Minimum spanning trees

The probler

Properties
The cut and the

A generic algorit

Prim's

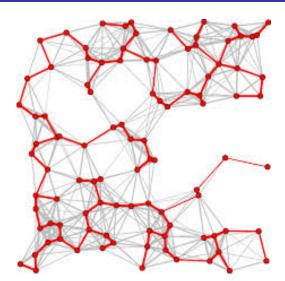
Kruskal's

algorithn

Union-Find

implementat

An application Clustering



A network construction problem: Minimum Spanning Tree

CLRS 23, KT 4.5, DPV 5.1

- We have a set of locations.
- For some pairs of locations it is possible to build a link connecting the two locations, but it has a cost.

The problem

Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

Kruskal's algorithm

Description
Union-Find
implementati

An applicatio

A network construction problem: Minimum Spanning Tree

CLRS 23, KT 4.5, DPV 5.1

- We have a set of locations.
- For some pairs of locations it is possible to build a link connecting the two locations, but it has a cost.

We want to build a network (if possible), connecting all the locations, with total minimum cost.

The problem

The cut and the cycle properties

A generic algorithm

Prim's algorithm

Kruskal's algorithm

Description
Union-Find
implementat
Cost

An application

A network construction problem: Minimum Spanning Tree

The problem

Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

Kruskal's algorithm

Cost
An application

CLRS 23, KT 4.5, DPV 5.1

- We have a set of locations.
- For some pairs of locations it is possible to build a link connecting the two locations, but it has a cost.

- We want to build a network (if possible), connecting all the locations, with total minimum cost.
- So, the resulting network must be a tree.

Network construction: Minimum Spanning Tree

The problem

Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

Kruskal's algorithm

Description
Union-Find

Union-Find implementation Cost

An applica Clustering

- We have a set of locations. Build a link connecting the locations i and j has a cost $w(v_i, v_i)$.
- We want to build tree spanning all the locations with total minimum cost.

The MST

The problem

he cut and the ycle properties

Prim's

algorithm

algorithm

Description Union-Find implementation

lost

■ A tree on n nodes has n-1 edges.

The problem

Properties
The cut and the cycle properties
A generic algorithn

Prim's algorithm

Kruskal's

algorithm

Union-Find implementation Cost

An application Clustering

The problem

Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

Kruskal's algorithm

Description
Union-Find
implementation
Cost

An applicatior Clustering

- A tree on n nodes has n-1 edges.
- Any connected undirected graph with n vertices and n-1 edges is a tree.

The problem

The cut and the cycle properties

A generic algorith

Kruskal's

algorithm

Union-Find implementation

An applicatior Clustering

- A tree on n nodes has n-1 edges.
- Any connected undirected graph with n vertices and n-1 edges is a tree.
- An undirected graph is a tree iff there is a unique path between any pair of nodes.

The problem

Properties
The cut and the
cycle properties
A generic algorithr

Prim's algorithm

Kruskal's algorithm

Description
Union-Find implementation
Cost
An application:

An applicati Clustering

- A tree on n nodes has n-1 edges.
- Any connected undirected graph with n vertices and n-1 edges is a tree.
- An undirected graph is a tree iff there is a unique path between any pair of nodes.

Let G = (V, E) be a (undirected) graph.

- G' = (V', E') is a subgraph of G if $V' \subseteq V$ and $E' \subseteq E$.
- A subgraph G' = (V', E') of G is spanning if V' = V.
- \blacksquare A spanning tree of G is a spanning subgraph that is a tree.

The problem

Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

Kruskal's algorithm

Description
Union-Find
implementation
Cost
An application:

Clustering

- A tree on n nodes has n-1 edges.
- Any connected undirected graph with n vertices and n-1 edges is a tree.
- An undirected graph is a tree iff there is a unique path between any pair of nodes.

Let G = (V, E) be a (undirected) graph.

- G' = (V', E') is a subgraph of G if $V' \subseteq V$ and $E' \subseteq E$.
- A subgraph G' = (V', E') of G is spanning if V' = V.
- \blacksquare A spanning tree of G is a spanning subgraph that is a tree.

