

Dynamic Programming

For a gentle introduction to DP see Chapter 6 in DPV, KT and
CLRS also have a chapter devoted to DP.

DP technique

Richard Bellman: An introduction to the
theory of dynamic programming RAND, 1953

&

(*

Dynamic programming is a powerful technique for efficiently

implement recursive algorithms by storing partial results and
re-using them when needed.

Dynamic Programming

Dynamic Programming works efficiently when:

DP technique

Dynamic Programming

Dynamic Programming works efficiently when:
DP technique m Subproblems: There must be a way of breaking the global
optimization problem into subproblems, each having a
similar structure to the original problem but smaller size.

Dynamic Programming

Dynamic Programming works efficiently when:

DP technique m Subproblems: There must be a way of breaking the global
optimization problem into subproblems, each having a
similar structure to the original problem but smaller size.

m Optimal sub-structure: An optimal solution to a problem
must be a composition of optimal subproblem solutions,
using a relatively simple combining operation.

Dynamic Programming

Dynamic Programming works efficiently when:

DP technique m Subproblems: There must be a way of breaking the global
optimization problem into subproblems, each having a
similar structure to the original problem but smaller size.

m Optimal sub-structure: An optimal solution to a problem
must be a composition of optimal subproblem solutions,
using a relatively simple combining operation.

m Repeated subproblems: The recursive algorithm solves a
small number of distinct subproblems, but they are
repeatedly solved many times.

Dynamic Programming

Dynamic Programming works efficiently when:

DP technique m Subproblems: There must be a way of breaking the global
optimization problem into subproblems, each having a
similar structure to the original problem but smaller size.

m Optimal sub-structure: An optimal solution to a problem
must be a composition of optimal subproblem solutions,
using a relatively simple combining operation.

m Repeated subproblems: The recursive algorithm solves a
small number of distinct subproblems, but they are
repeatedly solved many times.

This last property allows us to take advantage of memoization,
store intermediate values, using the appropriate dictionary data
structure, and reuse when needed.

Difference with greedy

DP technique

m Greedy problems have the greedy choice property: locally
optimal choices lead to globally optimal solution. We solve
recursively one subproblem

Difference with greedy

DP technique

m Greedy problems have the greedy choice property: locally
optimal choices lead to globally optimal solution. We solve
recursively one subproblem

m l.e. In DP we solve all possible subproblems, while in
greedy we are bound for the initial choice

Difference with divide and conquer

DP technique

m Both require recursive programming with subproblems
with a similar structure to the original

Difference with divide and conquer

DP technique

m Both require recursive programming with subproblems
with a similar structure to the original

m D & C breaks a problems into a small number of
subproblems each of them with size a fraction of the
original size (size/b).

Difference with divide and conquer

DP technique

m Both require recursive programming with subproblems
with a similar structure to the original

m D & C breaks a problems into a small number of
subproblems each of them with size a fraction of the
original size (size/b).

m In DP, we break into many subproblems with smaller size,

but often, their sizes are not a fraction of the initial size.

Guideline

Guideline to implement Dynamic Programming

Characterize the structure of subproblems: make sure
space of subproblems is not exponential. Define variables.

Define recursively the value of an optimal solution: Find
the correct recurrence, with solution to larger problem as a
function of solutions of sub-problems.

Compute, memoization/bottom-up, the cost of a solution:
using the recursive formula, tabulate solutions to smaller
problems, until arriving to the value for the whole problem.

B Construct an optimal solution: compute additional

information to trace-back an optimal solution from
optimal value.

WEIGHTED ACTIVITY SELECTION problem

WEIGHTED ACTIVITY SELECTION problem: Given a set
S =1{1,2,...,n} of activities to be processed by a single
resource. Each activity / has a start time s; and a finish time f;,
ey with f; > s;, and a weight w;. Find the set of mutually
compatible activities such that it maximizes } ;s w;

Recall: We saw that some greedy strategies did not provide
always a solution to this problem.

W Activity Selection: looking for a recursive
solution

m Let us think of a backtracking algorithm for the problem.

W activity m The solution is a selection of activities, i.e., a subset

selection 5 g {1, el n}'

m We can adapt the backtracking algorithm to compute all
subsets.

m When processing element i, we branch

m / is in the solution S, then all activities that overlap with /
cannot be in S.
m/isnotinS.

W Activity Selection: looking for a recursive
solution

Each backtracking call receives a partial solution (S) and a
candidate set (C), those activities that are compatible with the
ones in S. It returns the weight of the best solution enlarging
S.

W activity
selection

W Activity Selection: looking for a recursive

solution

Each backtracking call receives a partial solution (S) and a
candidate set (C), those activities that are compatible with the
ones in S. It returns the weight of the best solution enlarging

W activity

selection WAS—]. (57 C)
if C =10 then
return (W(S))
Let / be an element in C; C = C — {i};
Let A be the set of activities in C that overlap with /
return (max{WAS-1(SU{i}, C — A),WAS-1(S,C)})

W Activity Selection: looking for a recursive

solution

Each backtracking call receives a partial solution (S) and a
candidate set (C), those activities that are compatible with the
ones in S. It returns the weight of the best solution enlarging

S.
W activity
selection WAS—]. (57 C)
if C =10 then
return (W(S))
Let / be an element in C; C = C — {i};
Let A be the set of activities in C that overlap with /
return (max{WAS-1(SU{i}, C — A),WAS-1(S,C)})

The recursion tree have branching 2 and height < n, so size is

o(2").

