Backtracking algorithms

procedure Expioneinode n)
if Remcrin) then return

il Comeere(n) then
O

for ;¢ Chnooeesin) do Exrosedn)

‘ w"gf}" ) “I'i - «:ﬂ?}'ﬁ ’

ﬂ"u [ .
Y AT R
F'rn-fcd Fnun{.':l F:!:qlql-l p-l;.h..:d Complete

oo b FYYT



Backtracking

Backtracking is a systematic way to go through all the
possible configurations of a solutions space.

Backtracking
m Configurations include for example all possible

arrangements of a set of objects (permutations) or all
possible ways of building a collection of them (subsets).

m Other applications may demand enumerating all spanning
trees of a graph or all paths between two vertices, etc.

m We must generate each one of the possible configurations
exactly once.

m To avoid repetitions and missing configurations we must

define a systematic generation order among the possible

configurations.




Exhaustive Search

m by exhaustive search we can solve small problems to

Backtracking optimality, althoug the time complexity may be enourmous

m backtracking is the basic technique for exhaustive search

m sometimes it is possible to speed up the search using
pruning techniques like branch and bound or branch and
cut.

(S. Skiena The algorithm design manual, Springer Verlag 1998)




Backtracking

Combinatorial Search

® In combinatorial search, we represent our configurations by
a vector A= (ai1,...,an),
where each element a; is selected from an ordered set of
possible candidates S; for position i.

m The search procedure works by growing solutions one
element at a time.

m At each step a partial solution (ay, ..., ax) is constructed.

m A candidate set Sy for position (k + 1) is defined,

m try to extend the partial solution by adding the next
element from Sy;.

m So long as the extension yields a longer partial solution, we
continue to try to extend it.

m At some point, Ski1 = ), if so, we must backtrack, and

replace ag, the last item in the solution value, with the

next candidate in Sy.



Backtracking schema

procedure BACKTRACK(A)

Bocktrack Compute 51, the set of candidates for first position
acktracking

k=1
while k > 0 do
while S, # () do > (*advancex)

ax = the next element from Sy
Sk = Sk — {ak}
if A= (a1,...,ax) is a solution then
report it
k=k+1
compute Sk, the set of candidate
k-th elements of solution A.
k=k—1 > (xbacktrack*)



Recursive implementation

Backtracking performs a traversal of the tree of solutions.
We may use a recursive algorithm:
procedure BACKTRACKR (A, k)
if A= (a1,...,ak) is a solution then
report it
else
k=k+1
compute Sy
while S # () do
ai = an element in Sy
Sk = Sk — {ak}
BacktrackR(A, k)

Backtracking



Combinatorial optimization and backtracking

m We can adapt the general schema to find the optimum

: value of a combinatorial optimization problem.
Backtracking

m The algorithm will output this value and internally might
keep track of other parameters besides the partial solution.

m We ground on a backtracking schema accessing all
solutions.

m We have to modify the base case and the recursion.



Recursive implementation for a max/min problem

procedure BACKTRACKR/(A, k)

if A=(a1,...,ak) is a solution then
Backtracking return the valuation of A
else
k=k+1
Vmax = small/big enough value
compute Sy
while S, # 0 do
ai = an element in Sy
Sk = Sk — {ax}

V = BacktrackR(A, k)
if Vmax < V' / Vmax> V then
Vmax= V
return (Vmax)

Each recursive call identifies a subproblem that is solved
“recursively”.




