

DP technique

Guideline

W activity selection

0-1 Knapsack
DP for pairing

sequences
Framework
Edit distance
Longest common
subsequence (LCS)

For a gentle introduction to DP see Chapter 6 in DPV, KT and CLRS also have a chapter devoted to DP.

Richard Bellman: An introduction to the theory of dynamic programming RAND, 1953

Dynamic programming is a powerful technique for efficiently implement *recursive algorithms* by storing partial results and re-using them when needed.

Dynamic Programming works efficiently when:

DP technique

Juidelin

W activity selection

0-1 Knapsack

DP for pairing

sequences

Framework

Longest common

Longest common substring

DP technique

Section 1997

W activity selection

0-1 Knapsack

DP for pairing

sequences Framework

Longest common subsequence (LCS

Longest commo substring

Dynamic Programming works efficiently when:

Subproblems: There must be a way of breaking the global optimization problem into subproblems, each having a similar structure to the original problem but smaller size.

DP technique

Santal alterna

W activity selection

0-1 Knapsack

sequences
Framework
Edit distance
Longest common
subsequence (LCS)

Dynamic Programming works efficiently when:

- Subproblems: There must be a way of breaking the global optimization problem into subproblems, each having a similar structure to the original problem but smaller size.
- Optimal sub-structure: An optimal solution to a problem must be a composition of optimal subproblem solutions, using a relatively simple combining operation.

Dynamic Programming works efficiently when:

- Subproblems: There must be a way of breaking the global optimization problem into subproblems, each having a similar structure to the original problem but smaller size.
- Optimal sub-structure: An optimal solution to a problem must be a composition of optimal subproblem solutions, using a relatively simple combining operation.
- Repeated subproblems: The recursive algorithm solves a small number of distinct subproblems, but they are repeatedly solved many times.

- DP technique
- Guideline
- W activity selection
- 0-1 Knapsack
- DP for pairing sequences Framework Edit distance Longest common subsequence (LCS) Longest common substring

DP technique

.

W activity selection

0-1 Knapsack

DP for pairing sequences Framework Edit distance Longest common subsequence (LCS) Longest common substring

Dynamic Programming works efficiently when:

- Subproblems: There must be a way of breaking the global optimization problem into subproblems, each having a similar structure to the original problem but smaller size.
- Optimal sub-structure: An optimal solution to a problem must be a composition of optimal subproblem solutions, using a relatively simple combining operation.
- Repeated subproblems: The recursive algorithm solves a small number of distinct subproblems, but they are repeatedly solved many times.

This last property allows us to take advantage of memoization, store intermediate values, using the appropriate dictionary data structure, and reuse when needed.

Difference with greedy

DP technique

Guideline

W activity

0-1 Knapsack

0-1 Knapsack

DP for pairing sequences

Framework

Longest common subsequence (LCS)

Longest commo substring Greedy problems have the greedy choice property: locally optimal choices lead to globally optimal solution. We solve recursively one subproblem

Difference with greedy

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing sequences Framework Edit distance Longest common subsequence (LCS)

- Greedy problems have the greedy choice property: locally optimal choices lead to globally optimal solution. We solve recursively one subproblem
- I.e. In DP we solve all possible subproblems, while in greedy we are bound for the initial choice

Difference with divide and conquer

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing sequences

Framework

Longest common subsequence (LCS)

Longest common substring Both require recursive programming with subproblems with a similar structure to the original

Difference with divide and conquer

DP technique

Guideline

- W activity selection
- 0-1 Knapsack
- DP for pairing
- sequences
- Framework
- Longest common subsequence (LCS)
- Longest common

- Both require recursive programming with subproblems with a similar structure to the original
- D & C breaks a problems into a small number of subproblems each of them with size a fraction of the original size (size/b).

Difference with divide and conquer

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing sequences Framework Edit distance Longest common subsequence (LCS) Longest common substring

- Both require recursive programming with subproblems with a similar structure to the original
- D & C breaks a problems into a small number of subproblems each of them with size a fraction of the original size (size/b).
- In DP, we break into many subproblems with smaller size, but often, their sizes are not a fraction of the initial size.

Guideline to implement Dynamic Programming

DP technique

Guideline

- W activity selection
- 0-1 Knapsack
- DP for pairing sequences Framework Edit distance Longest common subsequence (LCS) Longest common substring

- **1** Characterize the structure of subproblems: make sure space of subproblems is not exponential. Define variables.
- Define recursively the value of an optimal solution: Find the correct recurrence, with solution to larger problem as a function of solutions of sub-problems.
- 3 Compute, memoization/bottom-up, the cost of a solution: using the recursive formula, tabulate solutions to smaller problems, until arriving to the value for the whole problem.
- 4 Construct an optimal solution: compute additional information to trace-back an optimal solution from optimal value.

WEIGHTED ACTIVITY SELECTION problem

DP technique

Guideillie

W activity selection

0-1 Knapsack

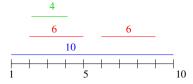
DP for pairing sequences

Edit distance Longest common subsequence (LCS)

Longest common substring

WEIGHTED ACTIVITY SELECTION problem: Given a set $S = \{1, 2, ..., n\}$ of activities to be processed by a single resource. Each activity i has a start time s_i and a finish time f_i , with $f_i > s_i$, and a weight w_i . Find the set of mutually compatible activities such that it maximizes $\sum_{i \in S} w_i$

Recall: We saw that some greedy strategies did not provide always a solution to this problem.



DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing sequences Framework Edit distance Longest common subsequence (LCS) Longest common Let us think of a backtracking algorithm for the problem.

- The solution is a selection of activities, i.e., a subset $S \subseteq \{1, ..., n\}$.
- We can adapt the backtracking algorithm to compute all subsets.
- \blacksquare When processing element i, we branch
 - i is in the solution S, then all activities that overlap with i cannot be in S.
 - \blacksquare *i* is not in *S*.

Each backtracking call receives a partial solution (S) and a candidate set (C), those activities that are compatible with the ones in S. It returns the weight of the best solution enlarging S.

DP technique

W activity selection

Each backtracking call receives a partial solution (S) and a candidate set (C), those activities that are compatible with the ones in S. It returns the weight of the best solution enlarging S.

```
WAS-1 (S, C)

if C = \emptyset then

return (W(S))

Let i be an element in C; C = C - \{i\};

Let A be the set of activities in C that overlap with i

return (\max\{WAS-1(S \cup \{i\}, C - A), WAS-1(S, C)\})
```

DP technique

W activity selection

Framework
Edit distance
Longest common

Longest common

Each backtracking call receives a partial solution (S) and a candidate set (C), those activities that are compatible with the ones in S. It returns the weight of the best solution enlarging S.

```
WAS-1 (S, C)

if C = \emptyset then

return (W(S))

Let i be an element in C; C = C - \{i\};

Let A be the set of activities in C that overlap with i

return (\max\{WAS-1(S \cup \{i\}, C-A), WAS-1(S, C)\})
```

The recursion tree have branching 2 and height $\leq n$, so size is $O(2^n)$.

```
DP technique
```

W activity selection

U-1 Knapsack
DP for pairing

sequences
Framework
Edit distance
Longest common
subsequence (LCS)

Each backtracking call receives a partial solution (S) and a candidate set (C), those activities that are compatible with the ones in S. It returns the weight of the best solution enlarging S.

```
WAS-1 (S, C)

if C = \emptyset then

return (W(S))

Let i be an element in C; C = C - \{i\};

Let A be the set of activities in C that overlap with i

return (\max\{WAS-1(S \cup \{i\}, C - A), WAS-1(S, C)\})
```

The recursion tree have branching 2 and height $\leq n$, so size is $O(2^n)$.

How many subproblems appear here?

W activity

selection

0-1 Knapsack

DP for pairing

Framework
Edit distance
Longest common
subsequence (LCS)

Each backtracking call receives a partial solution (S) and a candidate set (C), those activities that are compatible with the ones in S. It returns the weight of the best solution enlarging S.

```
WAS-1 (S, C)

if C = \emptyset then

return (W(S))

Let i be an element in C; C = C - \{i\};

Let A be the set of activities in C that overlap with i

return (\max\{WAS-1(S \cup \{i\}, C - A), WAS-1(S, C)\})
```

The recursion tree have branching 2 and height $\leq n$, so size is $O(2^n)$.