W Activity Selection: looking for a recursive

solution

Each backtracking call receives a partial solution (S) and a
candidate set (C), those activities that are compatible with the
ones in S. It returns the weight of the best solution enlarging

W activity

selection WAS—]. (57 C)
if C =10 then
return (W(S))
Let / be an element in C; C = C — {i};
Let A be the set of activities in C that overlap with /
return (max{WAS-1(SU{i}, C — A),WAS-1(S,C)})

The recursion tree have branching 2 and height < n, so size is
o(2").

How many subproblems appear here?

W Activity Selection: looking for a recursive

solution

Each backtracking call receives a partial solution (S) and a
candidate set (C), those activities that are compatible with the
ones in S. It returns the weight of the best solution enlarging

W activity

selection WAS—]. (57 C)
if C =10 then
return (W(S))
Let / be an element in C; C = C — {i};
Let A be the set of activities in C that overlap with /
return (max{WAS-1(SU{i}, C — A),WAS-1(S,C)})

The recursion tree have branching 2 and height < n, so size is
o(2").

How many subproblems appear here? hard to count better
than O(2").

W Activity Selection: looking for a recursive
solution

For the unweighted case, the greedy algorithm made use of a
particular ordering that helped to discard overlapping tasks.

W activity
selection

W Activity Selection: looking for a recursive
solution

For the unweighted case, the greedy algorithm made use of a
particular ordering that helped to discard overlapping tasks.

Assume that the activities are sorted by finish time, i.e.,
A<h<---<H

W activity
selection

W Activity Selection: looking for a recursive

solution

For the unweighted case, the greedy algorithm made use of a
particular ordering that helped to discard overlapping tasks.
Assume that the activities are sorted by finish time, i.e.,
hA<h<- <t

W activity
selection

m We can look to the incompatible activities that appear
before activity i (finishing before t;) when dealing with
activity /.

m An incompatibility with a task j with f; > t; will be
discovered when dealing with task j.

m Note that activity /i is not compatible with activity j < i
when f; > s;.

m Then / can be incompatible with a contiguous set of

activities i — 1,/ —2,...,J.

W Activity Selection: looking for a recursive
solution

This suggest the following backtracking algorithm.

W activity
selection

W Activity Selection: looking for a recursive

solution

This suggest the following backtracking algorithm.

WAS-2 (S, i)

if i == 1 then
W activity return (W(S) + W1)
selection if i == 0 then

return (W(S))
Let j be the largest integer j < i such that f; < s;, 0 if none is compatible.
return (max{WAS-2(S U {i}, /), WAS-2(S,i —1)})

W Activity Selection: looking for a recursive

solution

This suggest the following backtracking algorithm.

WAS-2 (S, i)

if i == 1 then
W activity return (W(S) + W1)
selection if i == 0 then

return (W(S))
Let j be the largest integer j < i such that f; < s;, 0 if none is compatible.
return (max{WAS-2(S U {i}, /), WAS-2(S,i —1)})

WAS-2 ((), n) will return the cost of an optimal solution, as we
are considering adding or not i to the solution and discarding
all incompatible tasks when choosing /.

The algorithm has cost

W Activity Selection: looking for a recursive

solution

This suggest the following backtracking algorithm.

WAS-2 (S, i)

if i == 1 then
W activity return (W(S) + W1)
selection if i == 0 then

return (W(S))
Let j be the largest integer j < i such that f; < s;, 0 if none is compatible.
return (max{WAS-2(S U {i}, /), WAS-2(S,i —1)})

WAS-2 ((), n) will return the cost of an optimal solution, as we
are considering adding or not i to the solution and discarding
all incompatible tasks when choosing /.

The algorithm has cost O(2").

W Activity Selection: looking for a recursive

solution

This suggest the following backtracking algorithm.

WAS-2 (S, i)

if i == 1 then
W activity return (W(S) + W1)
selection if i == 0 then

return (W(S))
Let j be the largest integer j < i such that f; < s;, 0 if none is compatible.
return (max{WAS-2(S U {i}, /), WAS-2(S,i —1)})

WAS-2 ((), n) will return the cost of an optimal solution, as we
are considering adding or not i to the solution and discarding
all incompatible tasks when choosing /.

The algorithm has cost O(2").

Inside the code, we are not using S, only W(S).

W Activity Selection: looking for a recursive
solution

This suggest the following backtracking algorithm that receives
W(S) instead of S.

W activity
selection

W Activity Selection: looking for a recursive
solution

This suggest the following backtracking algorithm that receives
W(S) instead of S.

bl A3 (W)
if i ==1 then
return (W + wy)
if i == 0 then
return (W)
Let j be the largest integer j < i such that f; < s;, 0 if none is compatible.
return (max{WAS-2(W + w;,), WAS-2(W,i—1)})

W Activity Selection: looking for a recursive
solution

This suggest the following backtracking algorithm that receives
W(S) instead of S.

bl A3 (W)
if i ==1 then
return (W + wy)
if i == 0 then
return (W)
Let j be the largest integer j < i such that f; < s;, 0 if none is compatible.
return (max{WAS-2(W + w;,), WAS-2(W,i—1)})

WAS-3 (), n) will return the cost of an optimal solution. Still,
the algorithm has cost O(2").

DP from WAS-3: a recurrence

m We have n activities with f; < f, < --- < f,, and weights
wi, 1 S i S n.

W activity
selection

DP from WAS-3: a recurrence

m We have n activities with f; < f, < --- < f,, and weights

W activity Wi, 1 S I S n.

selection m Supproblems calls WAS-3(W, i)

m / defines the subproblem: Maximize the weight of the
activity selection for activities {1,...,i}, for 0 </ < n.

m A recursive call returns this maximum.

m There are only O(n) subproblems!

