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Dynamic Programming

For a gentle introduction to DP see Chapter 6 in DPV, KT and
CLRS also have a chapter devoted to DP.

Richard Bellman: An introduction to the
theory of dynamic programming RAND, 1953

Dynamic programming is a powerful technique for efficiently
implement recursive algorithms by storing partial results and
re-using them when needed.
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Dynamic Programming

Dynamic Programming works efficiently when:

Subproblems: There must be a way of breaking the global
optimization problem into subproblems, each having a
similar structure to the original problem but smaller size.

Optimal sub-structure: An optimal solution to a problem
must be a composition of optimal subproblem solutions,
using a relatively simple combining operation.

Repeated subproblems: The recursive algorithm solves a
small number of distinct subproblems, but they are
repeatedly solved many times.

This last property allows us to take advantage of memoization,
store intermediate values, using the appropriate dictionary data
structure, and reuse when needed.
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Difference with greedy

Greedy problems have the greedy choice property: locally
optimal choices lead to globally optimal solution. We solve
recursively one subproblem

I.e. In DP we solve all possible subproblems, while in
greedy we are bound for the initial choice
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Difference with divide and conquer

Both require recursive programming with subproblems
with a similar structure to the original

D & C breaks a problems into a small number of
subproblems each of them with size a fraction of the
original size (size/b).

In DP, we break into many subproblems with smaller size,
but often, their sizes are not a fraction of the initial size.
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Guideline to implement Dynamic Programming

1 Characterize the structure of subproblems: make sure
space of subproblems is not exponential. Define variables.

2 Define recursively the value of an optimal solution: Find
the correct recurrence, with solution to larger problem as a
function of solutions of sub-problems.

3 Compute, memoization/bottom-up, the cost of a solution:
using the recursive formula, tabulate solutions to smaller
problems, until arriving to the value for the whole problem.

4 Construct an optimal solution: compute additional
information to trace-back an optimal solution from
optimal value.
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Weighted Activity Selection problem

Weighted Activity Selection problem: Given a set
S = {1, 2, . . . , n} of activities to be processed by a single
resource. Each activity i has a start time si and a finish time fi ,
with fi > si , and a weight wi . Find the set of mutually
compatible activities such that it maximizes

∑
i∈S wi

Recall: We saw that some greedy strategies did not provide
always a solution to this problem.
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W Activity Selection: looking for a recursive
solution

Let us think of a backtracking algorithm for the problem.

The solution is a selection of activities, i.e., a subset
S ⊆ {1, . . . , n}.
We can adapt the backtracking algorithm to compute all
subsets.

When processing element i , we branch

i is in the solution S , then all activities that overlap with i
cannot be in S .
i is not in S .
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W Activity Selection: looking for a recursive
solution

Each backtracking call receives a partial solution (S) and a
candidate set (C ), those activities that are compatible with the
ones in S . It returns the weight of the best solution enlarging
S .

WAS-1 ( S ,C )
if C = ∅ then
return (W (S))

Let i be an element in C ; C = C − {i};
Let A be the set of activities in C that overlap with i
return (max{WAS-1(S ∪ {i},C − A),WAS-1(S ,C )})

The recursion tree have branching 2 and height ≤ n, so size is
O(2n).
How many subproblems appear here? hard to count better
than O(2n).
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W Activity Selection: looking for a recursive
solution

Each backtracking call receives a partial solution (S) and a
candidate set (C ), those activities that are compatible with the
ones in S . It returns the weight of the best solution enlarging
S .

WAS-1 ( S ,C )
if C = ∅ then
return (W (S))

Let i be an element in C ; C = C − {i};
Let A be the set of activities in C that overlap with i
return (max{WAS-1(S ∪ {i},C − A),WAS-1(S ,C )})

The recursion tree have branching 2 and height ≤ n, so size is
O(2n).

How many subproblems appear here? hard to count better
than O(2n).
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W Activity Selection: looking for a recursive
solution

Each backtracking call receives a partial solution (S) and a
candidate set (C ), those activities that are compatible with the
ones in S . It returns the weight of the best solution enlarging
S .

WAS-1 ( S ,C )
if C = ∅ then
return (W (S))

Let i be an element in C ; C = C − {i};
Let A be the set of activities in C that overlap with i
return (max{WAS-1(S ∪ {i},C − A),WAS-1(S ,C )})

The recursion tree have branching 2 and height ≤ n, so size is
O(2n).
How many subproblems appear here?

hard to count better
than O(2n).
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W Activity Selection: looking for a recursive
solution

For the unweighted case, the greedy algorithm made use of a
particular ordering that helped to discard overlapping tasks.

Assume that the activities are sorted by finish time, i.e.,
f1 ≤ f2 ≤ · · · ≤ fn.

We can look to the incompatible activities that appear
before activity i (finishing before ti ) when dealing with
activity i .

An incompatibility with a task j with fj ≥ ti will be
discovered when dealing with task j .

Note that activity i is not compatible with activity j < i
when fj ≥ si .