How many subproblems appear here? hard to count better than $O(2^n)$.

DP technique

W activity selection

0-1 Knapsack

DP for pairing

Framework
Edit distance
Longest common
subsequence (LCS)

For the unweighted case, the greedy algorithm made use of a particular ordering that helped to discard overlapping tasks.

DP technique

Guideline

W activity selection

0-1 Knapsack

o i renapoaci

DP for pairing sequences Framework Edit distance

Longest common subsequence (LCS Longest common

For the unweighted case, the greedy algorithm made use of a particular ordering that helped to discard overlapping tasks. Assume that the activities are sorted by finish time, i.e.,

$$f_1 \leq f_2 \leq \cdots \leq f_n$$
.

DP technique

W activity selection

For the unweighted case, the greedy algorithm made use of a particular ordering that helped to discard overlapping tasks. Assume that the activities are sorted by finish time, i.e.,

$$f_1 \leq f_2 \leq \cdots \leq f_n$$
.

- We can look to the incompatible activities that appear before activity i (finishing before t_i) when dealing with activity i.
- An incompatibility with a task j with $f_i \ge t_i$ will be discovered when dealing with task j.
- Note that activity i is not compatible with activity i < iwhen $f_i \geq s_i$.
- Then i can be incompatible with a contiguous set of activities $i-1, i-2, \ldots, j$.

W activity selection

This suggest the following backtracking algorithm.

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing sequences Framework Edit distance

Longest common subsequence (LCS

This suggest the following backtracking algorithm.

DP technique

W activity selection

```
\begin{array}{l} \operatorname{WAS-2}\left(S,i\right) \\ \text{if } i == 1 \text{ then} \\ \text{ return } \left(W(S) + w_1\right) \\ \text{if } i == 0 \text{ then} \\ \text{ return } \left(W(S)\right) \\ \text{Let } j \text{ be the largest integer } j < i \text{ such that } f_j \leq s_i, \ 0 \text{ if none is compatible.} \\ \text{return } \left(\max\{\operatorname{WAS-2}(S \cup \{i\},j),\operatorname{WAS-2}(S,i-1)\}\right) \end{array}
```

This suggest the following backtracking algorithm.

```
\begin{aligned} & \textbf{WAS-2} \ (S,i) \\ & \textbf{if} \ i == 1 \ \textbf{then} \\ & \textbf{return} \ \ (W(S) + w_1) \\ & \textbf{if} \ i == 0 \ \textbf{then} \\ & \textbf{return} \ \ (W(S)) \\ & \textbf{Let} \ j \ \textbf{be} \ \textbf{the} \ \textbf{largest} \ \textbf{integer} \ j < i \ \textbf{such that} \ f_j \leq s_i, \ 0 \ \textbf{if none is compatible.} \\ & \textbf{return} \ \ \ (\textbf{max}\{\textbf{WAS-2}(S \cup \{i\},j), \textbf{WAS-2}(S,i-1)\}) \end{aligned}
```

WAS-2 (\emptyset, n) will return the cost of an optimal solution, as we are considering adding or not i to the solution and discarding all incompatible tasks when choosing i.

The algorithm has cost

DP technique

W activity selection

This suggest the following backtracking algorithm.

```
\begin{aligned} & \textbf{WAS-2} \ (S,i) \\ & \textbf{if} \ i == 1 \ \textbf{then} \\ & \textbf{return} \ \ (W(S) + w_1) \\ & \textbf{if} \ i == 0 \ \textbf{then} \\ & \textbf{return} \ \ (W(S)) \\ & \textbf{Let} \ j \ \textbf{be} \ \textbf{the} \ \textbf{largest} \ \textbf{integer} \ j < i \ \textbf{such that} \ f_j \leq s_i, \ 0 \ \textbf{if none is compatible.} \\ & \textbf{return} \ \ \ (\textbf{max}\{\textbf{WAS-2}(S \cup \{i\},j), \textbf{WAS-2}(S,i-1)\}) \end{aligned}
```

WAS-2 (\emptyset, n) will return the cost of an optimal solution, as we are considering adding or not i to the solution and discarding all incompatible tasks when choosing i.

The algorithm has cost $O(2^n)$.

DP technique

W activity selection

This suggest the following backtracking algorithm.

```
\begin{aligned} & \textbf{WAS-2} \; (S,i) \\ & \textbf{if} \; i == 1 \; \textbf{then} \\ & \textbf{return} \; \; (W(S) + w_1) \\ & \textbf{if} \; i == 0 \; \textbf{then} \\ & \textbf{return} \; \; (W(S)) \\ & \textbf{Let} \; j \; \textbf{be} \; \textbf{the} \; \textbf{largest} \; \textbf{integer} \; j < i \; \textbf{such} \; \textbf{that} \; f_j \leq s_i, \; 0 \; \textbf{if} \; \textbf{none} \; \textbf{is} \; \textbf{compatible}. \\ & \textbf{return} \; \; \left( \text{max}\{ \textbf{WAS-2}(S \cup \{i\}, j), \textbf{WAS-2}(S, i-1) \} \right) \end{aligned}
```

WAS-2 (\emptyset, n) will return the cost of an optimal solution, as we are considering adding or not i to the solution and discarding all incompatible tasks when choosing i.

The algorithm has cost $O(2^n)$.

DP technique

W activity selection

DP for pairing

Inside the code, we are not using S, only W(S).

DP technique

Suidolino

W activity selection

0-1 Knapsack

0-1 Kilapsaci

DP for pairing sequences

Framework

Longest common subsequence (LCS

Longest common substring This suggest the following backtracking algorithm that receives W(S) instead of S.

DP technique

Juideline

W activity selection

0-1 Knapsack

DP for pairing

Framework
Edit distance
Longest common
subsequence (LCS)

Longest common substring This suggest the following backtracking algorithm that receives W(S) instead of S.

```
WAS-3 (W, i) if i == 1 then return (W + w_1) if i == 0 then return (W) Let j be the largest integer j < i such that f_j \leq s_i, 0 if none is compatible. return (\max\{\text{WAS-2}(W + w_i, j), \text{WAS-2}(W, i - 1)\})
```

DP technique

.....

W activity selection

0-1 Knapsacl

DP for pairing sequences

Framework
Edit distance
Longest common
subsequence (LCS)

Longest cor substring This suggest the following backtracking algorithm that receives W(S) instead of S.

```
WAS-3 (W, i) if i == 1 then return (W + w_1) if i == 0 then return (W) Let j be the largest integer j < i such that f_j \leq s_i, 0 if none is compatible. return (\max\{\text{WAS-2}(W + w_i, j), \text{WAS-2}(W, i - 1)\})
```

WAS-3 (\emptyset, n) will return the cost of an optimal solution. Still, the algorithm has cost $O(2^n)$.

DP technique

Guideline

W activity selection

0-1 Knapsack

o i ranapoaca

DP for pairing sequences

Framework

Edit distance

Longest common subsequence (LCS

substring

■ We have n activities with $f_1 \le f_2 \le \cdots \le f_n$ and weights w_i , $1 \le i \le n$.

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing

Framework
Edit distance
Longest common
subsequence (LCS)

Longest common substring

■ We have *n* activities with $f_1 \le f_2 \le \cdots \le f_n$ and weights w_i , $1 \le i \le n$.

- Supproblems calls WAS-3(W, i)
 - *i* defines the subproblem: Maximize the weight of the activity selection for activities $\{1, ..., i\}$, for $0 \le i \le n$.
 - A recursive call returns this maximum.
 - There are only O(n) subproblems!

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing

Framework
Edit distance
Longest common
subsequence (LCS)

We have *n* activities with $f_1 \le f_2 \le \cdots \le f_n$ and weights w_i , $1 \le i \le n$.

