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We will cover

Optimization/decision/on-line problems

Approximation and Parameterized complexity

Definition
Examples

Some techniques for the design of approximation algorithms

Linear Programming and approximation

Some techniques for the design of FPT algorithms

Some algorithms for data streams

Not necessarily in this order.
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Problems

Examples:

Given a graph and two vertices, is there a path joining them?
decison problem

Given a graph and two vertices, obtain a path joining them
with minimum length.
optimization problem

Given a set of vertices and two of them, obtain a path joining
them with minimum length, as time passes, in the graph
discovered by accessing the sequence of edges e1, e2, . . . .
The algorithm needs to answer the question at any time step
without knowing the future edges in the graph.
data stream problem

AA-GEI Algorithms for approximation, parameterization, and data streams
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Decision Problems: Complexity classes

P polynomial time
there is a polynomial time algorithm providing the correct
answer. for any input.

EXP exponential time optimization
there is an exponential time algorithm providing the correct
answer. for any input.

NP non-deterministic polynomial time
Syntactic definition!

You already known about these classes!

AA-GEI Algorithms for approximation, parameterization, and data streams
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Optimization Problems

An optimization problem is a structure P = (I, sol,m, goal), where

I is the input set to P;

sol(x) is the set of feasible solutions for an input x .

The objective function m is an integer (rational) measure
defined over pairs (x , y), for x ∈ I and y ∈ sol(x).

goal is the optimization criterium max or min.

That is the function problem whose goal, with respect to an
instance x , is to find an optimum solution, that is, a feasible
solution y such that

y = goal{(m(x , y ′) | y ′ ∈ sol(x)}.

AA-GEI Algorithms for approximation, parameterization, and data streams
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Optimization Problems: Complexity classes

PO polynomial time optimization
there is a polynomial time algorithm computing an optimal
solution for any input.

EXPO exponential time optimization
there is an exponential time algorithm computing an optimal
solution for any input.

NPO NP optimization
Syntactic definition (next slide)

AA-GEI Algorithms for approximation, parameterization, and data streams
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The NPO class

An optimization problem P = (I, sol,m, goal) belongs to NPO iff

I is recognizable in polynomial time.

The feasible solutions are short:
a polynomial p exists such that, for y ∈ sol(x), |y | ≤ p(|x |) .
Moreover, it is decidable in polynomial time whether
y ∈ sol(x), for x , y with |y | ≤ p(|x |),
The objective function m is computable in polynomial time.

AA-GEI Algorithms for approximation, parameterization, and data streams
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The NPO class: Hardness

The bounded version of an optimization problem is the
decision problem

minimization P = (I, sol,m,min) is
Given x ∈ I and an integer k
Is there a solution y ∈ sol(x) such that m(x , y) ⩽ k?

maximization P = (I, sol,m,max) is
Given x ∈ I and an integer k
Is there a solution y ∈ sol(x) such that m(x , y) ⩾ k?

A NPO problem is NP-hard if its bounded version is
NP-complete.

AA-GEI Algorithms for approximation, parameterization, and data streams
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The NPO class: Justification

The bounded version of a NPO problem belongs to NP.

Why?

For a NPO problem the bounded version and the optimization
problem are polynomially equivalent in the following sense:

There is a polynomial time algorithm for the bounded version
iff there is a polynomial time algorithm to compute the cost of
an optimal solution

Why?

Can an NPO problem be NP-complete?

AA-GEI Algorithms for approximation, parameterization, and data streams
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Some NPO problems

min-bin packing
Given n objects, object i has volume vi , 0 ≤ vi ≤ 1, compute the
minimum number of unit bins needed to pack all the objects.

max-sat
Given a cnf formula F , compute an assignment that satisfies the
maximum number of clauses.

max-w-sat
Given a cnf formula F , in which each clause has an assigned weight.
Define the value of an assignment as the sum of the weights of the
satisfied clauses. The problem consists in computing an assignment
with maximum value.

And the bounded literal per clause families max-k-sat.
AA-GEI Algorithms for approximation, parameterization, and data streams
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Some NPO problems: hardness

Which problems in the previous slide are NP-hard? Why?