Then i can be incompatible with a contiguous set of
activities i − 1, i − 2, . . . , j .
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For the unweighted case, the greedy algorithm made use of a
particular ordering that helped to discard overlapping tasks.
Assume that the activities are sorted by finish time, i.e.,
f1 ≤ f2 ≤ · · · ≤ fn.

We can look to the incompatible activities that appear
before activity i (finishing before ti ) when dealing with
activity i .

An incompatibility with a task j with fj ≥ ti will be
discovered when dealing with task j .

Note that activity i is not compatible with activity j < i
when fj ≥ si .
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W Activity Selection: looking for a recursive
solution

This suggest the following backtracking algorithm.

WAS-2 (S , i)
if i == 1 then

return (W (S) + w1)
if i == 0 then

return (W (S))
Let j be the largest integer j < i such that fj ≤ si , 0 if none is compatible.
return (max{WAS-2(S ∪ {i}, j),WAS-2(S , i − 1)})

WAS-2 (∅, n) will return the cost of an optimal solution, as we
are considering adding or not i to the solution and discarding
all incompatible tasks when choosing i .

The algorithm has cost O(2n).

Inside the code, we are not using S , only W (S).
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This suggest the following backtracking algorithm.

WAS-2 (S , i)
if i == 1 then

return (W (S) + w1)
if i == 0 then

return (W (S))
Let j be the largest integer j < i such that fj ≤ si , 0 if none is compatible.
return (max{WAS-2(S ∪ {i}, j),WAS-2(S , i − 1)})

WAS-2 (∅, n) will return the cost of an optimal solution, as we
are considering adding or not i to the solution and discarding
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The algorithm has cost O(2n).
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W Activity Selection: looking for a recursive
solution

This suggest the following backtracking algorithm.

WAS-2 (S , i)
if i == 1 then

return (W (S) + w1)
if i == 0 then

return (W (S))
Let j be the largest integer j < i such that fj ≤ si , 0 if none is compatible.
return (max{WAS-2(S ∪ {i}, j),WAS-2(S , i − 1)})

WAS-2 (∅, n) will return the cost of an optimal solution, as we
are considering adding or not i to the solution and discarding
all incompatible tasks when choosing i .

The algorithm has cost

O(2n).

Inside the code, we are not using S , only W (S).
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W Activity Selection: looking for a recursive
solution

This suggest the following backtracking algorithm.

WAS-2 (S , i)
if i == 1 then

return (W (S) + w1)
if i == 0 then

return (W (S))
Let j be the largest integer j < i such that fj ≤ si , 0 if none is compatible.
return (max{WAS-2(S ∪ {i}, j),WAS-2(S , i − 1)})

WAS-2 (∅, n) will return the cost of an optimal solution, as we
are considering adding or not i to the solution and discarding
all incompatible tasks when choosing i .

The algorithm has cost O(2n).

Inside the code, we are not using S , only W (S).
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W Activity Selection: looking for a recursive
solution

This suggest the following backtracking algorithm.

WAS-2 (S , i)
if i == 1 then

return (W (S) + w1)
if i == 0 then

return (W (S))
Let j be the largest integer j < i such that fj ≤ si , 0 if none is compatible.
return (max{WAS-2(S ∪ {i}, j),WAS-2(S , i − 1)})

WAS-2 (∅, n) will return the cost of an optimal solution, as we
are considering adding or not i to the solution and discarding
all incompatible tasks when choosing i .

The algorithm has cost O(2n).

Inside the code, we are not using S , only W (S).
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W Activity Selection: looking for a recursive
solution

This suggest the following backtracking algorithm that receives
W (S) instead of S .

WAS-3 (W , i)
if i == 1 then

return (W + w1)
if i == 0 then

return (W )
Let j be the largest integer j < i such that fj ≤ si , 0 if none is compatible.
return (max{WAS-2(W + wi , j),WAS-2(W , i − 1)})

WAS-3 (∅, n) will return the cost of an optimal solution. Still,
the algorithm has cost O(2n).
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W Activity Selection: looking for a recursive
solution

This suggest the following backtracking algorithm that receives
W (S) instead of S .

WAS-3 (W , i)
if i == 1 then

return (W + w1)
if i == 0 then

return (W )
Let j be the largest integer j < i such that fj ≤ si , 0 if none is compatible.
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the algorithm has cost O(2n).
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DP from WAS-3: a recurrence

We have n activities with f1 ≤ f2 ≤ · · · ≤ fn and weights
wi , 1 ≤ i ≤ n.

Supproblems calls WAS-3(W , i)

i defines the subproblem: Maximize the weight of the
activity selection for activities {1, . . . , i}, for 0 ≤ i ≤ n.
A recursive call returns this maximum.
There are only O(n) subproblems!

Let Opt(j) be the value of an optimal solution Oj to the
sub problem consisting of activities in the range 1 to j .
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DP from WAS-3: a recurrence

We have n activities with f1 ≤ f2 ≤ · · · ≤ fn and weights
wi , 1 ≤ i ≤ n.

Supproblems calls WAS-3(W , i)

i defines the subproblem: Maximize the weight of the
activity selection for activities {1, . . . , i}, for 0 ≤ i ≤ n.
A recursive call returns this maximum.
There are only O(n) subproblems!