DP from WAS-3: a recurrence

m We have n activities with f; < f, < --- < f,, and weights

W activity Wi, 1 S I S n.

selection m Supproblems calls WAS-3(W, i)

m / defines the subproblem: Maximize the weight of the
activity selection for activities {1,...,i}, for 0 </ < n.

m A recursive call returns this maximum.

m There are only O(n) subproblems!

m Let Opt(j) be the value of an optimal solution O; to the
sub problem consisting of activities in the range 1 to ;.

DP from WAS-3: a recurrence

Define p(i) to be the largest integer j < i such that /i and j are
disjoints (p(/) = 0 if no disjoint j < i exists).

W activity
selection

I E— p(1)=0
2 2 p(2)=0
3 3 2 p(3)=1
4
5

T p4)=0
—_— p(5)=3

p(6)=3

DP from WAS-3: a recurrence

Reinterpreting WAS-3 botton-up, using p(i), we get

W activity
selection

DP from WAS-3: a recurrence

Reinterpreting WAS-3 botton-up, using p(i), we get

. Jo ifj =0
Pt = {max{wpt(pun +wg), Optlj — 1]} if > 1

W activity
selection

We add activity 0 for compatibility with p.

DP from WAS-2: a recurrence

Lo ifj=0
opl) = {max{(opt(pun T w), Optlj — 1]} ifj > 1

W activity
selection

Correctness: The base case is correct. From the previous
discussion, we have two cases:

1-j€ OJ':
m As j is part of the solution, no jobs {p(j) +1,...,j — 1}
are in O;,

m O; — {j} must be an optimal solution for {1,...,p[j])},
otherwise then O} = Op[;; U {j} will be better (optimal
substructure)

2.-If j & Oj: then O; is an optimal solution to {1,...

J— 1)}

DP from WAS-3: Computing p values

m We need to compute efficiently p(i)

m sort the activities by increasing values of start time.

m merge the sorted list of finishing times an the sorted list of
start times, in case of tie put before the finish times.

m p[j] is the last activity whose finish time precedes s; in the
combined order, activity 0, if no finish time precedes s;

W activity
selection

m We can thus compute the p values in
O(nlgn+ n) = O(nlgn) time.

DP from WAS-3: omputing p values

W activity
selection 1

2 p(6)=3
1 | | | | | | |
[| | | | | | | | |

I TR N
T T
0 1 2 3 4 5 6 7 8 910 11 12 13

|

Sorted finish times: 1:5, 2:8, 3:9, 4:11, 5:12, 6:13
Sorted start times: 2:0, 1:1, 4:1, 3:7, 5:9, 6:10

Merged sequence:
2:0, 1:1, 4:1,1:5,3:7,2:8,3:9,5:9,6:10, 4:11,5:12, 6:13

DP from WAS-3: Preprocessing

W activity Considering the set of activities S, we start by a pre-processing
selection
phase:

m Sort the activities by increasing values of finish times.
m Compute the values of pl[i],

m This can be done in O(nlgn)

DP from WAS-2: Memoization

Assuming that tasks are sorted and all p(j) are computed and
tabulated in P[1---n]

We keep a table W[n+ 1], at the end W[i] will hold the weight
ey of an optimal solution for subproblem {1,...,i}. Initially, set
selection

all entries to —1 and W][0] = 0.

R-Opt ())
if W[j]!' = —1 then

return (W[j])
else
W[j] = max(w; + R-Opt(P[j])), R-Opt(j — 1))
return W/[j]

DP from WAS-2: Memoization

Assuming that tasks are sorted and all p(j) are computed and
tabulated in P[1---n]

We keep a table W[n+ 1], at the end W[i] will hold the weight
ey of an optimal solution for subproblem {1,...,i}. Initially, set
selection

all entries to —1 and W][0] = 0.

R-Opt ())
if W[j]! =—1 then
return (W[j])
else
W[j] = max(w; + R-Opt(P[])), R-Opt(j — 1))
return W/[j]
No subproblem is solved more than once, so cost is
O(nlog+n) = O(nlog n)

DP from WAS-3: lterative

We assume that tasks are sorted and all p(j) are computed and
tabulated in P[1---n]

We keep a table W[n+ 1], at the end W/[i] will hold the weight
W activity of an optimal solution for subproblem {1,...,i}.

selection

DP from WAS-3: lterative

We assume that tasks are sorted and all p(j) are computed and
tabulated in P[1---n]

We keep a table W[n+ 1], at the end W/[i] will hold the weight
W activity of an optimal solution for subproblem {1,...,i}.

selection

Opt-Val (n)
Wi[o]=0
for j =1 to ndo
Wil = max(W[P[]] + wj, W[j — 1])
return W{n|
Time complexity: O(nlgn+ n).

Notice: Both algorithms gave only the numerical max. weight
We have to keep more info to recover a solution form W{n|.

DP from WAS-2: Returning an optimal solution

To get also the list of activities in an optimal solution, we use
W to recover the decision taken in computing W|n].

W activity
selection

DP from WAS-2: Returning an optimal solution

To get also the list of activities in an optimal solution, we use
W to recover the decision taken in computing W|n].