- Supproblems calls WAS-3(W, i)
 - *i* defines the subproblem: Maximize the weight of the activity selection for activities $\{1, ..., i\}$, for $0 \le i \le n$.
 - A recursive call returns this maximum.
 - There are only O(n) subproblems!
- Let Opt(j) be the value of an optimal solution O_j to the sub problem consisting of activities in the range 1 to j.

DP technique

Guideline

W activity selection

0-1 Knapsack

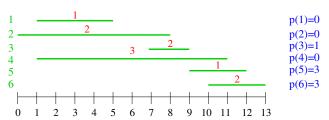
DP for pairing

sequences

Edit distance Longest common

subsequence (LCS)
Longest common

Define p(i) to be the largest integer j < i such that i and j are disjoints (p(i) = 0) if no disjoint j < i exists).



DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing

sequences

Framework

Longest common

subsequence (LCS

Reinterpreting WAS-3 botton-up, using p(i), we get

DP from WAS-3: a recurrence

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing

sequences

Edit distance Longest common subsequence (LCS)

Longest co substring Reinterpreting WAS-3 botton-up, using p(i), we get

$$\mathsf{Opt}(j) = egin{cases} 0 & \mathsf{if}\ j = 0 \ \mathsf{max}\{(\mathsf{Opt}(p[j]) + w_j), \mathsf{Opt}[j-1]\} & \mathsf{if}\ j \geq 1 \end{cases}$$

We add activity 0 for compatibility with p.

DP from WAS-2: a recurrence

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing sequences Framework Edit distance Longest common subsequence (LCS) Longest common substring

$$\mathsf{Opt}(j) = egin{cases} 0 & \mathsf{if}\ j = 0 \ \mathsf{max}\{(\mathsf{Opt}(p[j]) + w_j), \mathsf{Opt}[j-1]\} & \mathsf{if}\ j \geq 1 \end{cases}$$

Correctness: The base case is correct. From the previous discussion, we have two cases:

1.- *j* ∈ O_j :

- As j is part of the solution, no jobs $\{p(j)+1,\ldots,j-1\}$ are in O_j ,
- $O_j \{j\}$ must be an optimal solution for $\{1, \ldots, p[j]\}$, otherwise then $O'_j = O_{p[j]} \cup \{j\}$ will be better (optimal substructure)
- 2.- If $j \notin O_j$: then O_j is an optimal solution to $\{1, \ldots, j-1\}$.

DP from WAS-3: Computing p values

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing sequences Framework Edit distance Longest common subsequence (LCS) Longest common

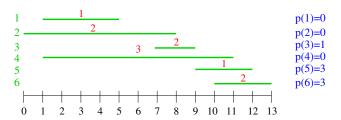
- We need to compute efficiently p(i)
 - sort the activities by increasing values of start time.
 - merge the sorted list of finishing times an the sorted list of start times, in case of tie put before the finish times.
 - p[j] is the last activity whose finish time precedes s_j in the combined order, activity 0, if no finish time precedes s_i
- We can thus compute the p values in $O(n \lg n + n) = O(n \lg n)$ time.

DP from WAS-3: omputing p values

DP technique

W activity selection

DP for pairing



Sorted finish times: 1:5, 2:8, 3:9, 4:11, 5:12, 6:13

Sorted start times: 2:0, 1:1, 4:1, 3:7, 5:9, 6:10

Merged sequence:

2:0, 1:1, 4:1,1:5,3:7,2:8,3:9,5:9,6:10, 4:11,5:12, 6:13

DP from WAS-3: Preprocessing

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing

sequences

Edit distance Longest common subsequence (LCS)

Longest common substring Considering the set of activities S, we start by a pre-processing phase:

- Sort the activities by increasing values of finish times.
- Compute the values of p[i],
- This can be done in $O(n \lg n)$

DP from WAS-2: Memoization

Assuming that tasks are sorted and all p(j) are computed and tabulated in $P[1 \cdots n]$

We keep a table W[n+1], at the end W[i] will hold the weight of an optimal solution for subproblem $\{1, \ldots, i\}$. Initially, set all entries to -1 and W[0] = 0.

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing sequences Framework Edit distance

Longest common subsequence (LCS)
Longest common

DP from WAS-2: Memoization

Assuming that tasks are sorted and all p(j) are computed and tabulated in $P[1 \cdots n]$

We keep a table W[n+1], at the end W[i] will hold the weight of an optimal solution for subproblem $\{1, \ldots, i\}$. Initially, set all entries to -1 and W[0] = 0.

```
\begin{aligned} & \textbf{R-Opt}\;(j)\\ & \textbf{if}\;\; W[j]! = -1\; \textbf{then}\\ & \textbf{return}\;\; (W[j])\\ & \textbf{else}\\ & \;\; W[j] = \max(w_j + \textbf{R-Opt}(P[j])), \textbf{R-Opt}(j-1))\\ & \textbf{return}\;\; W[j] \end{aligned}
```

No subproblem is solved more than once, so cost is $O(n \log + n) = O(n \log n)$

```
DP technique
```

auideline

W activity selection

0-1 Knapsack

DP for pairing sequences

Framework
Edit distance
Longest common
subsequence (LCS)

substring

DP from WAS-3: Iterative

We assume that tasks are sorted and all p(j) are computed and tabulated in $P[1 \cdots n]$

We keep a table W[n+1], at the end W[i] will hold the weight of an optimal solution for subproblem $\{1, \ldots, i\}$.

DP technique

.....

W activity selection

0-1 Knapsack

DP for pairing sequences

Edit distance

Longest common subsequence (LCS

DP from WAS-3: Iterative

We assume that tasks are sorted and all p(j) are computed and tabulated in $P[1 \cdots n]$

We keep a table W[n+1], at the end W[i] will hold the weight of an optimal solution for subproblem $\{1, \ldots, i\}$.

```
\begin{aligned} & \textbf{Opt-Val} \; (n) \\ & \mathcal{W}[0] = 0 \\ & \textbf{for} \; j = 1 \; \text{to} \; n \; \textbf{do} \\ & \mathcal{W}[j] = \max(\mathcal{W}[P[j]] + w_j, \mathcal{W}[j-1]) \\ & \textbf{return} \; \; \mathcal{W}[n] \end{aligned}
```

Time complexity: $O(n \lg n + n)$.

Notice: Both algorithms gave only the numerical max. weight We have to keep more info to recover a solution form W[n].

DP technique

0-1 Knapsack

DP for pairing

Framework
Edit distance
Longest common subsequence (LCS)

DP from WAS-2: Returning an optimal solution

DP technique

Cuidolino

W activity selection

0-1 Knapsack

DP for pairing

sequences
Framework

Longest common subsequence (LCS

Longest common

To get also the list of activities in an optimal solution, we use W to recover the decision taken in computing W[n].

DP from WAS-2: Returning an optimal solution

To get also the list of activities in an optimal solution, we use W to recover the decision taken in computing W[n].

```
Find-Opt (j)

if j=0 then

return \emptyset

else if W[p[j]]+w_j>W[j-1] then

return (\{j\}\cup \mathsf{Find-Opt}(p[j]))

else

return (\mathsf{Find-Opt}(j-1))

Time complexity: O(n)
```

DP technique

W activity selection

DP for pairing

DP for Weighted Activity Selection

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing sequences Framework Edit distance Longest common subsequence (LCS) Longest common substring

- We started from a suitable recursive algorithm, which runs $O(2^n)$ but solves only O(n) different subproblemes.
- Perform some preprocesing.
- Compute the weight of an optimal solution to each of the O(n) subproblems.
- Guided by optimal value, obtain an optimal solution .

0-1 Knapsack

DP technique

Guidelin

selection

0-1 Knapsack
DP for pairing

sequences
Framework
Edit distance
Longest common
subsequence (LCS)

(This example is from Section 6.4 in Dasgupta, Papadimritriou, Vazirani's book.)

 $0-1~\mathrm{KNAPSACK}$: Given as input a set of n items that can NOT be fractioned, item i has weight w_i and value v_i , and a maximum permissible weight W.