Let Opt(j) be the value of an optimal solution Oj to the
sub problem consisting of activities in the range 1 to j .
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DP from WAS-3: a recurrence

Define p(i) to be the largest integer j < i such that i and j are
disjoints (p(i) = 0 if no disjoint j < i exists).

13
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DP from WAS-3: a recurrence

Reinterpreting WAS-3 botton-up, using p(i), we get

Opt(j) =

{
0 if j = 0

max{(Opt(p[j ]) + wj),Opt[j − 1]} if j ≥ 1

We add activity 0 for compatibility with p.
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DP from WAS-3: a recurrence

Reinterpreting WAS-3 botton-up, using p(i), we get

Opt(j) =

{
0 if j = 0

max{(Opt(p[j ]) + wj),Opt[j − 1]} if j ≥ 1

We add activity 0 for compatibility with p.
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DP from WAS-2: a recurrence

Opt(j) =

{
0 if j = 0

max{(Opt(p[j ]) + wj),Opt[j − 1]} if j ≥ 1

Correctness: The base case is correct. From the previous
discussion, we have two cases:
1.- j ∈ Oj :

As j is part of the solution, no jobs {p(j) + 1, . . . , j − 1}
are in Oj ,

Oj − {j} must be an optimal solution for {1, . . . , p[j ])},
otherwise then O ′j = Op[j] ∪ {j} will be better (optimal
substructure)

2.- If j ̸∈ Oj : then Oj is an optimal solution to {1, . . . , j − 1)}.
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DP from WAS-3: Computing p values

We need to compute efficiently p(i)

sort the activities by increasing values of start time.
merge the sorted list of finishing times an the sorted list of
start times, in case of tie put before the finish times.
p[j ] is the last activity whose finish time precedes sj in the
combined order, activity 0, if no finish time precedes sj

We can thus compute the p values in
O(n lg n + n) = O(n lg n) time.
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DP from WAS-3: omputing p values

13
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p(4)=0
p(5)=3

p(6)=3
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0 1 2 3 4 5 6 7 8 9 10 11 12

Sorted finish times: 1:5, 2:8, 3:9, 4:11, 5:12, 6:13

Sorted start times: 2:0, 1:1, 4:1, 3:7, 5:9, 6:10

Merged sequence:
2:0, 1:1, 4:1,1:5,3:7,2:8,3:9,5:9,6:10, 4:11,5:12, 6:13
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DP from WAS-3: Preprocessing

Considering the set of activities S , we start by a pre-processing
phase:

Sort the activities by increasing values of finish times.

Compute the values of p[i ],

This can be done in O(n lg n)
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DP from WAS-2: Memoization

Assuming that tasks are sorted and all p(j) are computed and
tabulated in P[1 · · · n]

We keep a table W [n+1], at the end W [i ] will hold the weight
of an optimal solution for subproblem {1, . . . , i}. Initially, set
all entries to −1 and W [0] = 0.

R-Opt (j)
if W [j ]! = −1 then

return (W [j ])
else

W [j ] = max(wj + R-Opt(P[j ])),R-Opt(j − 1))
return W [j ]

No subproblem is solved more than once, so cost is
O(n log+n) = O(n log n)



DP technique

Guideline

W activity
selection

0-1 Knapsack

DP for pairing
sequences

Framework

Edit distance

Longest common
subsequence (LCS)

Longest common
substring

DP from WAS-2: Memoization

Assuming that tasks are sorted and all p(j) are computed and
tabulated in P[1 · · · n]

We keep a table W [n+1], at the end W [i ] will hold the weight
of an optimal solution for subproblem {1, . . . , i}. Initially, set
all entries to −1 and W [0] = 0.

R-Opt (j)
if W [j ]! = −1 then

return (W [j ])
else
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DP from WAS-3: Iterative

We assume that tasks are sorted and all p(j) are computed and
tabulated in P[1 · · · n]

We keep a table W [n+1], at the end W [i ] will hold the weight
of an optimal solution for subproblem {1, . . . , i}.

Opt-Val (n)
W [0] = 0
for j = 1 to n do
W [j ] = max(W [P[j ]] + wj ,W [j − 1])

return W [n]

Time complexity: O(n lg n + n).
Notice: Both algorithms gave only the numerical max. weight
We have to keep more info to recover a solution form W [n].
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W [0] = 0
for j = 1 to n do
W [j ] = max(W [P[j ]] + wj ,W [j − 1])

return W [n]
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DP from WAS-2: Returning an optimal solution

To get also the list of activities in an optimal solution, we use
W to recover the decision taken in computing W [n].

Find-Opt (j)
if j = 0 then
return ∅

else if W [p[j ]] + wj > W [j − 1] then
return ({j} ∪ Find-Opt(p[j ]))

else
return (Find-Opt(j − 1))

Time complexity: O(n)
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DP from WAS-2: Returning an optimal solution

To get also the list of activities in an optimal solution, we use
W to recover the decision taken in computing W [n].

Find-Opt (j)
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DP for Weighted Activity Selection

We started from a suitable recursive algorithm, which runs
O(2n) but solves only O(n) different subproblemes.