W activity
selection

Find-Opt ())
if j = 0 then
return ()
else if W[p[j]] + w; > W[j — 1] then

return ({j} UFind-Opt(p[j]))
else

return (Find-Opt(j — 1))

Time complexity: O(n)

DP for Weighted Activity Selection

e m We started from a suitable recursive algorithm, which runs
e O(2") but solves only O(n) different subproblemes.

m Perform some preprocesing.

m Compute the weight of an optimal solution to each of the
O(n) subproblems.

m Guided by optimal value, obtain an optimal solution .

0-1 KNAPSACK

(This example is from Section 6.4 in
Dasgupta,Papadimritriou,Vazirani's book.)

0-1 KNnAPsACK: Given as input a set of n items that can NOT
be fractioned, item i has weight w; and value v;, and a
maximum permissible weight W.

QUESTION: select a set of items S that maximize the profit.

0-1 Knapsack

Recall that we can NOT take fractions of items.

Subproblems and recurrence

Input: (wi,...,wp), (vi,...,vn), W.
m Let S C {1,...,n} be an optimal solution to the problem
The optimal benefit is >, s v;

0-1 Knapsack

Subproblems and recurrence

S Wh), (vi, ..., vn), W.
m Let S C {1,...,n} be an optimal solution to the problem
The optimal benefit is >, s v;
m With respect to the last item we have two cases:
m n¢S, then S is an optimal solution to the problem
(W]7 ey W,,,l), (Vl, ey V,,,l), W
m n €S, then S — {n} is an optimal solution to the problem
(Wi, ooy Wn1), (Vay ey Voe1), W —w,

Input: (wi,..

0-1 Knapsack

Subproblems and recurrence

S Wh), (vi, ..., vn), W.
m Let S C {1,...,n} be an optimal solution to the problem
The optimal benefit is >, s v;
m With respect to the last item we have two cases:
m n¢S, then S is an optimal solution to the problem

Input: (wi,..

Celinapsack (W1,...,W,,,1), (Vl,...7Vn,1), w
m n €S, then S — {n} is an optimal solution to the problem
(Wi, ooy Woi1), (Viy ey Vac1), W —w,

m in both cases we get an optimal solution of a subproblem
in which the last item is removed and in which the
maximum weight can be W or a value smaller than W.

Subproblems and recurrence

S Wh), (vi, ..., vn), W.
m Let S C {1,...,n} be an optimal solution to the problem
The optimal benefit is >, s v;
m With respect to the last item we have two cases:
m n¢S, then S is an optimal solution to the problem

Input: (wi,..

Celinapsack (W1,...,W,,,1), (Vl,...7Vn,1), w
m n €S, then S — {n} is an optimal solution to the problem
(Wi, ooy Woi1), (Viy ey Vac1), W —w,

m in both cases we get an optimal solution of a subproblem
in which the last item is removed and in which the
maximum weight can be W or a value smaller than W.

m This identifies subproblems of the form [/, x| that are

knapsack instances in which the set of items is {1,...,i}
and the maximum weight that can hold the knapsack is x.

Subproblems and recurrence

Let v[i, x] be the maximum value (optimum) we can get from
objects {1,2,...,i} within total weight < x.

0-1 Knapsack

Subproblems and recurrence

Let v[i, x] be the maximum value (optimum) we can get from
objects {1,2,...,i} within total weight < x.

To compute v|[i, x|, the two possibilities we have considered
(SRUETES give raise to the recurrence:

0 if i=0orw=20
v[i,x] = ¢ v[i —1,x] if wj > x

max v[i —1,x — w;] + v;,v[i —1,x] otherwise

DP algorithm: tabulating

Define a table P[n+ 1, W + 1] to hold optimal values for the
corresponding subproblem.

Knapsack(/, x)
for i =0to ndo
0-1 Knapsack P[I, 0] =0
for x=1to W do

Pl0,x] =0
for i=1to ndo

for x=1to W do

Pli,x] = max{P[i — 1,x], P[i — 1,x — w[i]] + v[i]}

return P[n, W]

The number of steps is O(nW)

DP algorithm: tabulating

Define a table P[n+ 1, W + 1] to hold optimal values for the
corresponding subproblem.

Knapsack(/, x)
for i =0to ndo
0-1 Knapsack P[I, 0] =0
for x=1to W do

Pl0,x] =0
for i=1to ndo

for x=1to W do

Pli,x] = max{P[i — 1,x], P[i — 1,x — w[i]] + v[i]}

return P[n, W]

The number of steps is O(n\W) which is

DP algorithm: tabulating

Define a table P[n+ 1, W + 1] to hold optimal values for the
corresponding subproblem.

Knapsack(/, x)
for i =0to ndo
0-1 Knapsack P[I, 0] =0
for x=1to W do

Pl0,x] =0
for i=1to ndo

for x=1to W do

Pli,x] = max{P[i — 1,x], P[i — 1,x — w[i]] + v[i]}

return P[n, W]

The number of steps is O(n\W) which is pseudopolynomial.

An example

w

0 1 2 3 4 5 6 7 8 9 10 11

2L (% 0/j0 0 0 0 0 O 0 0 0 0 0 0
-1 Knapsack

110 1 1 1 1 1 1 1 1 1 1 1

210 1 6 7 7 7 7 7 7 7 7 7

/ 3/0 1 6 7 7 18 19 24 25 25 25 25

410 1 6 7 7 18 22 23 28 29 29 40

5(/0 1 6 7 7 18 22 28 29 34 35 40

For instance, v[4,10] = max{v[3,10], v[3,10 — 6] + 22} =
max{25,7 4 22} = 29.

v[5,11] = max{v[4,11], v[4,11 — 7] + 28} =

max{40, 4 + 28} = 40.