AA-GEI Algorithms for approximation, parameterization, and data streams
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How to “solve” NP-hard optimization problems in practice

We know that an optimization problem, whose decision version is
NP-hard, cannot be solved in polynomial time unless P =NP.
What to do?

Exact algorithms: for instances of small size or for restricted
classes of instances.

Randomization: algorithms that use random bits, either with
high probability of succes or with high probability of poly time.

Heuristic method: a feasible solution with empirical guarantee.

Approximation algorithm: a feasible solution with a
performance guarantee.

Parameterization: solve efficiently some slices of the problem.

AA-GEI Algorithms for approximation, parameterization, and data streams
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Approximation algorithms

Let P be an optimization problem.

For any instance x of P let opt(x) be the cost of an optimal
solution.

Let A be an algorithm such that for any instance x of P
computes a feasible solution with cost A(x).

A is an r -approximation for P (r ≥ 1) if for any instance x of P

1

r
≤ opt(x)

A(x)
≤ r

P is r -approximable in polynomial time if there is a polynomial
time computable r -approximation for P.

AA-GEI Algorithms for approximation, parameterization, and data streams



References and basics
Approximation algorithms

Greedy
Local Search

Scaling
Combinatorial algorithms

Definition
Complexity classes

Be sure about r

A is an r -approximation for P (r ≥ 1) if for any instance x of P

1

r
≤ opt(x)

A(x)
≤ r

Why r ≥ 1?

In which cases we can have r = 1?

How would you like r to be?

Is there any trivial condition about r , for maximization
problems? for minimization ones?

AA-GEI Algorithms for approximation, parameterization, and data streams
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NPO: approximation classes

Classification of NPO problems as approximable
within a constant r in polynomial time:

APX exists r .

PTAS Polynomial Time Approximation Schema
for any r , but time may depend exponentially in 1/(r − 1).

FPTAS Fully Polynomial Time Approximation Schema
for any r in time polynomial in the input size and 1/(r − 1).

Further classification can be obtained by considering non-constant
r , for example log n or log log n . . . .

Negative results through hardness APX-hard etc.

AA-GEI Algorithms for approximation, parameterization, and data streams
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Hard to approximate problems

Hardness levels:

APX-hard: unless P =NP no PTAS
unless P =NP no constant approximation
...
Non-approximable
unless P =NP, for any r at most a polynomial function of n, there
is no polynomial time r -approximation algorithm

AA-GEI Algorithms for approximation, parameterization, and data streams
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First approximation algorithms

We start analyzing approximation algorithms based in the
greedy technique.

One algorithm for min-bin packing

And two algorithms for a load-balancing problem.

AA-GEI Algorithms for approximation, parameterization, and data streams
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Nex Fit: An approximation algorithm for BinPacking

min-bin packing
Given n objects, object i has volume vi , 0 ≤ vi ≤ 1, compute the
minimum number of unit bins needed to pack all the objects.

AA-GEI Algorithms for approximation, parameterization, and data streams
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Nex Fit: An approximation algorithm for BinPacking

Let us assume that the bins are labeled B1,B2, . . . ,Bn and that
initially all are closed and during the execution of the algorithm
only one bin will be open.

Next Fit places the n objects, one after the other, as follows:

Opens B1 and places the first object in B1.

If the i-th object fits in the open box, we put it inside.
Otherwise, we close the bin, open the next one and place the
object in it.

For the case of v1 = 0.3, v2 = 0.8, and v3 = 0.7, Next Fit solution
needs three bins. But there is a solution with uses only two bins.
Not optimal!

AA-GEI Algorithms for approximation, parameterization, and data streams
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Nex Fit: An approximation algorithm for BinPacking

Theorem

Let x be an input to the min-bin packing problem and let opt(x)
be the minimum number of bins needed to pack de objects in x . If
NF(x) is the number of bins in the solution computed by Next Fit,
then opt(x) ≤ NF(x) ≤ 2opt(x).

AA-GEI Algorithms for approximation, parameterization, and data streams
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Nex Fit: An approximation algorithm for BinPacking

Theorem

Let x = (v1, . . . , vn be an input to the min-bin packing. Let
NF(x) be the number of bins in the solution computed by Next
Fit, we have opt(x) ≤ NF(x) ≤ 2opt(x).