Perform some preprocesing.

Compute the weight of an optimal solution to each of the
O(n) subproblems.

Guided by optimal value, obtain an optimal solution .
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0-1 Knapsack

(This example is from Section 6.4 in
Dasgupta,Papadimritriou,Vazirani’s book.)
0-1 Knapsack: Given as input a set of n items that can NOT
be fractioned, item i has weight wi and value vi , and a
maximum permissible weight W .
QUESTION: select a set of items S that maximize the profit.

Recall that we can NOT take fractions of items.
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Subproblems and recurrence

Input: (w1, . . . ,wn), (v1, . . . , vn), W .

Let S ⊆ {1, . . . , n} be an optimal solution to the problem
The optimal benefit is

∑
i∈S vi

With respect to the last item we have two cases:

n /∈ S , then S is an optimal solution to the problem
(w1, . . . ,wn−1), (v1, . . . , vn−1), W
n ∈ S , then S − {n} is an optimal solution to the problem
(w1, . . . ,wn−1), (v1, . . . , vn−1), W − wn

in both cases we get an optimal solution of a subproblem
in which the last item is removed and in which the
maximum weight can be W or a value smaller than W .

This identifies subproblems of the form [i , x ] that are
knapsack instances in which the set of items is {1, . . . , i}
and the maximum weight that can hold the knapsack is x .
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Subproblems and recurrence

Let v [i , x ] be the maximum value (optimum) we can get from
objects {1, 2, . . . , i} within total weight ≤ x .

To compute v [i , x ], the two possibilities we have considered
give raise to the recurrence:

v [i , x ] =


0 if i = 0 or w = 0

v [i − 1, x ] if wi > x

max v [i − 1, x − wi ] + vi , v [i − 1, x ] otherwise
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DP algorithm: tabulating

Define a table P[n + 1,W + 1] to hold optimal values for the
corresponding subproblem.

Knapsack(i , x)
for i = 0 to n do

P[i , 0] = 0
for x = 1 to W do

P[0, x ] = 0
for i = 1 to n do

for x = 1 to W do
P[i , x ] = max{P[i − 1, x ],P[i − 1, x − w [i ]] + v [i ]}

return P[n,W ]

The number of steps is O(nW )

which is pseudopolynomial.



DP technique

Guideline

W activity
selection

0-1 Knapsack

DP for pairing
sequences

Framework

Edit distance

Longest common
subsequence (LCS)

Longest common
substring

DP algorithm: tabulating

Define a table P[n + 1,W + 1] to hold optimal values for the
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for x = 1 to W do

P[0, x ] = 0
for i = 1 to n do

for x = 1 to W do
P[i , x ] = max{P[i − 1, x ],P[i − 1, x − w [i ]] + v [i ]}
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An example

i 1 2 3 4 5

wi 1 2 5 6 7

vi 1 6 18 22 28
W = 11.

w
0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 1 1 1 1 1 1 1 1
2 0 1 6 7 7 7 7 7 7 7 7 7

I 3 0 1 6 7 7 18 19 24 25 25 25 25
4 0 1 6 7 7 18 22 23 28 29 29 40
5 0 1 6 7 7 18 22 28 29 34 35 40

For instance, v [4, 10] = max{v [3, 10], v [3, 10− 6] + 22} =
max{25, 7 + 22} = 29.
v [5, 11] = max{v [4, 11], v [4, 11− 7] + 28} =
max{40, 4 + 28} = 40.



DP technique

Guideline

W activity
selection

0-1 Knapsack

DP for pairing
sequences

Framework

Edit distance

Longest common
subsequence (LCS)

Longest common
substring

Recovering the solution

To compute the actual
subset S ⊆ I that is the
solution, we modify the
algorithm to compute also
a Boolean table
K [n + 1,W + 1], so that
K [i , x ] is 1 when the max is
attained in the second
alternative (i ∈ S), 0
otherwise.

Knapsack(i , x)
for i = 0 to n do

P[i , 0] = 0; K [i , 0] = 0
for x = 1 to W do

P[0, x ] = 0; K [0, x ] = 0
for i = 1 to n do

for x = 1 to W do
if P[i − 1, x ] ≥
P[i − 1, x − w [i ]] + v [i ] then

P[i , x ] = P[i − 1, x ];
K [i , x ] = 0

else
P[i , x ] =
P[i − 1, x − w [i ]] + v [i ];
K [i , x ] = 1

return P[n,W ]

Complexity: O(nW )
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An example

0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 0 1 0 6 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1
3 0 0 1 0 6 0 7 0 7 0 18 1 19 1 24 1 25 1 25 1 25 1 25 1
4 0 0 1 0 6 0 7 0 7 0 18 1 22 1 23 1 28 1 29 1 29 1 40 1
5 0 0 1 0 6 0 7 0 7 0 18 0 22 0 28 1 29 1 34 1 35 1 40 0
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Recovering the solution

To compute an optimal solution S ⊆ I , we use K to trace
backwards the elements in the solution.