Recovering the solution

To compute the actual
subset S C [that is the
solution, we modify the
RUEEEN algorithm to compute also
a Boolean table

K[n+ 1, W 4 1], so that
K|i,x] is 1 when the max is
attained in the second
alternative (i € S), 0
otherwise.

Recovering the solution

Knapsack(/, x)
for i =0to ndo
P[i,0] = 0; K[i,0] =0

To compute the actual for x—1to W do

subset S C [/ that is the P[0, x] = 0; K[0,x] =0
solution, we modify the for i=1to ndo
RN algorithm to compute also for x=1to W do
if P[i—1,x]>
a Boolean table . . .
P[i — 1,x — wl[i]] + v[i] then
K[n+1W+1], so that P[i,X]IP[i—LX];
K|i,x] is 1 when the max is Kli,x] =0
attained in the second E|Se[]
- . Pli, x] =
althernajclve (ieS)0 PU -1 x — wli] + v[i]
otherwise. Kli,x] = 1

return P[n, W]
Complexity: O(nW)

0-1 Knapsack

An example

8 9

10

00 00
11 11
71 71
251 251
281 291
291 341

00
11
71

Recovering the solution

m To compute an optimal solution S C /, we use K to trace
backwards the elements in the solution.

m K[i,x] is 1 when the max is attained in the second

alternative: i € S.
0-1 Knapsack

0-1 Knapsack

Recovering the solution

m To compute an optimal solution S C /, we use K to trace
backwards the elements in the solution.

m K[i,x] is 1 when the max is attained in the second
alternative: i € S.

x=W,S5=0
for i = n downto 1 do
if K[i,x] =1 then
S=SuU{i}
X=X—W

Output S

Complexity: O(nW)

An example

0-1 Knapsack

An example

5 6 7
v 18 22 28
1 e 0o 1 2 3 4 5 6 7 8 9 10 11
000 00 00 00 00 00 00 00 00 00 00 00
1/00 11 11 11 11 11 11 11 11 11 11 11
2/00 10 61 71 71 71 71 71 71 71 71 71
3/00 10 60 70 70 181 191 241 251 251 251 251
4100 10 60 70 70 181 221 231 281 291 291 401
5/00 10 60 70 70 180 220 281 291 341 351 400

K[5,11] — K[4,11] — K[3,5] — K[2,0]. So S = {4,3}

Complexity

The 0-1 KNAPSACK is NP-complete.

m 0-1 KNAPSACK, has complexity O(nW), and its length
is O(nlg M) taking M = max{ W, max; w;, max; v;}.

0-1 Knapsack m If W requires k bits, the cost and space of the algorithm is
n2k exponential in the length W. However the DP
algorithm works fine when W = ©(n), here k = O(log n).

m Consider the unary knapsack problem, where all integers
are coded in unary (7=1111111). In this case, the
complexity of the DP algorithm is polynomial on the size,

i.e., UNARY KNAPSACK €P.

Matching DNA sequences

mmmmmmmmmm

DNA

m DNA, is the hereditary material in almost all living
organisms. They can reproduce by themselves.

m Its function is like a program unique to each individual
organism that rules the working and evolution of the
organism.

m Model as a string of 3 x 10° characters over {A, T, G, C}.

Computational genomics: Some questions

® When a new gene is discovered, one way to gain insight into its
working, is to find well known genes (not necessarily in the same
species) which match it closely. Biologists suggest a generalization of
edit distance as a definition of approximately match.

m GenBank (https://www.ncbi.nlm.nih.gov/genbank/) has a
collection of > 10 well studied genes, BLAST is a software to do
fast searching for similarities between a gene an those in a DB of
genes.

m Sequencing DNA: consists in the determination of the order of DNA
bases, in a short sequence of 500-700 characters of DNA. To get the
global picture of the whole DNA chain, we generate a large amount
of DNA sequences and try to assembled them into a coherent DNA
sequence. This last part is usually a difficult one, as the position of
each sequence is the global DNA chain is not know before hand.

Evolution DNA

[r[alclala[T[a]c]g]

Mutation

[r[alclafc]r[a]c]g]

Delete

BN ED K

[[cla[s]a]c]o]

Insertion

NEENENEE

How to compare sequences?

‘A‘C‘C‘G‘G‘T‘C‘G‘A‘G‘T‘...

[o[r[cle[T[T[c[G[G[A[A] =~

Three problems

Longest common substring: Substring = consecutive
characters in the string.

[r[c[alr[c]r alc[A]

C|T|A|T|C|A|G|A

Longest common subsequence: Subsequence = ordered
chain of characters (might have gaps).

\T\C\‘A\T‘\G\T\A\G\A\
clr[a[r[clalGc[A

Edit distance: Convert one string into another one using a
given set of operations.

PR [e[A[e [F[A]<[q)
?
ATT[e[x [<[g]

The EDIT DISTANCE problem

(Section 6.3 in Dasgupta, Papadimritriou, Vazirani's book.)

transpose

f delete a |"|
In¢gordmtoin
replace ™

Insert
= Information (edit dist = 4)

The edit distance between strings X = xy - - - x, and
Y = y; - ¥m is defined to be the minimum number of edit
operations needed to transform X into Y.

All the operations are done on X

Edit distance: Applications

m Computational genomics: evolution between generations,
i.e. between strings on {A, T,G,C,—}.

m Natural Language Processing: distance, between strings
on the alphabet.

m Text processor, suggested corrections

EDIT DISTANCE: Levenshtein distance

In the Levenshtein distance the set of operations are
m insert(X,7,a)= X1 X;aXj41 - Xn-
m delete(X, /)= x1 " Xji—1Xj41 " Xn
m modify(X,/,a)= xq -+ Xj_18Xj41 " * Xn.

the cost of modify is 2, and the cost of insert/delete is 1.