QUESTION: select a set of items S that maximize the profit.

Recall that we can **NOT** take fractions of items.

Input: (w_1,\ldots,w_n) , (v_1,\ldots,v_n) , W.

■ Let $S \subseteq \{1, ..., n\}$ be an optimal solution to the problem The optimal benefit is $\sum_{i \in S} v_i$

DP technique

W activity selection

0-1 Knapsack

u-1 Knapsack

DP for pairing sequences

Framework

Longest common subsequence (LCS

Input: $(w_1, ..., w_n)$, $(v_1, ..., v_n)$, W.

- Let $S \subseteq \{1, ..., n\}$ be an optimal solution to the problem The optimal benefit is $\sum_{i \in S} v_i$
- With respect to the last item we have two cases:
 - $n \notin S$, then S is an optimal solution to the problem $(w_1, \ldots, w_{n-1}), (v_1, \ldots, v_{n-1}), W$
 - $n \in S$, then $S \{n\}$ is an optimal solution to the problem $(w_1, \ldots, w_{n-1}), (v_1, \ldots, v_{n-1}), W w_n$

Guideline

W activity selection

0-1 Knapsack

DP for pairing

Framework

Edit distance

Longest common

Longest common

Input: $(w_1, ..., w_n)$, $(v_1, ..., v_n)$, W.

- Let $S \subseteq \{1, ..., n\}$ be an optimal solution to the problem The optimal benefit is $\sum_{i \in S} v_i$
- With respect to the last item we have two cases:
 - $n \notin S$, then S is an optimal solution to the problem $(w_1, \ldots, w_{n-1}), (v_1, \ldots, v_{n-1}), W$
 - $n \in S$, then $S \{n\}$ is an optimal solution to the problem $(w_1, \ldots, w_{n-1}), (v_1, \ldots, v_{n-1}), W w_n$
- in both cases we get an optimal solution of a subproblem in which the last item is removed and in which the maximum weight can be W or a value smaller than W.

- DP technique
- selection
- 0-1 Knapsack
- DP for pairing sequences Framework Edit distance Longest common subsequence (LCS) Longest common

Input: $(w_1, ..., w_n)$, $(v_1, ..., v_n)$, W.

- Let $S \subseteq \{1, ..., n\}$ be an optimal solution to the problem The optimal benefit is $\sum_{i \in S} v_i$
- With respect to the last item we have two cases:
 - $n \notin S$, then S is an optimal solution to the problem $(w_1, \ldots, w_{n-1}), (v_1, \ldots, v_{n-1}), W$
 - $n \in S$, then $S \{n\}$ is an optimal solution to the problem $(w_1, \ldots, w_{n-1}), (v_1, \ldots, v_{n-1}), W w_n$
- in both cases we get an optimal solution of a subproblem in which the last item is removed and in which the maximum weight can be W or a value smaller than W.
- This identifies subproblems of the form [i, x] that are knapsack instances in which the set of items is $\{1, \ldots, i\}$ and the maximum weight that can hold the knapsack is x.

W activity selection

0-1 Knapsack

DP for pairing sequences

Edit distance
Longest common subsequence (LCS)
Longest common

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing

sequences

Framework

Edit distanc

subsequence (LC)

Longest common substring Let v[i,x] be the maximum value (optimum) we can get from objects $\{1,2,\ldots,i\}$ within total weight $\leq x$.

DP technique

W activity

selection

0-1 Knapsack

DP for pairing

Framework
Edit distance
Longest common

subsequence (LCS)

Longest common substring

Let v[i,x] be the maximum value (optimum) we can get from objects $\{1,2,\ldots,i\}$ within total weight $\leq x$.

To compute v[i,x], the two possibilities we have considered give raise to the recurrence:

$$v[i,x] = \begin{cases} 0 & \text{if } i = 0 \text{ or } w = 0 \\ v[i-1,x] & \text{if } w_i > x \\ \max v[i-1,x-w_i] + v_i, v[i-1,x] & \text{otherwise} \end{cases}$$

DP algorithm: tabulating

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing

Framework
Edit distance
Longest common
subsequence (LCS)

Define a table P[n+1, W+1] to hold optimal values for the corresponding subproblem.

```
\begin{aligned} & \text{Knapsack}(i,x) \\ & \text{for } i = 0 \text{ to } n \text{ do} \\ & P[i,0] = 0 \\ & \text{for } x = 1 \text{ to } W \text{ do} \\ & P[0,x] = 0 \\ & \text{for } i = 1 \text{ to } n \text{ do} \\ & \text{ for } x = 1 \text{ to } W \text{ do} \\ & P[i,x] = \max\{P[i-1,x], P[i-1,x-w[i]] + v[i]\} \\ & \text{return } P[n,W] \end{aligned}
```

The number of steps is O(nW)

DP algorithm: tabulating

DP technique

Guidelin

W activity selection

0-1 Knapsack

DP for pairing

Framework
Edit distance
Longest common
subsequence (LCS)

Define a table P[n+1, W+1] to hold optimal values for the corresponding subproblem.

```
\begin{aligned} & \text{Knapsack}(i,x) \\ & \text{for } i = 0 \text{ to } n \text{ do} \\ & P[i,0] = 0 \\ & \text{for } x = 1 \text{ to } W \text{ do} \\ & P[0,x] = 0 \\ & \text{for } i = 1 \text{ to } n \text{ do} \\ & \text{ for } x = 1 \text{ to } W \text{ do} \\ & P[i,x] = \max\{P[i-1,x], P[i-1,x-w[i]] + v[i]\} \\ & \text{return } P[n,W] \end{aligned}
```

The number of steps is O(nW) which is

DP algorithm: tabulating

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing

sequences
Framework
Edit distance
Longest common
subsequence (LCS)
Longest common

Define a table P[n+1, W+1] to hold optimal values for the corresponding subproblem.

```
\begin{aligned} & \mathbf{Knapsack}(i,x) \\ & \mathbf{for} \quad i = 0 \ \mathbf{to} \ n \ \mathbf{do} \\ & P[i,0] = 0 \\ & \mathbf{for} \quad x = 1 \ \mathbf{to} \ W \ \mathbf{do} \\ & P[0,x] = 0 \\ & \mathbf{for} \quad i = 1 \ \mathbf{to} \ n \ \mathbf{do} \\ & \mathbf{for} \quad x = 1 \ \mathbf{to} \ W \ \mathbf{do} \\ & P[i,x] = \max\{P[i-1,x], P[i-1,x-w[i]] + v[i]\} \\ & \mathbf{return} \quad P[n,W] \end{aligned}
```

The number of steps is O(nW) which is pseudopolynomial.

An example

DP technique

0-1 Knapsack
DP for pairing

i	1	2	3	4	5
Wi	1	2	5	6	7
Vi	1	6	18	22	28

$$W = 11.$$

								W					
		0	1	2	3	4	5	6	7	8	9	10	11
	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	1	1	1	1	1	1	1	1	1	1	1
	2	0	1	6	7	7	7	7	7	7	7	7	7
1	3	0	1	6	7	7	18	19	24	25	25	25	25
	4	0	1	6	7	7	18	22	23	28	29	29	40
	5	0	1	6	7	7	18	22	28	29	34	35	40

For instance, $v[4, 10] = \max\{v[3, 10], v[3, 10 - 6] + 22\} = \max\{25, 7 + 22\} = 29.$ $v[5, 11] = \max\{v[4, 11], v[4, 11 - 7] + 28\} = \max\{40, 4 + 28\} = 40.$

Recovering the solution

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing

Framework
Edit distance
Longest common
subsequence (LCS)
Longest common

To compute the actual subset $S \subseteq I$ that is the solution, we modify the algorithm to compute also a Boolean table K[n+1, W+1], so that K[i,x] is 1 when the max is attained in the second alternative $(i \in S)$, 0 otherwise.