K [i , x ] is 1 when the max is attained in the second
alternative: i ∈ S .

x = W , S = ∅
for i = n downto 1 do

if K [i , x ] = 1 then
S = S ∪ {i}
x = x − wi

Output S

Complexity: O(nW )
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Recovering the solution

To compute an optimal solution S ⊆ I , we use K to trace
backwards the elements in the solution.

K [i , x ] is 1 when the max is attained in the second
alternative: i ∈ S .

x = W , S = ∅
for i = n downto 1 do

if K [i , x ] = 1 then
S = S ∪ {i}
x = x − wi

Output S

Complexity: O(nW )
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An example

i 1 2 3 4 5

wi 1 2 5 6 7

vi 1 6 18 22 28
W = 11.

0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 0 1 0 6 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1
3 0 0 1 0 6 0 7 0 7 0 18 1 19 1 24 1 25 1 25 1 25 1 25 1
4 0 0 1 0 6 0 7 0 7 0 18 1 22 1 23 1 28 1 29 1 29 1 40 1
5 0 0 1 0 6 0 7 0 7 0 18 0 22 0 28 1 29 1 34 1 35 1 40 0

K [5, 11]→ K [4, 11]→ K [3, 5]→ K [2, 0]. So S = {4, 3}
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Complexity

The 0-1 Knapsack is NP-complete.

0-1 Knapsack, has complexity O(nW ), and its length
is O(n lgM) taking M = max{W ,maxi wi ,maxi vi}.
If W requires k bits, the cost and space of the algorithm is
n2k , exponential in the length W . However the DP
algorithm works fine when W = Θ(n), here k = O(log n).

Consider the unary knapsack problem, where all integers
are coded in unary (7=1111111). In this case, the
complexity of the DP algorithm is polynomial on the size,
i.e., Unary Knapsack ∈P.
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Matching DNA sequences

DNA, is the hereditary material in almost all living
organisms. They can reproduce by themselves.

Its function is like a program unique to each individual
organism that rules the working and evolution of the
organism.

Model as a string of 3× 109 characters over {A,T ,G ,C}.
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Computational genomics: Some questions

When a new gene is discovered, one way to gain insight into its
working, is to find well known genes (not necessarily in the same
species) which match it closely. Biologists suggest a generalization of
edit distance as a definition of approximately match.

GenBank (https://www.ncbi.nlm.nih.gov/genbank/) has a
collection of > 1010 well studied genes, BLAST is a software to do
fast searching for similarities between a gene an those in a DB of
genes.

Sequencing DNA: consists in the determination of the order of DNA
bases, in a short sequence of 500-700 characters of DNA. To get the
global picture of the whole DNA chain, we generate a large amount
of DNA sequences and try to assembled them into a coherent DNA
sequence. This last part is usually a difficult one, as the position of
each sequence is the global DNA chain is not know before hand.
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Evolution DNA

Insertion

CT A A G T A C G

CT A A T A C G

CT A G A C G

A A C G

C

T C A G A C G

GACT

Mutation

Delete
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How to compare sequences?

T

C GCTG G T T G A A

?

C G TA C G C G A G
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Three problems

Longest common substring: Substring = consecutive
characters in the string.

A

T C A GT T A G A

C T A T C A G

Longest common subsequence: Subsequence = ordered
chain of characters (might have gaps).

A

T C A GT T A G A

C T A T C A G

Edit distance: Convert one string into another one using a
given set of operations.

?

CT A A G T A C G

A A C GGACT
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The Edit Distance problem

(Section 6.3 in Dasgupta, Papadimritriou, Vazirani’s book.)

The edit distance between strings X = x1 · · · xn and
Y = y1 · · · ym is defined to be the minimum number of edit
operations needed to transform X into Y .

All the operations are done on X
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Edit distance: Applications

Computational genomics: evolution between generations,
i.e. between strings on {A,T ,G ,C ,−}.
Natural Language Processing: distance, between strings
on the alphabet.

Text processor, suggested corrections
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Edit Distance: Levenshtein distance

In the Levenshtein distance the set of operations are

insert(X , i , a)= x1 · · · xiaxi+1 · · · xn.
delete(X , i)= x1 · · · xi−1xi+1 · · · xn
modify(X , i , a)= x1 · · · xi−1axi+1 · · · xn.

the cost of modify is 2, and the cost of insert/delete is 1.

To simplify, in the following we assume that the cost of each
operation is 1.

For other operations and costs the structure of the DP will be
similar.
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Exemple-1

X = aabab and Y = babb
aabab = X
X ′ =insert(X , 0, b) baabab
X ′′ =delete(X ′, 2) babab
X ′′ =delete(X ′′, 4) babb
X = aabab → Y = babb

A shortest edit distance

aabab = X
X ′ =modify(X , 1, b) babab
Y =delete(X ′, 4) babb

Use dynamic programming.
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The structure of an optimal solution

In a solution O with minimum edit distance from
X = x1 · · · xn to Y = y1 · · · ym, we have three possible
alignments for the last terms

(1) (2) (3)

xn – xn
– ym ym

In (1), O performs delete xn, and it transforms optimally,
x1 · · · xn−1 into y1 · · · ym.
In (2), O performs insert ym at the end of x , and it
transforms optimally, x1 · · · xn into y1 · · · ym−1.
In (3), if xn ̸= ym, O performs modify xn by ym, otherwise
O, aligns them without cost. Furthermore O transforms
optimally x1 · · · xn−1 into y1 · · · ym−1.
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The recurrence