Generating subsets

Let [n] = {1,...,n} be a set of n elements
m There are 2" subsets in total and (}) subsets with k
elements

m We can use lexicographic order to enumerate all subsets

m For example when n = 3, and % marks a configuration
with no extensions, the backtracking algorithm follows the
ordering

() —(1) = (1,2) = (1,2,3)x — (1,2)%x — (1) = (1,3)x — (1)*x —
() =(2) = (2,3)x = (2)x —
() =@ — ()=

m The enumeration performs a depth-first traversal of the
recursion tree
can be upperbounded by n which is polynomial when k is




Generating all permutations

m There are n! permutations of the elements of [n].

m Than means, there are n choices for the first element and
n — 1 for the second and so on.

m The candidate set for the i-th position is the elements that
are not in the previous position, using the notation of the
backtrack algorithm Sy = [n] — A.

n! can be bounded using Stirling’s formula

n
nl =~ +v2mn (B>
e




m The algorithm performs a depth-first traversal of the
configuration tree

m For example when n = 3, the configuration tree is

(1) =(1,2) = (1,2,3)* — (1,2) = (1) — (1,3) — (1,3,2)* —
(1,3) = (1) =0 —(2)—>(2,1) > (2,1,3)x — (2,1) —
2)—=(2,3)x—=(2,3,1)x—=(2,3) - 2) = () —3) —

(3,1) = (3,1,2)x = (3,1) = (3) = (3,2) = (3,2, 1)x —
(3,2) = (3) = ()



Travelling Sales Person

Given n cities and the distances dj; between any two of them,
we wish to find the shortest tour going, only once, through all
the cities.

First idea

Use the backtracking algorithm generating all permutations
and modify it to compute the length of the associated
permutation and take the minimum.

this algorithm will produce the optimum
in O(n!d) where n is the number of cities and d is the length
of the maximum distance.




Travelling Sales Person

Given n cities and the distances dj; between any two of them,
we wish to find the shortest tour going, only once, through all
the cities.

Second idea: prun the tree
If we are lucky and found early a short tour, we can exclude all
partial solutions with higher cost.

This may speed up the algorithm, however the worst case is
still as hard as before, and we have exponential cost.



Travelling Sales Person

To implement the branch and cut prunning idea we have to

m Set a huge length as upper bound to start with.
This can be n times the maximum length, no tour will
have bigger cost

m For each partial solution keep the length of the initial part.
This can be computed incrementally
and continue extending the solution only when the
computed length is below the upper bound.
m Each time we arrive a complete solution, update the global
bound
we have the guarantee that the bound corresponds to the
best seen solution



0-1 Knapsack

We have a set | of n items, item i is of weight w; and worth v;.
We can carry at most weight W in our knapsack. Considering
that we can NOT take fractions of items, what items should we
carry to maximize the profit?

First idea

Use the backtracking algorithm generating all subsets and
modify it to compute the width and profit of the associated
selection and take the minimum among those with weight not
overpassing W.

this will produce the optimum
in time O(2"M) where n is the number of objects and M is the
maximum length of the numbers in the input.



Second idea: do not consider infeasible assignments
Adapt the backtracking algorithm generating all subsets to
generate only those subsets with weight not overpassing W.

It will be useful to sort items by weight, compute incrementally
the weight of a partial solution, and redefine the set of
candidates for next position.

This will produce the optimum, and may be faster than the
first but the worst case has de same exponential cost.



Third idea: prun the tree
If we are lucky and found early a worth assignment, by
excluding all partial solutions with smaller cost we can reduce
de overall search.

The implementation uses the same idea as for the Min-TSP

However the worst case is still as hard as before, and we have
exponential cost.




Branch and bound

Fourth idea: discard some branches by bounding improvement
Assume that objects are sorted in decreasing ratio of
value/weigth, that is

<

n—1

v v v,
712722...> > /n

w1 w2 Wn—1 Whpn



Branch and bound

m When objects are sorted in decreasing ratio of
value/weigth, for a partial solution (i, ..., k) for which

m the maximum value that can be added to this selection is

k k y
< Z Vi; + W wi, bt
J=1

=) Wkn

m We can discard the exploration of a branch for which the
maximum possible plus the actual value is equal or less
than the best seen assignment value.



	Backtracking
	Subsets
	Permutations
	TSP
	 Knapsack