Recovering the solution

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing

sequences
Framework
Edit distance
Longest common
subsequence (LCS)
Longest common

To compute the actual subset $S \subseteq I$ that is the solution, we modify the algorithm to compute also a Boolean table K[n+1,W+1], so that K[i,x] is 1 when the max is attained in the second alternative $(i \in S)$, 0 otherwise.

```
Knapsack(i, x)
for i = 0 to n do
  P[i, 0] = 0; K[i, 0] = 0
for x = 1 to W do
  P[0,x] = 0; K[0,x] = 0
for i = 1 to n do
  for x = 1 to W do
     if P[i - 1, x] >
     P[i - 1, x - w[i]] + v[i] then
        P[i, x] = P[i - 1, x];
        K[i,x]=0
     else
        P[i,x] =
        P[i-1, x-w[i]] + v[i];
        K[i, x] = 1
return P[n, W]
```

Complexity: O(nW)

An example

JP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairi

Framework

Longest common subsequence (LCS

Longest common substring

	0	1	2	3	4	5	6	7	8	9	10	11
0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
1	0 0	1 1	1 1	11	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1
2	0 0	1 0	6 1	7 1	7 1	7 1	7 1	7 1	7 1	7 1	7 1	7 1
3	0 0	1 0	6 0	7 0	7 0	18 1	19 1	24 1	25 1	25 1	25 1	25 1
4	0 0	10	6 0	7 0	7 0	18 1	22 1	23 1	28 1	29 1	29 1	40 1
5	0 0	1 0	6 0	7 0	7 0	18 0	22 0	28 1	29 1	34 1	35 1	40 0

Recovering the solution

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing sequences

Framework

Longest common subsequence (LCS

Longest commo substring

- To compute an optimal solution $S \subseteq I$, we use K to trace backwards the elements in the solution.
- K[i, x] is 1 when the max is attained in the second alternative: $i \in S$.

Recovering the solution

■ To compute an optimal solution $S \subseteq I$, we use K to trace

• K[i, x] is 1 when the max is attained in the second

backwards the elements in the solution.

DP technique

0-1 Knapsack

alternative: $i \in S$. x = W. $S = \emptyset$ DP for pairing

for
$$i = n$$
 downto 1 do
if $K[i,x] = 1$ then
 $S = S \cup \{i\}$
 $x = x - w_i$
Output S

Complexity: O(nW)

An example

0-1 Knapsack

$$W = 11.$$

An example

DP technique

Guidelin

W activity selection

0-1 Knapsack

DP for pairing

Framework

Edit distance

Longest common subsequence (LC

substring

i	1	2	3	4	5
Wi	1	2	5	6	7
Vi	1	6	18	22	28

$$W = 11.$$

	0	1	2	3	4	5	6	7	8	9	10	11
0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
1	0 0	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1
2	0 0	10	6 1	7 1	7 1	7 1	7 1	7 1	7 1	7 1	7 1	7 1
3	0 0	10	6 0	7 0	7 0	18 1	19 1	24 1	25 1	25 1	25 1	25 1
4	0 0	10	6 0	7 0	7 0	18 1	22 1	23 1	28 1	29 1	29 1	40 1
5	0 0	10	6 0	7 0	7 0	18 0	22 0	28 1	29 1	34 1	35 1	40 0

$$K[5,11] \to K[4,11] \to K[3,5] \to K[2,0]$$
. So $S = \{4,3\}$

Complexity

DP technique

A/ - - - 1

selection

0-1 Knapsack

DP for pairing sequences Framework Edit distance Longest common subsequence (LCS) Longest common The 0-1 KNAPSACK is NP-complete.

- 0-1 KNAPSACK, has complexity O(nW), and its length is $O(n \lg M)$ taking $M = \max\{W, \max_i w_i, \max_i v_i\}$.
- If W requires k bits, the cost and space of the algorithm is $n2^k$, exponential in the length W. However the DP algorithm works fine when $W = \Theta(n)$, here $k = O(\log n)$.
- Consider the unary knapsack problem, where all integers are coded in unary (7=1111111). In this case, the complexity of the DP algorithm is polynomial on the size, i.e., UNARY KNAPSACK ∈P.

Matching DNA sequences

DP technique

Guideline

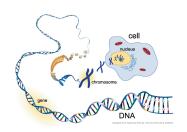
W activity selection

0-1 Knapsack

DP for pairing

Eramowork

Edit distance Longest common subsequence (LCS Longest common substring



- DNA, is the hereditary material in almost all living organisms. They can reproduce by themselves.
- Its function is like a program unique to each individual organism that rules the working and evolution of the organism.
- Model as a string of 3×10^9 characters over $\{A, T, G, C\}$.

Computational genomics: Some questions

- DP technique
- Guideline
- w activity selection
- 0-1 Knapsack
- DP for pairing
- Framework
- Edit distance Longest common subsequence (LCS) Longest common substring

- When a new gene is discovered, one way to gain insight into its working, is to find well known genes (not necessarily in the same species) which match it closely. Biologists suggest a generalization of edit distance as a definition of approximately match.
- GenBank (https://www.ncbi.nlm.nih.gov/genbank/) has a collection of > 10¹⁰ well studied genes, BLAST is a software to do fast searching for similarities between a gene an those in a DB of genes.
- Sequencing DNA: consists in the determination of the order of DNA bases, in a short sequence of 500-700 characters of DNA. To get the global picture of the whole DNA chain, we generate a large amount of DNA sequences and try to assembled them into a coherent DNA sequence. This last part is usually a difficult one, as the position of each sequence is the global DNA chain is not know before hand.

Evolution DNA

DP technique

Guideline

W activity

0-1 Knapsack

DP for pairing

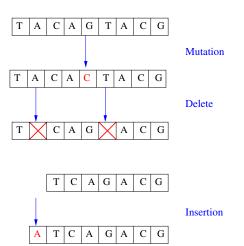
sequences

Framework

Longest common

subsequence (LCS)

Longest commo



How to compare sequences?

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing

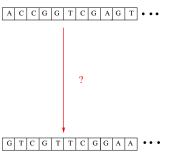
ocquenc

Framework

Longest common

subsequence (LCS

Longest common substring

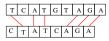


Three problems

Longest common substring: Substring = consecutive characters in the string.

T C A T G T A G A

Longest common subsequence: Subsequence = ordered chain of characters (might have gaps).



Edit distance: Convert one string into another one using a given set of operations.

1	Г	Α	C	Α	(ì	T	Α	С	C
						?				
	Α	Т	. C	A		G	Α	. (0	ì

DP technique

_

W activity selection

0-1 Knapsack

DP for pairing

Framework

Longest common subsequence (LCS

substring

The Edit Distance problem

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing sequences

Edit distance

Longest common subsequence (LCS

substring

(Section 6.3 in Dasgupta, Papadimritriou, Vazirani's book.)

The edit distance between strings $X = x_1 \cdots x_n$ and $Y = y_1 \cdots y_m$ is defined to be the minimum number of edit operations needed to transform X into Y.

All the operations are done on X

Edit distance: Applications

DP technique

Guideline

W activity selection

0-1 Knapsack
DP for pairing

sequences
Framework
Edit distance
Longest commo

Longest common substring

- Computational genomics: evolution between generations, i.e. between strings on $\{A, T, G, C, -\}$.
- Natural Language Processing: distance, between strings on the alphabet.
- Text processor, suggested corrections

EDIT DISTANCE: Levenshtein distance

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairir

Framework

Longest common subsequence (LC

Longest common substring In the Levenshtein distance the set of operations are

- insert(X, i, a)= $x_1 \cdots x_i a x_{i+1} \cdots x_n$.
- $\bullet \ \mathsf{delete}(X,i) = x_1 \cdots x_{i-1} x_{i+1} \cdots x_n$
- lacksquare modify $(X, i, a) = x_1 \cdots x_{i-1} a x_{i+1} \cdots x_n$.

the cost of modify is 2, and the cost of insert/delete is 1.

To simplify, in the following we assume that the cost of each operation is 1.

For other operations and costs the structure of the DP will be similar.