Let X [i ] = x1 · · · xi , Y [j ] = y1 · · · yj .
E [i , j ] = edit distance from X [i ] to Y [j ] is the maximum of

I put yj at the end of x : E [i , j − 1] + 1

D delete xi : E [i − 1, j ] + 1

if xi ̸= yj , M change xi into yj : E [i − 1, j − 1] + 1,
otherwise E [i − 1, j − 1]
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Edit distance: Recurrence

Adding the base cases, we have the recurrence

E [i , j ] =



j if i = 0 (converting λ→ Y [j ])

i if j = 0 (converting X [i ]→ λ)

min


E [i − 1, j ] + 1 if D

E [i , j − 1] + 1, if I

E [i − 1, j − 1] + δ(xi , yj) otherwise

where

δ(xi , yj) =

{
0 if xi = yj

1 otherwise
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Computing the optimal costs and pointers

Edit(X ,Y )
for i = 0 to n do

E [i , 0] = i
for j = 0 to m do

E [0, j] = j
for i = 1 to n do

for j = 1 to m do
δ = 0
if xi ̸= yj then

δ = 1
E [i , j] = E [i , j − 1] + 1 b[i , j] =↑
if E [i − 1, j − 1] + δ < E [i , j] then

E [i , j] = E [i − 1, j − 1] + δ, b[i , j] :=↖
if E [i − 1, j] + 1 < E [i , j] then

E [i , j] = E [i − 1, j] + 1, b[i , j] :=←

Space and time
complexity:
O(nm).

← is a I
operation,
↑ is a D
operation, and
↖ is either a M
or a
no-operation.
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Computing the optimal costs: Example

X=aabab; Y=babb. Therefore, n = 5,m = 4

0 1 2 3 4
λ b a b b

0 λ 0 ← 1 ← 2 ← 3 ← 4

1 a ↑ 1 ↖ 1 ↖ 1 ← 2 ← 3

2 a ↑ 2 ↖ 2 ↖ 1 ← 2 ← 3

3 b ↑ 3 ↖ 2 ↑ 2 ↖ 1 ↖ 2

4 a ↑ 4 ↑ 3 ↖ 2 ↑ 2 ↖ 2

5 b ↑ 5 ↖ 4 ↑ 3 ↑ 2 ↖ 2

← is a I operation, ↑ is a D operation, and
↖ is either a M or a no-operation.
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Obtain Y in edit distance from X

Uses as input the arrays E and b.
The first call to the algorithm is con-Edit (n,m)

con-Edit(i , j)
if i = 0 or j = 0 then

return
if b[i , j ] =↖ and xi = yj then

change(X , i , yj)); con-Edit(i − 1, j − 1)
if b[i , j ] =↑ then
delete(X , i); con-Edit(i − 1, j)

if b[i , j ] =← then
insert(X , i , yj), con-Edit(i , j − 1)

This algorithm has time complexity O(nm).
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The Longest Common Subsequence

(Section 15.4 in CormenLRS’ book.)

Z = z1 · · · zk is a subsequence of X if there is a
subsequence of integers 1 ≤ i1 < i2 < . . . < ik ≤ n such
that zj = xij .

TTT is a subsequence of ATATAT .

If Z is a subsequence of X and Y , then Z is a common
subsequence of X and Y .

LCS Given sequences X = x1 · · · xn and Y = y1 · · · ym,
compute the longest common subsequence Z .
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The Longest Common Subsequence

(Section 15.4 in CormenLRS’ book.)

Z = z1 · · · zk is a subsequence of X if there is a
subsequence of integers 1 ≤ i1 < i2 < . . . < ik ≤ n such
that zj = xij .

TTT is a subsequence of ATATAT .

If Z is a subsequence of X and Y , then Z is a common
subsequence of X and Y .

LCS Given sequences X = x1 · · · xn and Y = y1 · · · ym,
compute the longest common subsequence Z .



DP technique

Guideline

W activity
selection

0-1 Knapsack

DP for pairing
sequences

Framework

Edit distance

Longest common
subsequence (LCS)

Longest common
substring

DP approach: Characterization of optimal solution

Let X = x1 · · · xn and Y = y1 · · · ym and let Z be a longest
common subsequence (lcs). Then,

Z = xi1 . . . xik = yj1 . . . yjk
There are no i , j , with i > ik and j > jk , s.t. xi = yj .
Otherwise, Z will not be optimal.

a = xik might appear after ik in X , but not after jk in Y ,
or viceversa.

There is an optimal solution in which ik and jk are the last
occurrence of a in X and Y respectively.
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Otherwise, Z will not be optimal.

a = xik might appear after ik in X , but not after jk in Y ,
or viceversa.

There is an optimal solution in which ik and jk are the last
occurrence of a in X and Y respectively.