Proof.

The first inequality is always true:

min-bin packing is a minimization problem

Next Fit provides a feasible solution

Let V =
∑n

i=1 vi , we have opt(x) ≥ ⌈V ⌉.

AA-GEI Algorithms for approximation, parameterization, and data streams
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Nex Fit: An approximation algorithm for BinPacking

Proof.

Let us look to two consecutive bins in the Next Fit solution The
total packet size in the two bins must be bigger than 1, otherwise
we will never have opened the second bin. So,

NF(x) ≤ 2⌈V ⌉.

But we have seen opt(x) ≥ ⌈V ⌉, so

NF(x) ≤ 2⌈V ⌉ ≤ 2opt(x).

AA-GEI Algorithms for approximation, parameterization, and data streams
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Load Balancing problem
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Processing scenario

We have m identical machines;
n jobs, job j has processing time tj

Job j must run contiguously on one machine.

A machine can process at most one job at a time.

We want to assign jobs to machines optimizing the makespan.

Let J(i) be the subset of jobs assigned to machine i .

The load of machine i is Li =
∑

j∈J(i) tj

The makespan is the maximum load on any machine,
L = maxi Li .

AA-GEI Algorithms for approximation, parameterization, and data streams
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Load Balancing problem

lbal
Given n jobs, job j has processing time tj , assign jobs to m identical
machines as to minimize the makespan.

The problem is NP-hard and belongs to NPO.
Load balancing is hard even if m = 2 machines
(reduction from Partition).

The approximation algorithm we propose is a greedy algorithm
called list-scheduling.

AA-GEI Algorithms for approximation, parameterization, and data streams
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List scheduling

List scheduling
For j = 1, . . . , n:

Assign job j to the machine having smallest load so far.

AA-GEI Algorithms for approximation, parameterization, and data streams
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List scheduling: Implementation

function List Scheduling(m, n,T )
for i = 1, dots,m do

L[i ] = 0 load on machine
J[i ] = ∅ jobs assigned to

end for
for j = 1, . . . , n do

i = argminkLk machine with smallest load
J[i ] = J[i ] ∪ {j}
L[i ] = L[i ] + T [j ]

end for
end function

Cost: Using a priority queue to maintain L, the cost is O(n logm)

AA-GEI Algorithms for approximation, parameterization, and data streams
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List scheduling: Approximation rate

Theorem

List scheduling is a polynomial 2-approximation algorithm for
lbal.

Proof.

Let L∗ be the optimum makespan and L the makespan of the
solution computed by list scheduling.

L∗ ≥ maxj tj and L∗ ≥ 1
m

∑
j tj .

Assume that L = Li . Let j be the last job scheduled in
machine i .

When job j was assigned, all the other machines have higher
load, so Li − tj ≤ Lk , for k ̸= i .

AA-GEI Algorithms for approximation, parameterization, and data streams
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List scheduling: Approximation rate

Theorem

List scheduling is a polynomial 2-approximation algorithm for
lbal.

Proof.

When job j was assigned, all the other machines have higher
load, so Li − tj ≤ Lk , for 1 ≤ k ≤ m. Summing up for all k
and dividing by m we get

Li − tj ≤ 1
m

∑
k Lk ≤ 1

m

∑
j tj ≤ L∗

We have, L = Li = (Li − tj) + tj ≤ L∗ + L∗ = 2L∗

AA-GEI Algorithms for approximation, parameterization, and data streams
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Approximation rate: tightness

When we design an approximation algorithm, we wish to
approach the best possible approximation ratio.

Which one is the best for a problem, as usual, requires some
complexity consideration and, in some cases, we have answers
like
“this problem cannot be approximated for r ≤ . . .
unless P =NP”

AA-GEI Algorithms for approximation, parameterization, and data streams
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Approximation algorithm: tightness

We can ask a similar tightness question, not for the
optimization problem, but about the approximation algorithm
at hand.

In this case the question is about the tightness in the analysis
of the approximation ratio. The value of r is correct or can it
be reduced further?