To simplify, in the following we assume that the cost of each
operation is 1.

For other operations and costs the structure of the DP will be
similar.

Exemple-1

X = aabab and Y = babb
aabab = X

X' =insert(X,0,b) baabab
X" =delete(X’,2) babab
X" =delete(X"”,4) babb
X = aabab — Y = babb

Exemple-1

X = aabab and Y = babb
aabab = X

X' =insert(X,0,b) baabab
X" =delete(X’,2) babab
X" =delete(X"”,4) babb
X = aabab — Y = babb

A shortest edit distance

aabab = X
X" =modify(X,1,b) babab
Y =delete(X’,4) babb

Use dynamic programming.

structure of an optimal solution

In a solution O with minimum edit distance from
X=x1--Xpto Y =y1---ym, we have three possible
alignments for the last terms

1)@]6)
= v |

m In (1), O performs delete x,, and it transforms optimally,
X1 Xp—1 INtO Y1 - Ym.

m In (2), O performs insert y,, at the end of x, and it
transforms optimally, x3 -+ - x,, into y1 - Ym—1.

m In (3), if x4 # ym, O performs modify x,, by y,,, otherwise

0, aligns them without cost. Furthermore O transforms

optimally x1 - -+ Xp—1 INto y1 - - Ym—_1.

The recurrence

Let X[(]=x1---xi, Y[[]=y1---y;.
E[i,j] = edit distance from X[i] to Y[j] is the maximum of

m | put y; at the end of x: E[i,j —1]+1

m D delete x;: E[i —1,j]+1

m if x; # yj, M change x; into y;: E[i —1,j —1] +1,
otherwise E[i — 1, — 1]

Edit distance: Recurrence

Adding the base cases, we have the recurrence

J if i =0 (converting A = Y[j])
i if j =0 (converting X[i] — A)
Elij] = Eli —1,j]+1 if D
min{ E[i,j— 1] +1, if |
E[i —1,j—1]4+6(xj,yj) otherwise

where

0 ifxi=y;
o XisYj) = /
(yj) {1 otherwise

Computing the optimal costs and pointers

Edit(X,Y)
for i =0 to n do
E[i,0] =i
for j=0to m do
E[0./] = j
for i =1 to ndo
forj=1tom do
6=0
if x; # y; then
0=1
E[i,jl = E[i,j — 1]+ 1 b[i,j] =t
if E[i—1,j—1]+4 6 < EJi,j] then
if E[i —1,j]4+ 1 < EJ[i,j] then

Space and time
complexity:

O(nm).

«—isal
operation,
TisaD
operation, and
N is either a M
ora
no-operation.

Computing the optimal costs: Example

X=aabab; Y=babb. Therefore, n=5m=14

0 1 2 3 4
A b a b b
0 |« 1|«2]|«3 |« 4
TLIINT|INL|«+2]|«3
T2IN2|IN1|«+2]|«3
T3IIN2112 N1 [RN2
T4 13 N2 12 | N\2
THEIN4 13 12 | N2

|l WN=RIO
oly|o|lo o | >

< is a | operation, 1 is a D operation, and
. is either a M or a no-operation.

Obtain Y in edit distance from X

Uses as input the arrays E and b.
The first call to the algorithm is con-Edit (n, m)
con-Edit(/,)
if i=0orj =0 then
return
if b[i,j] =\ and x; = y; then
change(X,i,y;)); con-Edit(i — 1, — 1)
if b[i,j] =1 then
delete(X, i); con-Edit(i — 1, ;)
if b[i,j] =« then
insert(X, i, y;), con-Edit(i,j — 1)

This algorithm has time complexity O(nm).

The Longest Common Subsequence

(Section 15.4 in CormenLRS’ book.)

The Longest Common Subsequence

(Section 15.4 in CormenLRS’ book.)

B Z =2z -z is a subsequence of X if there is a
subsequence of integers 1 < i1 < ih < ... < i, < nsuch
that Zj = Xi;.

TTT is a subsequence of ATATAT.

The Longest Common Subsequence

(Section 15.4 in CormenLRS’ book.)

B Z =2z -z is a subsequence of X if there is a
subsequence of integers 1 < i1 < ih < ... < i, < nsuch
that Zj = Xi;.

TTT is a subsequence of ATATAT.

m If Z is a subsequence of X and Y, then Z is a common
subsequence of X and Y.

The Longest Common Subsequence

(Section 15.4 in CormenLRS’ book.)

B Z =2z -z is a subsequence of X if there is a
subsequence of integers 1 < i1 < ih < ... < i, < nsuch
that Zj = Xi;.

TTT is a subsequence of ATATAT.

m If Z is a subsequence of X and Y, then Z is a common
subsequence of X and Y.

LCS Given sequences X = x1---x,and Y =y1 - yYm,
compute the longest common subsequence Z.

DP approach: Characterization of optimal solution

Let X =x3--x,and Y =y; .-y, and let Z be a longest
common subsequence (lcs). Then,

DP approach: Characterization of optimal solution

Let X =x3--x,and Y =y; .-y, and let Z be a longest
common subsequence (lcs). Then,

B Z=Xj... X, =Yj Y

DP approach: Characterization of optimal solution

Let X =x3--x,and Y =y; .-y, and let Z be a longest
common subsequence (lcs). Then,

B Z=Xj... X, =Yj Y

m There are no i, j, with i > i, and j > ji, s.t. x;i = y;.
Otherwise, Z will not be optimal.