Any connected graph has a spanning tree

MINIMUM SPANNING TREE problem (MST)

The problem

Properties

The cut and the cycle properties

A generic algorithm

Prim's

algorithm
Kruskal's

algorithm

Union-Find implementation

An application Clustering Given as input an edge weighted graph G = (V, E, w), where $w : E \to \mathbb{R}$. Find a tree T = (V, E') with $E' \subseteq E$, such that it minimizes $w(T) = \sum_{e \in E(T)} w(e)$.

MINIMUM SPANNING TREE problem (MST)

The problem

Properties

The cut and the cycle properties

A generic algorithm

Prim's algorithm

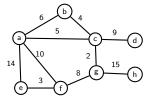
Kruskal's algorithm

algorithm

Description

Union-Find implementation

An applicati Clustering Given as input an edge weighted graph G = (V, E, w), where $w : E \to \mathbb{R}$. Find a tree T = (V, E') with $E' \subseteq E$, such that it minimizes $w(T) = \sum_{e \in E(T)} w(e)$.



MINIMUM SPANNING TREE problem (MST)

The problem

Properties

The cut and the cycle properties

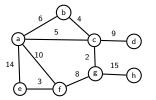
A generic algorithm

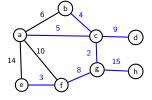
Prim's algorithm

Kruskal's algorithm

Description
Union-Find
implementation
Cost

An applicat Clustering Given as input an edge weighted graph G = (V, E, w), where $w : E \to \mathbb{R}$. Find a tree T = (V, E') with $E' \subseteq E$, such that it minimizes $w(T) = \sum_{e \in E(T)} w(e)$.





he probler

Properties
The cut and the cycle properties

Prim's

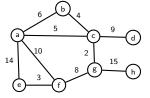
algorithm

algorithn

Description

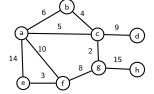
Union-Find implementation

An applicati Clustering For a graph G = (V, E):



Properties

For a graph G = (V, E): A path is a sequence of consecutive edges.



The probler

Properties
The cut and the cycle properties

Prim's algorithm

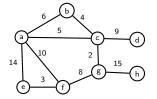
algorithm

algorithm

Description

Union-Find implementation Cost

An applicati Clustering



For a graph G = (V, E):

A path is a sequence of consecutive edges.

A cycle is a path ending in an edge connecting to the initial vertex, with no other repeated vertex.

The probler

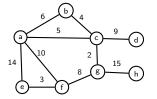
Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

Kruskal's

Description Union-Find implementatio

An applicati Clustering



For a graph G = (V, E):

A path is a sequence of consecutive edges.

A cycle is a path ending in an edge connecting to the initial vertex, with no other repeated vertex.

A cut is a partition of V into two sets S and V - S.

he problen

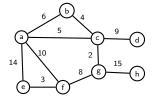
Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

Kruskal's algorithm

Description
Union-Find
implementation
Cost

An applicatio Clustering



For a graph G = (V, E):

A path is a sequence of consecutive edges.

A cycle is a path ending in an edge connecting to the initial vertex, with no other repeated vertex.

A cut is a partition of V into two sets S and V - S.

The cut-set of a cut is the set of edges with one end in S and the other in V-S. $cut(S,V-S)=\{e=(u,v)\in E\mid u\in S\ v\notin S\}$

MST: Properties

The problen

Properties

The cut and the cycle properties

A generic algorithm

Prim's algorithm

Kruskal's

Description

Union-Find implementation Cost

An applicatio Clustering Given a weighted graph G = (V, E, w), assume that all edge weights are different.

A MST T in G has the following properties:

MST: Properties

The problen

Properties

The cut and the cycle properties

A generic algorithm

Prim's algorithm

algorithm Kruskal's

algorithm

Description

Union-Find
implementation

Cost

An application Clustering Given a weighted graph G = (V, E, w), assume that all edge weights are different.

A MST T in G has the following properties:

• Cut property $e \in T \Leftrightarrow e$ is the lightest edge across some cut in G.

MST: Properties

The probler

Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

Kruskal's algorithm Description

Union-Find implementation Cost

An applica Clustering Given a weighted graph G = (V, E, w), assume that all edge weights are different.