We can show the tightness in the analysis of r by finding an
input x so that the rate between opt(x) and A(x) rules out
any improvement on r .

The previous step involves computing the optimal solution for
a particularly adequate input, not solving the optimization
problem.

AA-GEI Algorithms for approximation, parameterization, and data streams
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List scheduling: Tightness?

m machines, m(m − 1) length 1 jobs and 1 job of length m.

List scheduling assigns the first m length 1 jobs, to different
machines, and

after scheduling the unit length jobs, all machines have load
Li = m − 1.

The last job is assigned to one machine, giving a makespan
L = m +m − 1 = 2m − 1.

An optimal solution assigns the big job to one machine and m
unit jobs to the other machines, so L∗ = m.

The approximation rate is tight

AA-GEI Algorithms for approximation, parameterization, and data streams
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Longest processing first

Analizamos una variante,

Longest processing first:
Sort jobs in decreasing order of processing time.
Run list scheduling.
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Longest processing first: Approximation rate

Theorem

Longest processing first is a polynomial 3/2-approximation
algorithm for lbal.

Proof.

If n ≤ m, L = t1 = L∗ ≤ 3/2L∗

If n > m, since there are more jobs than machines, a machine
must take two jobs in (t1, . . . , tm+1).

Therefore, L∗ ≥ 2tm+1 ≥ 2tj , being j the last job assigned to
the machine i that gives the makespan.

So, Li = (Li − tj) + tj ≤ L∗ + 1
2L

∗ ≤ 3
2L

∗.

AA-GEI Algorithms for approximation, parameterization, and data streams
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Longest processing first: Tightness?

The 3/2 bound on the approximation rate is not tight

In fact Longest processing first is a 4/3-approximation
algorithm [Graham 1969]

4/3 is tight:

m machines
n = 2m + 1 jobs
2 jobs of length m,m + 1, . . . , 2m − 1 and one more job of
lenght m.
L∗ = 3m and L = 4m − 1, which gives a ratio tending to 4/3.
4/3 is tight

AA-GEI Algorithms for approximation, parameterization, and data streams
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Max Cut

max-cut
Given a graph G = (V ,A) we want to find a partition of V into V1,
V2 in such a way that

cut(V1,V2) = ||{(u, v) | u ∈ V1 v ∈ V2}||

is maximum.

The problem is NP-hard and belongs to NPO.

Let us analyze a local search algorithm using the HillClimbing
paradigm.

AA-GEI Algorithms for approximation, parameterization, and data streams
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Local search

A neighborhood structure is defined on the set of solutions.

The algorithm performs an exploration of the neighborhood
graph.

Hill Climbing: It starts at one feasible solution and moves to a
better one. It finishes at a local optimum, when no neighbor
improves the value of m.

Many heuristics are local search algorithms performing some
kind of random exploration on the neighborhood. Te result of
such an exploration is the best seen solution.

A local optimum is a solution such that all its neighbors have equal
or worse cost.
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Neighborhood for MaxCut

Given a graph G = (V ,E ) define N (G ):

The neighbors of a solution (V1,V2) are all those partitions
that can be obtained by moving either one element from
V1 to V2 or one element from V2 to V1.

Using N (G ) we consider the following algorithm:

HillClimbing Max-Cut (G:graph, n: integer)
V1,V2: set of [1 . . . n];
V1 := ∅; V2 := V(G );
while not local-optimum(V1,V2) do
(V1,V 2):= a neighboring partition of (V1,V2)
with improved cost

AA-GEI Algorithms for approximation, parameterization, and data streams
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HillClimbing MaxCut

Observe that the algorithm needs only polynomial time as

we can compute cut(X ,Y ) in O(|E(G )|) steps.
In fact you can recompute faster from the value of a neighbor.

The number of neighbors of a solution is n.

The cost of the initial solution is 0.

The maximum partition cut is upper bounded by |E(G )|.
At each step the cut is increased in one unit.

AA-GEI Algorithms for approximation, parameterization, and data streams
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HillClimbing MaxCut

Lemma

Let G = (V ,A) be a graph, if (V1,V2) is a local optimum of
N (G ) then cut((V1,V2)) ≤ 2opt(G ).