DP approach: Characterization of optimal solution

Let X =x3--x,and Y =y; .-y, and let Z be a longest

common subsequence (lcs). Then,

B Z=Xj... X, =Yj Y

m There are no i, j, with i > i, and j > ji, s.t. x;i = y;.
Otherwise, Z will not be optimal.

® a = x;, might appear after i, in X, but not after j, in Y,
or viceversa.

DP approach: Characterization of optimal solution

Let X =x3--x,and Y =y; .-y, and let Z be a longest

common subsequence (lcs). Then,

B Z=Xj... X, =Yj Y

m There are no i, j, with i > i, and j > ji, s.t. x;i = y;.
Otherwise, Z will not be optimal.

® a = x;, might appear after i, in X, but not after j, in Y,
or viceversa.

m There is an optimal solution in which i, and jx are the last

occurrence of ain X and Y respectively.

DP approach: Characterization of optimal solution

Let X =x3--xpand Y =y1- -y and let
Z = Xj ...Xj, = Yj ...yj alcss.t. the index of the final
common symbol in Z is its last occurrence in both X and Y.

DP approach: Characterization of optimal solution

Let X =x3--xpand Y =y1- -y and let
Z = Xj ...Xj, = Yj ...yj alcss.t. the index of the final

common symbol in Z is its last occurrence in both X and Y.

LetX_:X]_"'anl and Y_:yl...y 1

DP approach: Characterization of optimal solution

Let X =x3--xpand Y =y1- -y and let
Z = Xj ...Xj, = Yj ...yj alcss.t. the index of the final
common symbol in Z is its last occurrence in both X and Y.
Let XT=x3--xp_1and Y™ =y1 - - ymo1

m Let us look at x, and y,,.

mIf X, =ym, ik =nand jx =mso, x; ...x;_, is a lcs of
X" and Y.

DP approach: Characterization of optimal solution

Let X =x3--x,and Y =y1---yp and let
Z =Xj ...Xj, = Yj ...Yj alcss.t. the index of the final
common symbol in Z is its last occurrence in X and Y.
Let XT =x1---xp_1and Y =y yYm_1

m Let us look at x, and yp,.

m If Xy # Ym,

DP approach: Characterization of optimal solution

Let X =x3--x,and Y =y1---yp and let
Z =Xj ...Xj, = Yj ...Yj alcss.t. the index of the final
common symbol in Z is its last occurrence in X and Y.
Let XT =x1---xp_1and Y =y yYm_1

m Let us look at x, and yp,.

m If X, # Ym,

mifix<nandjy<m, Zisalcsof X~ and Y.
If ix =nand jy <m, Zisalcsof X and Y.

m
miIfik <and jy=m, Zisalcsof X~ and Y.
m The last two include the first one!

DP approach: Supproblems

Subproblems = Ics of pairs of prefixes of the initial strings.

DP approach: Supproblems

Subproblems = Ics of pairs of prefixes of the initial strings.
Notation:

m X[i]=x1...x;, for0<i<n

mY[jl=y1...y, for0<;<m

m c[i,j] = length of the LCS of X[i] and Y[j].

m Want c[n, m] i.e. length of the LCS for X and Y.

DP approach: Recursion

Therefore, given X and Y

0 ifi=0orj=0
clijl]=qcli—1,j—-1+1 if x; =y
max(c[i,j — 1], c[i — 1,j]) otherwise

The recursive algorithm

LCS(X,Y)
n= X.size(); m =Y .size()
if n=0or m=0 then
return 0
else if x, = y,, then
return 1+LCS(X,Y")
else
return max{LCS(X,Y),LCS(X~,Y)}

The recursive algorithm

LCS(X,Y)
n= X.size(); m =Y .size()
if n=0or m=0 then
return 0
else if x, = y,, then
return 1+LCS(X,Y")
else
return max{LCS(X,Y),LCS(X~,Y)}

The algorithm makes 1 or 2 recursive calls and explores a tree
of depth O(n 4 m), therefore the time complexity is 29("+m).

DP: tabulating

We need to find the correct traversal of the table holding the
cli,j] values.

DP: tabulating

We need to find the correct traversal of the table holding the
cli,j] values.

m Base case is ¢[0,/] =0, for 0 < j < m, and c[i,0] = 0, for
0<i<n.

m To compute c[i,j], we have to access
c[i—=1,j—1] | c[i —1,J]
cli,j—1] cli,Jl]

A row traversal provides a correct ordering.

m To being able to recover a solution we use a table b, to
indicate which one of the three options provided the value

cli,J]-

Tabulating

LCS(X,Y)
for i =0 to n do
c[i,0] =0
for j =1 to mdo
c[0,j]=0
for i=1to ndo complexity:
for j =1 to mdo T = O(nm).
if x; = y; then
clij] =cli —1,j— 141, blij] =~
else if c[i—1,/] > c[i,j — 1] then
C[’v./] = C[’ - 17.i]v b[’7./] ==
else
C[iv.j] = C["vj - 1]' b[lv./] =t

Example.

