j}=2: \frac{1}{2} \frac{3}{4}+\frac{1}{2} \frac{3}{4} z_{j}^{*} \geq \frac{3}{4} z_{j}^{*}$.
- $k_{j} \geq 3$: the minimum possible of each term is

$$
\frac{1}{2} \frac{7}{8}+\frac{1}{2}\left(1-\frac{1}{e}\right) z_{j}^{*} \geq \frac{3}{4} z_{j}^{*}
$$

(1) LP and IP

(2) Relax and round

(3) LP Duality