Exemple-1

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing

sequence

Edit distance

Longest comm

Longest commo substring X = aabab and Y = babb aabab = X X' = insert(X, 0, b) baabab X'' = delete(X', 2) babab X'' = delete(X'', 4) babb $X = aabab \rightarrow Y = babb$

Exemple-1

DP technique

DP for pairing

Edit distance

X = aabab and Y = babbaabab = XX' = insert(X, 0, b) baabab X'' = delete(X', 2) babab X'' = delete(X'', 4) babb $X = aabab \rightarrow Y = babb$

A shortest edit distance

aabab = XX' = modify(X, 1, b) babab

Y = delete(X', 4) babb

Use dynamic programming.

The structure of an optimal solution

DP technique

W activity

0-1 Knapsack

DP for pairing sequences Framework Edit distance

Edit distance

Longest common subsequence (LCS)

Longest common substring

In a solution O with minimum edit distance from $X = x_1 \cdots x_n$ to $Y = y_1 \cdots y_m$, we have three possible alignments for the last terms

$$\begin{array}{c|cccc}
(1) & (2) & (3) \\
\hline
x_n & - & x_n \\
- & y_m & y_m
\end{array}$$

- In (1), O performs delete x_n , and it transforms optimally, $x_1 \cdots x_{n-1}$ into $y_1 \cdots y_m$.
- In (2), O performs insert y_m at the end of x, and it transforms optimally, $x_1 \cdots x_n$ into $y_1 \cdots y_{m-1}$.
- In (3), if $x_n \neq y_m$, O performs modify x_n by y_m , otherwise O, aligns them without cost. Furthermore O transforms optimally $x_1 \cdots x_{n-1}$ into $y_1 \cdots y_{m-1}$.

The recurrence

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing

Framework

Edit distance Longest comm

subsequence (LCS)
Longest common

Let $X[i] = x_1 \cdots x_i$, $Y[j] = y_1 \cdots y_j$. E[i,j] = edit distance from X[i] to Y[j] is the maximum of Y[i] to Y[i] is the maximum of Y[i] to Y

- I put y_i at the end of x: E[i, j-1] + 1
- D delete x_i : E[i-1,j] + 1
- if $x_i \neq y_j$, M change x_i into y_j : E[i-1,j-1]+1, otherwise E[i-1,j-1]

Adding the base cases, we have the recurrence

DP technique

$$E[i,j] = \begin{cases} j & \text{if } i = 0 \text{ (converting } \lambda \to Y[j]) \\ i & \text{if } j = 0 \text{ (converting } X[i] \to \lambda) \\ & \begin{cases} E[i-1,j]+1 & \text{if } D \\ E[i,j-1]+1, & \text{if } I \\ E[i-1,j-1]+\delta(x_i,y_j) & \text{otherwise} \end{cases}$$

where

Edit distance

$$\delta(x_i, y_j) = \begin{cases} 0 & \text{if } x_i = y_j \\ 1 & \text{otherwise} \end{cases}$$

Computing the optimal costs and pointers

```
DP technique

Guideline

W activity
selection

0-1 Knapsack

DP for pairing
sequences
Framework
Edit distance
Longest common
subsequence (LCS)
Longest common
```

```
Edit(X, Y)
for i = 0 to n do
   E[i, 0] = i
for i = 0 to m do
   E[0, i] = i
for i = 1 to n do
   for i = 1 to m do
       \delta = 0
       if x_i \neq y_i then
          \delta = 1
       E[i, j] = E[i, j - 1] + 1 \ b[i, j] = \uparrow
       if E[i-1, j-1] + \delta < E[i, j] then
           E[i, j] = E[i - 1, j - 1] + \delta, b[i, j] := 
       if E[i-1, j] + 1 < E[i, j] then
           E[i, j] = E[i - 1, j] + 1, b[i, j] := \leftarrow
```

```
Space and time complexity: O(nm).

← is a I operation,

↑ is a D operation, and

ヾ is either a M or a

no-operation.
```

Computing the optimal costs: Example

X=aabab; Y=babb. Therefore,
$$n = 5, m = 4$$

		0	1	2	3	4
)	b	a	b	Ь
			D	а	l D	0
0	λ	0	← 1	← 2	← 3	← 4
1	а	† 1	_ 1	\(\) 1		← 3
2	а	† 2	<u>√</u> 2	<u>\</u>		← 3
3	b	↑ 3	△ 2	† 2	<u>\</u>	₹ 2
4	а	↑4	↑ 3	√ 2	† 2	△ 2
-5	b	↑ 5	√ 4	↑ 3	↑ 2	乀 2

W activity selection 0-1 Knapsack DP for pairing sequences Framework Edit distance

DP technique

 \leftarrow is a I operation, \uparrow is a D operation, and \nwarrow is either a M or a no-operation.

Obtain Y in edit distance from X

DP technique

W activity

DP for pairing

Edit distance

```
Uses as input the arrays E and b.
The first call to the algorithm is con-Edit (n, m)
  con-Edit(i, j)
  if i = 0 or i = 0 then
     return
     if b[i,j] = \nwarrow and x_i = y_i then
       change(X, i, y_i); con-Edit(i - 1, i - 1)
    if b[i,j] = \uparrow then
       delete(X, i); con-Edit(i - 1, i)
    if b[i,j] = \leftarrow then
       insert(X, i, y_i), con-Edit(i, j - 1)
```

This algorithm has time complexity O(nm).

DP technique

Guideline

W activity

0-1 Knapsack

DP for pairing

sequences

Framework

Longest common subsequence (LCS)

Longest comp

(Section 15.4 in CormenLRS' book.)

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing sequences

Framework

Longest common subsequence (LCS)

Longest comm

(Section 15.4 in CormenLRS' book.)

■ $Z = z_1 \cdots z_k$ is a subsequence of X if there is a subsequence of integers $1 \le i_1 < i_2 < \ldots < i_k \le n$ such that $z_i = x_{i_i}$.

TTT is a subsequence of ATATAT.

DP technique

DP for pairing

Longest common subsequence (LCS)

(Section 15.4 in CormenLRS' book.)

- $Z = z_1 \cdots z_k$ is a subsequence of X if there is a subsequence of integers $1 \le i_1 < i_2 < \ldots < i_k \le n$ such that $z_i = x_{i_i}$.
 - TTT is a subsequence of ATATAT.
- If Z is a subsequence of X and Y, then Z is a common subsequence of X and Y.

DP technique

Guidalina

W activity selection

0-1 Knapsack

DP for pairing

Framework

Framework
Edit distance

Longest common subsequence (LCS)

(Section 15.4 in CormenLRS' book.)

- $Z = z_1 \cdots z_k$ is a subsequence of X if there is a subsequence of integers $1 \le i_1 < i_2 < \ldots < i_k \le n$ such that $z_j = x_{i_j}$.
 - TTT is a subsequence of ATATAT.
- If Z is a subsequence of X and Y, then Z is a common subsequence of X and Y.

LCS Given sequences $X = x_1 \cdots x_n$ and $Y = y_1 \cdots y_m$, compute the longest common subsequence Z.

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing

sequences

Edit distanc

Longest common subsequence (LCS)

Longest comp substring

DP technique

Guideillie

W activity selection

0-1 Knapsack

DP for pairing sequences

Framework

Longest common subsequence (LCS)

Longest comn substring

$$Z = x_{i_1} \dots x_{i_k} = y_{j_1} \dots y_{j_k}$$

DP technique

W activity

selection

0-1 Knapsack

DP for pairing sequences

Framework
Edit distance

Longest common subsequence (LCS)

Longest commo

- $Z = x_{i_1} \dots x_{i_k} = y_{j_1} \dots y_{j_k}$
- There are no i, j, with $i > i_k$ and $j > j_k$, s.t. $x_i = y_j$. Otherwise, Z will not be optimal.

DP technique

W activity

N-1 Knansack

DP for pairing

sequences Framework

Edit distance

Longest common subsequence (LCS)

Longest common

- $Z = x_{i_1} \dots x_{i_k} = y_{j_1} \dots y_{j_k}$
- There are no i, j, with $i > i_k$ and $j > j_k$, s.t. $x_i = y_j$. Otherwise, Z will not be optimal.
- **a** = x_{i_k} might appear after i_k in X, but not after j_k in Y, or viceversa.