DP technique

Guideline

W activity
selection

0-1 Knapsack

DP for pairing
sequences

Framework

Edit distance

Longest common
subsequence (LCS)

Longest common
substring

DP approach: Characterization of optimal solution

Let X = x1 · · · xn and Y = y1 · · · ym and let Z be a longest
common subsequence (lcs). Then,

Z = xi1 . . . xik = yj1 . . . yjk
There are no i , j , with i > ik and j > jk , s.t. xi = yj .
Otherwise, Z will not be optimal.

a = xik might appear after ik in X , but not after jk in Y ,
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DP approach: Characterization of optimal solution

Let X = x1 · · · xn and Y = y1 · · · ym and let
Z = xi1 . . . xik = yj1 . . . yjk a lcs s.t. the index of the final
common symbol in Z is its last occurrence in both X and Y .

Let X− = x1 · · · xn−1 and Y− = y1 · · · ym−1
Let us look at xn and ym.

If xn = ym, ik = n and jk = m so, xi1 . . . xik−1
is a lcs of

X− and Y−.
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DP approach: Characterization of optimal solution

Let X = x1 · · · xn and Y = y1 · · · ym and let
Z = xi1 . . . xik = yj1 . . . yjk a lcs s.t. the index of the final
common symbol in Z is its last occurrence in both X and Y .
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DP approach: Characterization of optimal solution

Let X = x1 · · · xn and Y = y1 · · · ym and let
Z = xi1 . . . xik = yj1 . . . yjk a lcs s.t. the index of the final
common symbol in Z is its last occurrence in X and Y .

Let X− = x1 · · · xn−1 and Y− = y1 · · · ym−1
Let us look at xn and ym.

If xn ̸= ym,

If ik < n and jk < m, Z is a lcs of X− and Y−.
If ik = n and jk < m, Z is a lcs of X and Y−.
If ik < and jk = m, Z is a lcs of X− and Y .
The last two include the first one!
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If ik < n and jk < m, Z is a lcs of X− and Y−.
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The last two include the first one!
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DP approach: Supproblems

Subproblems = lcs of pairs of prefixes of the initial strings.

Notation:

X [i ] = x1 . . . xi , for 0 ≤ i ≤ n

Y [j ] = y1 . . . yj , for 0 ≤ j ≤ m

c[i , j ] = length of the LCS of X [i ] and Y [j ].

Want c[n,m] i.e. length of the LCS for X and Y .
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Subproblems = lcs of pairs of prefixes of the initial strings.
Notation:

X [i ] = x1 . . . xi , for 0 ≤ i ≤ n
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DP approach: Recursion

Therefore, given X and Y

c[i , j ] =


0 if i = 0 or j = 0

c[i − 1, j − 1] + 1 if xi = yj

max(c[i , j − 1], c[i − 1, j ]) otherwise
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The recursive algorithm

LCS(X ,Y )
n = X .size(); m = Y .size()
if n = 0 or m = 0 then
return 0

else if xn = ym then
return 1+LCS(X−,Y−)

else
return max{LCS(X ,Y−),LCS(X−,Y )}

The algorithm makes 1 or 2 recursive calls and explores a tree
of depth O(n +m), therefore the time complexity is 2O(n+m).
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The recursive algorithm
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n = X .size(); m = Y .size()
if n = 0 or m = 0 then
return 0

else if xn = ym then
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DP: tabulating

We need to find the correct traversal of the table holding the
c[i , j ] values.

Base case is c[0, j ] = 0, for 0 ≤ j ≤ m, and c[i , 0] = 0, for
0 ≤ i ≤ n.

To compute c[i , j ], we have to access

c[i − 1, j − 1] c[i − 1, j ]

c[i , j − 1] c[i , j ]

A row traversal provides a correct ordering.

To being able to recover a solution we use a table b, to
indicate which one of the three options provided the value
c[i , j ].
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0 ≤ i ≤ n.

To compute c[i , j ], we have to access

c[i − 1, j − 1] c[i − 1, j ]

c[i , j − 1] c[i , j ]
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Tabulating

LCS(X ,Y )
for i = 0 to n do

c[i , 0] = 0
for j = 1 to m do

c[0, j ] = 0
for i = 1 to n do

for j = 1 to m do
if xi = yj then

c[i , j ] = c[i − 1, j − 1] + 1, b[i .j ] =↖
else if c[i − 1, j ] ≥ c[i , j − 1] then

c[i , j ] = c[i − 1, j ], b[i , j ] =←
else

c[i , j ] = c[i , j − 1], b[i , j ] =↑.

complexity:
T = O(nm).
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Example.