Theorem

HillClimbing Max-Cut is a polynomial 2-approximation
algorithm for max-cut.

AA-GEI Algorithms for approximation, parameterization, and data streams
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The class PLS

Polynomial Local Search (PLS) is a complexity class that
models the difficulty of finding a locally optimal solution to an
optimization problem.

A Local search problem (LSP) is an optimization problem
together with a neighborhood defined on the set of solutions.

A LSP problem P = (I, sol,m, goal,N ) belongs to PLS if

(I, sol,m, goal) ∈ NPO.
Given x ∈ I, a y ∈ sol can be computed in polynomial time.
Given y ∈ sol(x), there is a polynomial (in |x |) algorithm that
decides whether y is a local optimum, for m and, if not,
outputs a neighbor of y with better cost.

PLS problems always have a solution!

AA-GEI Algorithms for approximation, parameterization, and data streams
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The class PLS

The conditions guarantee that a navigation step can be
performed in polynomial time.

The size of the solution set do not guarantee that an
exploration will end within polynomial time.

However the computation uses only polynomial space.

PLS was introduced in
David S. Johnson, Christos H. Papadimitriou, and Mihalis
Yannakakis. “How easy is local search?” In: Journal of
computer and system sciences 37.1 (1988), pp. 79–100.

With associated notions of PLS-reductions and PLS-complete
problems.
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Approximation Schema

An approximation scheme is an algorithm A that takes as
input an instance of an optimization problem and a parameter
r ≥ 1 and outputs a solution with cost within r of the optimal
solution.

For any r , A(x , r) is an r -approximation algorithm.

However, for an NP-hard NPO problem, the time performed
by the algorithm should increase as r approaches to 1.
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PTAS and FPTAS

An optimization problem belongs to

Polynomial Time Approximation Scheme (PTAS) if it has an
approximation scheme A that takes time polynomial in |x |
independently of the dependency on 1

r−1 .
This insures, polynomial time for any constant r .

Fully Polynomial Time Approximation Scheme (FPTAS) if it
has an approximation scheme A that takes time polynomial in
both p(|x |) and 1

r−1 .
This insures, polynomial time algorithms even for values of r
that are not constant.

Usually there is no distinction in the name of the complexity
class
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A problem in FPTAS: 0-1 Knapsack

0-1 knapsack
Given an integer b and a set of n objects, object i has weight wi and
value vi , compute a selection of objects with total size less than or
equal to b and maximum profit.

The problem is NP-hard and belongs to NPO. There is a dynamic

programming algorithm that solves 0-1 knapsack in time

∼ n
n∑

i=1

vi .

The algorithm is polynomial for poly(n) values.
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Consider the following Scaledown algorithm which has r as
input:

Scaledown(w , v , b, r)

vmax := max vi ;

t := ⌊log[ r−1
r

vmax
n ]⌋;

z := instance obtained by changing profits to v ′i = vi/2
t ;

y := optimal solution for z ;

return y

Is Scaledown a polynomial time approximation schema? time?
rate of approximation?
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Time
The most difficult part is the computation of the optimal solution
that takes time

n
n∑

i=1

v ′i = n

∑n
i=1 vi
2t

= n2
vmax

2t

But, t = ⌊log r−1
r

vmax
n ⌋

Thus, for r → 1, = n2 vmax
r−1
r

vmax
n

= rn3

r−1 = O( n3

r−1).

polynomial in input size and 1/(r − 1)
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Quality of the solution
opt(x)− A(x , r) ≤ n2t , and nvmax ≥ opt(x) ≥ vmax. Thus

n2t

vmax
≥ opt(x)− A(x , r)

opt(x)
= 1− A(x , r)

opt(x)

A(x , r)

opt(x)
≥ 1− n2t

vmax
=

vmax − n2t

vmax

But t = ⌊log r−1
r

vmax
n ⌋ and n2t = n r−1

r
vmax
n = vmax

r−1
r .

opt(x) ≤ vmax

vmax − n2t
A(x , r) =

vmax

vmax − Vmax(r−1)
r

A(x , r) ≤ rA(x , r).