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing sequences
Framework

Edit distance

Longest common subsequence (LCS)

Longest common

- $Z = x_{i_1} \dots x_{i_k} = y_{j_1} \dots y_{j_k}$
- There are no i, j, with $i > i_k$ and $j > j_k$, s.t. $x_i = y_j$. Otherwise, Z will not be optimal.
- **a** $= x_{i_k}$ might appear after i_k in X, but not after j_k in Y, or viceversa.
- There is an optimal solution in which i_k and j_k are the last occurrence of a in X and Y respectively.

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing sequences

Framework

Longest common subsequence (LCS)

Longest comm

Let $X = x_1 \cdots x_n$ and $Y = y_1 \cdots y_m$ and let $Z = x_{i_1} \dots x_{i_k} = y_{j_1} \dots y_{j_k}$ a lcs s.t. the index of the final common symbol in Z is its last occurrence in both X and Y.

DP technique

DP for pairing

Longest common subsequence (LCS)

Let $X = x_1 \cdots x_n$ and $Y = y_1 \cdots y_m$ and let $Z = x_{i_1} \dots x_{i_k} = y_{i_1} \dots y_{i_k}$ a lcs s.t. the index of the final common symbol in Z is its last occurrence in both X and Y.

Let
$$X^- = x_1 \cdots x_{n-1}$$
 and $Y^- = y_1 \cdots y_{m-1}$

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing

Framework

Edit distance

Longest common subsequence (LCS)
Longest common

Let $X=x_1\cdots x_n$ and $Y=y_1\cdots y_m$ and let $Z=x_{i_1}\ldots x_{i_k}=y_{j_1}\ldots y_{j_k}$ a lcs s.t. the index of the final common symbol in Z is its last occurrence in both X and Y.

Let
$$X^- = x_1 \cdots x_{n-1}$$
 and $Y^- = y_1 \cdots y_{m-1}$

- Let us look at x_n and y_m .
- If $x_n = y_m$, $i_k = n$ and $j_k = m$ so, $x_{i_1} \dots x_{i_{k-1}}$ is a lcs of X^- and Y^- .

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing

Framework

Longest common subsequence (LCS)

Longest comm

Let $X=x_1\cdots x_n$ and $Y=y_1\cdots y_m$ and let $Z=x_{i_1}\ldots x_{i_k}=y_{j_1}\ldots y_{j_k}$ a lcs s.t. the index of the final common symbol in Z is its last occurrence in X and Y.

Let
$$X^- = x_1 \cdots x_{n-1}$$
 and $Y^- = y_1 \cdots y_{m-1}$

- Let us look at x_n and y_m .
- If $x_n \neq y_m$,

DP technique

DP for pairing

Longest common subsequence (LCS)

Let $X = x_1 \cdots x_n$ and $Y = y_1 \cdots y_m$ and let $Z = x_{i_1} \dots x_{i_k} = y_{i_1} \dots y_{i_k}$ a lcs s.t. the index of the final common symbol in Z is its last occurrence in X and Y.

Let
$$X^- = x_1 \cdots x_{n-1}$$
 and $Y^- = y_1 \cdots y_{m-1}$

- Let us look at x_n and y_m .
- If $x_n \neq y_m$,
 - If $i_k < n$ and $i_k < m$, Z is a lcs of X^- and Y^- .
 - If $i_k = n$ and $i_k < m$, Z is a lcs of X and Y⁻.
 - If $i_k < \text{and } i_k = m$, Z is a lcs of X^- and Y.
 - The last two include the first one!

DP approach: Supproblems

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing

sequences

Framework

Longest common subsequence (LCS)

Longest comr

 $\label{eq:Subproblems} \textbf{Subproblems} = \mathsf{lcs} \ \text{of pairs of prefixes of the initial strings}.$

DP approach: Supproblems

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing

Framework

Edit distance

Longest common subsequence (LCS)

Longest of substring Subproblems = lcs of pairs of prefixes of the initial strings.

- $X[i] = x_1 \dots x_i$, for $0 \le i \le n$
- $Y[j] = y_1 \dots y_j$, for $0 \le j \le m$
- c[i,j] = length of the LCS of X[i] and Y[j].
- Want c[n, m] i.e. length of the LCS for X and Y.

DP approach: Recursion

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing

sequences

Framework

Edit distance Longest common

subsequence (LCS)

Therefore, given X and Y

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i-1,j-1] + 1 & \text{if } x_i = y_j \\ \max(c[i,j-1],c[i-1,j]) & \text{otherwise} \end{cases}$$

The recursive algorithm

```
DP technique
Guideline
```

W activity selection

0-1 Knapsack

DP for pairing

sequence

Framework

Edit distance

Longest common subsequence (LCS)

Longest comn

```
\begin{split} & \mathbf{LCS}(X,Y) \\ & n = X.size(); \ m = Y.size() \\ & \text{if } n = 0 \text{ or } m = 0 \text{ then} \\ & \text{return } 0 \\ & \text{else if } x_n = y_m \text{ then} \\ & \text{return } 1 + \mathbf{LCS}(X^-,Y^-) \\ & \text{else} \\ & \text{return } \max\{\mathbf{LCS}(X,Y^-),\mathbf{LCS}(X^-,Y)\} \end{split}
```

The recursive algorithm

```
DP technique
```

Guideline

W activity selection

0-1 Knapsack

DP for pairing

sequences

Framework

Longest common subsequence (LCS)

Longest co substring

```
\begin{aligned} & \operatorname{LCS}(X,Y) \\ & n = X.size(); \ m = Y.size() \\ & \text{if } n = 0 \text{ or } m = 0 \text{ then} \\ & \text{return } 0 \\ & \text{else if } x_n = y_m \text{ then} \\ & \text{return } 1 + \operatorname{LCS}(X^-, Y^-) \\ & \text{else} \\ & \text{return } \max\{\operatorname{LCS}(X,Y^-),\operatorname{LCS}(X^-,Y)\} \end{aligned}
```

The algorithm makes 1 or 2 recursive calls and explores a tree of depth O(n+m), therefore the time complexity is $2^{O(n+m)}$.

DP: tabulating

We need to find the correct traversal of the table holding the c[i,j] values. DP technique

DP for pairing

Longest common subsequence (LCS)

DP: tabulating

We need to find the correct traversal of the table holding the c[i,j] values.

- Base case is c[0,j] = 0, for $0 \le j \le m$, and c[i,0] = 0, for $0 \le i \le n$.
- To compute c[i,j], we have to access

$$c[i-1,j-1]$$
 $c[i-1,j]$ $c[i,j]$

A row traversal provides a correct ordering.

■ To being able to recover a solution we use a table b, to indicate which one of the three options provided the value c[i,j].