A MST T in G has the following properties:

- Cut property $e \in T \Leftrightarrow e$ is the lightest edge across some cut in G.
- Cycle property $e \notin T \Leftrightarrow e$ is the heaviest edge on some cycle in G.

Let G = (V, E, w), $w : E \to \mathbb{R}^+$, such that all weights are different. Let T be a MST of G.

The problem

The cut and the cycle properties

Prim's algorithm

Kruskal's

algorithm

Union-Find implementation Cost

An application Clustering

Let G = (V, E, w), $w : E \to \mathbb{R}^+$, such that all weights are different. Let T be a MST of G.

Removing an edge e = (u, v) from T yields two disjoint trees T_u and T_v , so that $V(T_u) = V - V(T_v)$, $u \in T_u$ and $v \in T_v$. Let us call $S_u = V(T_u)$ and $S_v = V(T_v)$.

The cut and the cycle properties

A generic algorithm

Prim's algorithm

Kruskal's algorithm

Union-Find implementation

An application

Let G = (V, E, w), $w : E \to \mathbb{R}^+$, such that all weights are different. Let T be a MST of G.

Removing an edge e = (u, v) from T yields two disjoint trees T_u and T_v , so that $V(T_u) = V - V(T_v)$, $u \in T_u$ and $v \in T_v$. Let us call $S_u = V(T_u)$ and $S_v = V(T_v)$.

Claim

 $e \in E(T)$ is the min-weight edge among those in $cut(S_u, S_v)$.

The problem

The cut and the cycle properties

A generic algorithm

algorithm

Kruskal's algorithm

Union-Find implementation

An applicat Clustering

differe

The cut and the cycle properties
A generic algorithm

Prim's algorithm

Kruskal's algorithm

Description
Union-Find
implementation
Cost

An applicat Clustering Let G = (V, E, w), $w : E \to \mathbb{R}^+$, such that all weights are different. Let T be a MST of G.

Removing an edge e = (u, v) from T yields two disjoint trees T_u and T_v , so that $V(T_u) = V - V(T_v)$, $u \in T_u$ and $v \in T_v$. Let us call $S_u = V(T_u)$ and $S_v = V(T_v)$.

Claim

 $e \in E(T)$ is the min-weight edge among those in $cut(S_u, S_v)$.

Proof.

Otherwise, we can replace *e* by an edge in the cut with smaller weight. Thus, forming a new spanning tree with smaller weight.

Properties
The cut and the

cycle properties
A generic algorith

Prim's algorithm

Kruskal's algorithm

Union-Find implementation

An applicatio

Claim (The cut rule)

For $S \subseteq V$, let e = (u, v) be the min-weight edge in cut(S, V - S), then $e \in T$.

The problem

The cut and the cycle properties

Prim's

algorithm

algorithm

Union-Find implementation

An applicat Clustering

Claim (The cut rule)

For $S \subseteq V$, let e = (u, v) be the min-weight edge in cut(S, V - S), then $e \in T$.

Proof.

■ Assume $e \notin T$, $u \in S$ and $v \notin S$.

The problem

The cut and the cycle properties

Prim's algorithm

algorithm

algorithm

Description
Union-Find
implementation
Cost

An applicati Clustering

Claim (The cut rule)

For $S \subseteq V$, let e = (u, v) be the min-weight edge in cut(S, V - S), then $e \in T$.

- Assume $e \notin T$, $u \in S$ and $v \notin S$.
- T is spanning, then a path P(u, v) from u to v exists in T.

The cut and the cycle properties

Claim (The cut rule)

For $S \subseteq V$, let e = (u, v) be the min-weight edge in cut(S, V - S), then $e \in T$.

- Assume $e \notin T$, $u \in S$ and $v \notin S$.
- \blacksquare T is spanning, then a path P(u, v) from u to v exists in T.
- $u \in S$ and $v \notin S$: there is $e' \in cut(S, V S)$ in P(u, v).