Thus, Scaledown is an r -approximation, we have a FPTAS for
Knapsack.
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Min-TSP with triangle inequality
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Min-TSP with triangle inequality

Min-TSP with triangle inequality

min-m-tsp
Given a set of n cities together with distances among any pair of cities,
under the assumption that distances verify the triangle inequality, find
a shortest tour.

We model the instance by a weighted graph G = (V ,E , d).
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Min-TSP with triangle inequality

Algorithm TSP-ST

Compute a minimum spanning tree T of G .

Find the directed graph T ′ obtained from T by replacing each
edge with two arcs in oposite directions.

Find an Eulerian circuit R of T ′.

Let S be the walk in G directed by R.

Transform S in a tour C , by removing (in order) all the
vertices that have been already visited in S .
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Min-TSP with triangle inequality

5 6

74

32

1

MST T Directed T ′

Walk S = 1213454643731

Tour S = 12345671
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Min-TSP with triangle inequality

Theorem

Algorithm TSP-ST is a polynomial 2-aproximation algorithm for
min-m-tsp.
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Min-TSP with triangle inequality

Theorem

Algorithm TSP-ST is a polynomial 2-aproximation algorithm for
min-m-tsp.

Proof.

Observe that:

opt(G ) ≤ c(C ) ≤ c(S) = c(R) due to triangle inequality.

c(R) = 2c(T ) as we use each edge twice.

Furthermore, any circuit provides a spanning tree, just by
removing one of their edges, total cost is below the circuit’s
distance: c(T ) ≤ opt(G ).
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Min-TSP with triangle inequality

Christofides’ algorithm TSP-CH

Handshaking lemma: every finite undirected graph has an even
number of vertices with odd degree

Compute a minimum spanning tree T of G .

Let O be the set of vertices with odd degree in T . By the
handshaking lemma, O has an even number of vertices.

Find a minimum-weight perfect matching M in the induced
subgraph given by the vertices from O.

Combine the edges of M and T to form a connected
multigraph H in which each vertex has even degree.

Find an Eulerian circuit R of H.

Let S be the walk in G directed by R.

Transform S in a tour C , by removing (in order) all the
vertices that have been already visited in S .
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Min-TSP with triangle inequality

Lemma

G = (V ,E ) is a graph. Let M be a minimum-weight perfect
matching for O. Then c(M) ≤ opt(G )/2.

Proof.

Take any optimal tour of G , take the shortcuts to make a tour
K for O. By the triangle inequality c(K ) ≤ opt(G )

As O has even number of vertices K can be decomposed into
two (alternating) perfect matchings S and S ′.
M is a minimum weight perfect matching and
2c(M) ≤ c(S) + c(S ′) = c(K ) ≤ opt(G )
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Min-TSP with triangle inequality

Theorem

Algorithm TSP-CH is a polynomial 3/2-aproximation algorithm
for min-m-tsp.

Proof.

By the previous lemma c(M) ≤ opt(G )/2.

We already know that c(T ) ≤ opt(G )

Also, opt(G ) ≤ c(C ) ≤ c(S) = c(R) due to triangle
inequality.

By construction, c(R) ≤ c(T ) + w(M) ≤ opt(G ) + opt(G)
2
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Min-TSP with triangle inequality

TSP is not approximable

min-tsp
Given a set of n cities together with weights among any pair of cities,
find a shortest tour.

Theorem

Min-TSP is non-approximable.

Proof

Assume that we have a polynomial time r(n)-approximation
algorithm A, where r(n) requires polynomial number of bits.
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Min-TSP with triangle inequality

TSP is not approximable

Given a graph G with n vertices consider the instance of Min-TSP
on n cities and weights:

w(i , j) =

{
0 if (i , j) ∈ E

r(n)n otherwise

If G has a Hamiltonian Circuit, there is a TSP circuit with
weight n, so A(G ) ≤ r(n)n.

If G has no Hamiltonian Circuit, any TSP circuit has weight
> nr(n), so A(G ) > r(n)n.

But, as A is polynomial, P=NP!

End Proof
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