DP technique

Guideline

selection

0-1 Knapsack

DP for pairing sequences

Framework
Edit distance

Longest common subsequence (LCS)

Longest common

Tabulating

```
DP technique
```

Guideline

W activity selection

0-1 Knapsack

DP for pairing

Framework

Edit distance

Longest common subsequence (LCS)

Longest commo

```
LCS(X, Y)
for i = 0 to n do
  c[i, 0] = 0
for j = 1 to m do
  c[0, i] = 0
for i = 1 to n do
                                                       complexity:
  for i = 1 to m do
                                                       T = O(nm).
     if x_i = y_i then
        c[i, j] = c[i-1, j-1] + 1, b[i, j] = 
     else if c[i-1,j] \ge c[i,j-1] then
        c[i, j] = c[i-1, j], b[i, j] = \leftarrow
     else
        c[i, j] = c[i, j - 1], b[i, j] = \uparrow.
```

Example.

$$X=(ATCTGAT)$$
; $Y=(TGCATA)$. Therefore, $m=6, n=7$

		0	1	2	3	4	5	6
			Т	G	C	Α	Т	Α
0		0	0	0	0	0	0	0
1	Α	0	↑0	↑0	↑0	<u>_1</u>	←1	$\sqrt{1}$
2	Т	0	$\sqrt{1}$	←1	←1	†1	√2	←2
3	С	0	↑1	↑1	√2	←2	↑2	↑2
4	Т	0	<u></u>	<u> </u>	↑2	↑2	√3	←3
5	G	0	†1	√2	↑2	↑2	<u></u> ↑3	<u></u> ↑3
6	Α	0	↑1	↑2	↑2	√3	↑ 3	√4
7	Т	0	<u></u>	↑2	↑2	<u></u> ↑3	₹4	↑4

subsequence (LCS) Longest common substring

Longest common

DP for pairing

DP technique

Following the arrows: TCTA

Construct the solution

DP technique

DP for pairing

Longest common

subsequence (LCS)

```
Access the tables c and d.
The first call to the algorithm is sol-LCS(n, m)
  sol-LCS(i,j)
  if i = 0 or j = 0 then
     STOP.
  else if b[i,j] = \nwarrow then
    sol-LCS(i - 1, j - 1)
     return x_i
  else if b[i,j] = \uparrow then
    sol-LCS(i-1, j)
  else
     sol-LCS(i, i-1)
```

The algorithm has time complexity O(n+m).

| ロ ト 4 周 ト 4 章 ト 4 章 ト 9 Q Q

Longest common substring

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing

sequence

Framework

Edit distance

Longest common substring

■ A slightly different problem with a similar solution

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing

sequence

Framework

Longest common

Longest common

- A slightly different problem with a similar solution
- LCSt: Given two strings $X = x_1 ... x_n$ and $Y = y_1 ... y_m$, compute their longest common substring Z, i.e., the largest k for which there are indices i and j with $x_i x_{i+1} ... x_{i+k} = y_i y_{i+1} ... y_{i+k}$.

DP technique

Guideline

W activity selection

0-1 Knapsack
DP for pairing

sequences
Framework
Edit distance
Longest common
subsequence (LCS)

Longest common substring A slightly different problem with a similar solution

■ LCSt: Given two strings $X = x_1 ... x_n$ and $Y = y_1 ... y_m$, compute their longest common substring Z, i.e., the largest k for which there are indices i and j with $x_i x_{i+1} ... x_{i+k} = y_i y_{i+1} ... y_{i+k}$.

For example:

X : DEADBEEF

Y: EATBEEF

Z :

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing sequences

Framework
Edit distance
Longest common subsequence (LCS)

Longest common substring A slightly different problem with a similar solution

■ LCSt Given two strings $X = x_1 ... x_n$ and $Y = y_1 ... y_m$, compute their longest common substring Z, i.e., corresponding to the largest k for which there are indices i and j with $x_i x_{i+1} ... x_{i+k} = y_i y_{i+1} ... y_{j+k}$.

For example:

X : DEADBBEEF

Y: EATBEEF

Z :

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing sequences

Framework

Edit distance
Longest common
subsequence (LCS)
Longest common

Longest comr substring A slightly different problem with a similar solution

■ LCSt Given two strings $X = x_1 ... x_n$ and $Y = y_1 ... y_m$, compute their longest common substring Z, i.e., corresponding to the largest k for which there are indices i and j with $x_i x_{i+1} ... x_{i+k} = y_i y_{i+1} ... y_{j+k}$.

For example:

X : DEADBBEEF

Y: EATBEEF

Z : BEEF pick the longest substring

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing

sequences

Framework

Edit distanc

Longest common

- Let $X = x_1 \cdots x_n$ and $Y = y_1 \cdots y_m$ and let Z be a longest common substring.
 - $Z = x_i \dots x_{i+k} = y_j \dots y_{j+k}$

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing

sequence

Framework

Longest common

Longest common substring

Let $X = x_1 \cdots x_n$ and $Y = y_1 \cdots y_m$ and let Z be a longest common substring.

- $Z = x_i \dots x_{i+k} = y_j \dots y_{j+k}$
- **Z** is the longest common suffix of X(i + k) and Y(j + k).

DP technique

Guideline

W activity selection

0-1 Knapsack
DP for pairing

sequences
Framework
Edit distance
Longest common

Longest common substring

Let $X = x_1 \cdots x_n$ and $Y = y_1 \cdots y_m$ and let Z be a longest common substring.

$$Z = x_i \dots x_{i+k} = y_i \dots y_{i+k}$$

- **Z** is the longest common suffix of X(i + k) and Y(j + k).
- We can consider the subproblems LCStf(i, j): compute the longest common suffix of X(i) and Y(j).

DP technique

Guideline

W activity selection

0-1 Knapsack
DP for pairing

Sequences
Framework
Edit distance
Longest common
subsequence (LCS)

Longest common substring

■ Let $X = x_1 \cdots x_n$ and $Y = y_1 \cdots y_m$ and let Z be a longest common substring.

$$Z = x_i \dots x_{i+k} = y_i \dots y_{i+k}$$

- **Z** is the longest common suffix of X(i + k) and Y(j + k).
- We can consider the subproblems LCStf(i, j): compute the longest common suffix of X(i) and Y(j).
- The LCSf(X, Y) is the longest of such common suffixes.

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing

Framework
Edit distance
Longest common

- To solve LCSf(i, j) it is enough to go backward from position i in X and j in Y until we find two different characters.
- This has cost O(n+m) per subproblem.

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing

Framework
Edit distance
Longest common

- To solve LCSf(i, j) it is enough to go backward from position i in X and j in Y until we find two different characters.
- This has cost O(n+m) per subproblem.
- We get a O(nm(n+m)) algorithm for LCSt

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing

Framework
Edit distance
Longest common

Longest common

■ To solve LCSf(i, j) it is enough to go backward from position i in X and j in Y until we find two different characters.

- This has cost O(n+m) per subproblem.
- We get a O(nm(n+m)) algorithm for LCSt
- Can we do it faster?

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing sequences

Edit distance Longest common subsequence (LCS)

- To solve LCSf(i, j) it is enough to go backward from position i in X and j in Y until we find two different characters.
- This has cost O(n+m) per subproblem.
- We get a O(nm(n+m)) algorithm for LCSt
- Can we do it faster? Let us use DP!

A recursive solution for LC Suffixes

DP technique

Guideline

W activity selection

0-1 Knapsack

0-1 Knapsack

DP for pairing

sequence

Edit distance

Longest common subsequence (LCS

Longest common substring

Notation:

- $X[i] = x_1 \dots x_i$, for $0 \le i \le n$
- $Y[j] = y_1 \dots y_j$, for $0 \le j \le m$
- s[i,j] = the length of the LC Suffix of X[i] and Y[j].
- Want $\max_{i,j} s[i,j]$ i.e., the length of the LCSt of X, Y.

DP approach: Recursion

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing

sequences

Framework

F P. P.

substring

Longest common subsequence (LCS

......

Therefore, given X and Y

$$s[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ 0 & \text{if } x_i \neq y_j \\ s[i-1,j-1] + 1 & \text{if } x_i = y_j \end{cases}$$

DP approach: Recursion

DP technique

Guideline

W activity selection

0-1 Knapsack

DP for pairing

sequences

Framework

Edit distance

Longest common subsequence (LCS

Longest common substring

Therefore, given X and Y

$$s[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ 0 & \text{if } x_i \neq y_j \\ s[i-1,j-1] + 1 & \text{if } x_i = y_j \end{cases}$$

Using the recurrence the cost per recursive call (or per element in the table) is constant

Tabulating

```
DP technique
```

Guideline

W activity selection

0-1 Knapsack

DP for pairing

sequence

Framework

Edit distanc

Longest common

Longest common substring

```
LCSf(X, Y)

for i = 0 to n do

s[i, 0] = 0

for j = 1 to m do

s[0, j] = 0

for i = 1 to n do

for j = 1 to m do

s[i, j] = 0

if x_i = y_j then

s[i, j] = s[i - 1, j - 1] + 1
```

complexity: O(nm).

Which gives an algorithm with cost O(nm) for LCSt