X=(ATCTGAT); Y=(TGCATA). Therefore, m=6,n=7

0| 1 2 3 4 6
T G C A T A
0 0 0 0 0 0
0 | 10 | 10 | N1] +«1 |1
NI «1|[«1| 11 | N2«
T N2 «2] 12 | 12
NI 11 | 12| 12 | K3]+3
M RN2 1212] 13| 13
12 12 | R3] 183 | N4
NI 12 12 183 | N4 14

Following the arrows: TCTA

5

~N|lo| oA~ w N —lo
—H > ol 0|d >
o|lo|o|lo|o|o|o|o

Construct the solution

Access the tables ¢ and d.
The first call to the algorithm is sol-LCS(n, m)
sol-LCS(i,)
if i=0o0r =0 then
STOP.
else if b[i,j] =~ then
sol-LCS(i —1,j — 1)
return Xx;
else if b[i,j] =T then
sol-LCS(i — 1,)
else
sol-LCS(i,j — 1)

The algorithm has time complexity O(n + m).

Longest common substring

m A slightly different problem with a similar solution

Longest common substring

m A slightly different problem with a similar solution

m LCSt: Given two strings X = xy...xpand Y = y1...ym,
compute their longest common substring Z, i.e., the
largest k for which there are indices i and j with

XiXit1 -« Xitk = YiYj+1---Yj+k-

Longest common substring

m A slightly different problem with a similar solution

m LCSt: Given two strings X = xy...xpand Y = y1...ym,
compute their longest common substring Z, i.e., the
largest k for which there are indices i and j with
XiXi41 -+ - Xi+k = Yij+1 e yj+k-

m For example:

X : DEADBEEF
Y : EATBEEF
Z:

Longest common substring

m A slightly different problem with a similar solution

m LCSt Given two strings X = x1...xpand Y =y1...¥m,
compute their longest common substring Z, i.e.,
corresponding to the largest k for which there are indices i
and j with XiXj11... Xi1k = YjYj1 - Yjtk-

m For example:

X : DEADBBEEF
Y : EATBEEF
Z:

Longest common substring

m A slightly different problem with a similar solution

m LCSt Given two strings X = x1...xpand Y =y1...¥m,
compute their longest common substring Z, i.e.,
corresponding to the largest k for which there are indices i
and j with XiXj11... Xi1k = YjYj1 - Yjtk-

m For example:

X : DEADBBEEF
Y : EATBEEF
Z : BEEF pick the longest substring

Characterization of optimal solution

mlet X=x3---xpand Y =y;---yp and let Z be a longest
common substring.

B Z=X... Xighk=Yj - Yjitk

Characterization of optimal solution

mlet X=x3---xpand Y =y;---yp and let Z be a longest
common substring.

B Z=X... Xighk=Yj - Yjitk
m Z is the longest common suffix of X(i + k) and Y (j + k).

Characterization of optimal solution

mlet X=x3---xpand Y =y;---yp and let Z be a longest
common substring.

B Z=X... Xighk=Yj - Yjitk
m Z is the longest common suffix of X(i + k) and Y (j + k).

m We can consider the subproblems LCStf(i,j): compute
the longest common suffix of X(i) and Y'(j).

Characterization of optimal solution

mlet X=x3---xpand Y =y;---yp and let Z be a longest
common substring.
B Z=X... Xighk=Yj - Yjitk
m Z is the longest common suffix of X(i + k) and Y (j + k).

m We can consider the subproblems LCStf(i,j): compute
the longest common suffix of X(i) and Y'(j).

m The LCSf(X,Y) is the longest of such common suffixes.

Computing the LC Suffixes

m To solve LCSf(i,j) it is enough to go backward from
position 7 in X and j in Y until we find two different
characters.

m This has cost O(n+ m) per subproblem.

Computing the LC Suffixes

m To solve LCSf(i,j) it is enough to go backward from
position 7 in X and j in Y until we find two different
characters.

m This has cost O(n+ m) per subproblem.

m We get a O(nm(n+ m)) algorithm for LCSt

Computing the LC Suffixes

m To solve LCSf(i,j) it is enough to go backward from
position 7 in X and j in Y until we find two different
characters.

m This has cost O(n+ m) per subproblem.
m We get a O(nm(n+ m)) algorithm for LCSt

m Can we do it faster?

Computing the LC Suffixes

m To solve LCSf(i,j) it is enough to go backward from
position 7 in X and j in Y until we find two different
characters.

m This has cost O(n+ m) per subproblem.
m We get a O(nm(n+ m)) algorithm for LCSt
m Can we do it faster? Let us use DP!

A recursive solution for LC Suffixes

Notation:
m X[[]=x1...x;, for0<i<n
mY[jl=y1...y,for0<;<m
m s[i,j] = the length of the LC Suffix of X[i] and Y[j].

m Want max; ; s[i,/] i.e., the length of the LCSt of X, Y.

DP approach: Recursion

Therefore, given X and Y

0 ifi=0o0rj=0
s[i,jl=40 if x; # y;

sli—1,j—1]+1 ifx; =y,

DP approach: Recursion

Therefore, given X and Y

0 ifi=0o0rj=0
s[i,jl=40 if x; # y;
sli—1,j—1]+1 ifx; =y,

Using the recurrence the cost per recursive call (or per element
in the table) is constant

Tabulating

LCSF(X, Y)

for i =0 to ndo Comp|exity:
s[i,0] =0 O(nm).
for j=1to mdo
s[0,/]=0 Which gives an
for i = 1to ndo algorithm with
for j=1to mdo cost O(nm) for
s[ij]=0 LCSt
if x; = y; then

sli,jl=s[i—1,j—1]+1

	DP technique
	Guideline
	W activity selection
	0-1 Knapsack
	DP for pairing sequences
	Framework
	Edit distance
	Longest common subsequence (LCS)
	Longest common substring