X=(ATCTGAT); Y=(TGCATA). Therefore, m = 6, n = 7

0 1 2 3 4 5 6
T G C A T A

0 0 0 0 0 0 0 0

1 A 0 ↑0 ↑0 ↑0 ↖1 ←1 ↖1

2 T 0 ↖1 ←1 ←1 ↑1 ↖2 ←2

3 C 0 ↑1 ↑1 ↖2 ←2 ↑2 ↑2
4 T 0 ↖1 ↑1 ↑2 ↑2 ↖3 ←3

5 G 0 ↑1 ↖2 ↑2 ↑2 ↑3 ↑3
6 A 0 ↑1 ↑2 ↑2 ↖3 ↑3 ↖4

7 T 0 ↖1 ↑2 ↑2 ↑3 ↖4 ↑4

Following the arrows: TCTA
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Construct the solution

Access the tables c and d .
The first call to the algorithm is sol-LCS(n,m)

sol-LCS(i , j)
if i = 0 or j = 0 then
STOP.

else if b[i , j ] =↖ then
sol-LCS(i − 1, j − 1)
return xi

else if b[i , j ] =↑ then
sol-LCS(i − 1, j)

else
sol-LCS(i , j − 1)

The algorithm has time complexity O(n +m).
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Longest common substring

A slightly different problem with a similar solution

LCSt: Given two strings X = x1 . . . xn and Y = y1 . . . ym,
compute their longest common substring Z , i.e., the
largest k for which there are indices i and j with
xixi+1 . . . xi+k = yjyj+1 . . . yj+k .

For example:
X : DEADBEEF
Y : EATBEEF
Z :
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A slightly different problem with a similar solution

LCSt: Given two strings X = x1 . . . xn and Y = y1 . . . ym,
compute their longest common substring Z , i.e., the
largest k for which there are indices i and j with
xixi+1 . . . xi+k = yjyj+1 . . . yj+k .

For example:
X : DEADBEEF
Y : EATBEEF
Z :



DP technique

Guideline

W activity
selection

0-1 Knapsack

DP for pairing
sequences

Framework

Edit distance

Longest common
subsequence (LCS)

Longest common
substring

Longest common substring

A slightly different problem with a similar solution

LCSt Given two strings X = x1 . . . xn and Y = y1 . . . ym,
compute their longest common substring Z , i.e.,
corresponding to the largest k for which there are indices i
and j with xixi+1 . . . xi+k = yjyj+1 . . . yj+k .

For example:
X : DEADBBEEF
Y : EATBEEF
Z :

BEEF pick the longest substring
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Longest common substring

A slightly different problem with a similar solution

LCSt Given two strings X = x1 . . . xn and Y = y1 . . . ym,
compute their longest common substring Z , i.e.,
corresponding to the largest k for which there are indices i
and j with xixi+1 . . . xi+k = yjyj+1 . . . yj+k .

For example:
X : DEADBBEEF
Y : EATBEEF
Z : BEEF pick the longest substring
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Characterization of optimal solution

Let X = x1 · · · xn and Y = y1 · · · ym and let Z be a longest
common substring.

Z = xi . . . xi+k = yj . . . yj+k

Z is the longest common suffix of X (i + k) and Y (j + k).

We can consider the subproblems LCStf (i , j): compute
the longest common suffix of X (i) and Y (j).

The LCSf (X ,Y ) is the longest of such common suffixes.
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common substring.

Z = xi . . . xi+k = yj . . . yj+k

Z is the longest common suffix of X (i + k) and Y (j + k).

We can consider the subproblems LCStf (i , j): compute
the longest common suffix of X (i) and Y (j).

The LCSf (X ,Y ) is the longest of such common suffixes.



DP technique

Guideline

W activity
selection

0-1 Knapsack

DP for pairing
sequences

Framework

Edit distance

Longest common
subsequence (LCS)

Longest common
substring

Characterization of optimal solution

Let X = x1 · · · xn and Y = y1 · · · ym and let Z be a longest
common substring.

Z = xi . . . xi+k = yj . . . yj+k

Z is the longest common suffix of X (i + k) and Y (j + k).

We can consider the subproblems LCStf (i , j): compute
the longest common suffix of X (i) and Y (j).

The LCSf (X ,Y ) is the longest of such common suffixes.



DP technique

Guideline

W activity
selection

0-1 Knapsack

DP for pairing
sequences

Framework

Edit distance

Longest common
subsequence (LCS)

Longest common
substring

Computing the LC Suffixes

To solve LCSf (i , j) it is enough to go backward from
position i in X and j in Y until we find two different
characters.

This has cost O(n +m) per subproblem.

We get a O(nm(n +m)) algorithm for LCSt

Can we do it faster? Let us use DP!
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A recursive solution for LC Suffixes

Notation:

X [i ] = x1 . . . xi , for 0 ≤ i ≤ n

Y [j ] = y1 . . . yj , for 0 ≤ j ≤ m

s[i , j ] = the length of the LC Suffix of X [i ] and Y [j ].

Want maxi ,j s[i , j ] i.e., the length of the LCSt of X , Y .
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DP approach: Recursion

Therefore, given X and Y

s[i , j ] =


0 if i = 0 or j = 0

0 if xi ̸= yj

s[i − 1, j − 1] + 1 if xi = yj

Using the recurrence the cost per recursive call (or per element
in the table) is constant
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Tabulating

LCSf(X ,Y )
for i = 0 to n do

s[i , 0] = 0
for j = 1 to m do

s[0, j ] = 0
for i = 1 to n do

for j = 1 to m do
s[i,j]=0
if xi = yj then

s[i , j ] = s[i − 1, j − 1] + 1

complexity:
O(nm).

Which gives an
algorithm with
cost O(nm) for
LCSt
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