The problem

The cut and the cycle properties

A generic algorithm

Prim's algorithm

Kruskal's

Description
Union-Find
implementation

An applicati Clustering

Claim (The cut rule)

For $S \subseteq V$, let e = (u, v) be the min-weight edge in cut(S, V - S), then $e \in T$.

- Assume $e \notin T$, $u \in S$ and $v \notin S$.
- lacksquare T is spanning, then a path P(u, v) from u to v exists in T.
- $u \in S$ and $v \notin S$: there is $e' \in cut(S, V S)$ in P(u, v).
- lacktriangle Replacing e' with e produces another spanning tree.

The problem

Properties

The cut and the cycle properties

A generic algorith

Prim's algorithm

Kruskal's

Description
Union-Find
implementation

An applicati Clustering

Claim (The cut rule)

For $S \subseteq V$, let e = (u, v) be the min-weight edge in cut(S, V - S), then $e \in T$.

- Assume $e \notin T$, $u \in S$ and $v \notin S$.
- lacksquare T is spanning, then a path P(u, v) from u to v exists in T.
- $u \in S$ and $v \notin S$: there is $e' \in cut(S, V S)$ in P(u, v).
- lacktriangle Replacing e' with e produces another spanning tree.
- But then, as w(e) > w(e'), T was not optimal.

The problen

The cut and the cycle properties

Prim's algorithm

Kruskal's algorithm

algorithm

Union-Find implementation Cost

An application Clustering For an edge $e \notin T$, adding it to T creates a graph T + e having a unique cycle involving e. Lets call this cycle C_e .

The problen

The cut and the cycle properties

A generic algorithm

algorithm

Kruskal's

Description
Union-Find
implementation

An applicatio Clustering For an edge $e \notin T$, adding it to T creates a graph T + e having a unique cycle involving e. Lets call this cycle C_e .

Claim

For $e \notin E(T)$, e is the max-weight edge in C_e .

The problen

The cut and the cycle properties

A generic algorith

Prim's algorithm

Kruskal's algorithm Description Union-Find implementation

Cost An applicatio Clustering For an edge $e \notin T$, adding it to T creates a graph T + e having a unique cycle involving e. Lets call this cycle C_e .

Claim

For $e \notin E(T)$, e is the max-weight edge in C_e .

Proof.

Otherwise, removing any edge different from e in T+e produces a spanning tree with smaller total weight.

The problem

The cut and the cycle properties

Prim's algorithm

Kruskal's algorithm

Description
Union-Find
implementation

An application

Claim (The cycle rule)

For a cycle C in G, the edge $e \in C$ with max-weight can not be part of T.

The cycle property

The problen

The cut and the cycle properties

Prim's algorithm

Kruskal's

Description
Union-Find
implementation

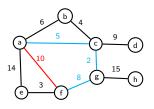
An applicat Clustering

Claim (The cycle rule)

For a cycle C in G, the edge $e \in C$ with max-weight can not be part of T.

Proof.

Observe that, as G is connected, $G' = (V, E - \{e\})$ is connected. Furthermore, a MST for G' is a MST for G.



MST: Rules

The problem

The cut and the

A generic algorithm

Prim's algorithm

Kruskal's

Description
Union-Find

MST: Rules

The probler

Properties
The cut and the cycle properties

A generic algorithm

Prim's algorithm

Kruskal's algorithm Description Union-Find implementation Cost The MST algorithms use two rules for adding/discarding edges.

The \Leftarrow implication of the cut property yields the blue rule (include), which allow us to include safely in T a min weight edge from some identified cut.

The \Rightarrow implication of the cycle property will yield the red rule (exclude) which allow us to exclude from T a max weight edge from some identified cycles.

The problem
Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

Kruskal's

Description
Union-Find
implementation
Cost

An applicatior Clustering ■ The two rules show the optimal substructure of the MST. So, we can design a greedy algorithm.

- The problem
 Properties
- cycle properties

 A generic algorithm
- Prim's algorithm
- Kruskal's algorithm

Description
Union-Find
implementation
Cost

- The two rules show the optimal substructure of the MST. So, we can design a greedy algorithm.
- Blue rule: Given a cut-set between S and V-S with no blue edges, select from the cut-set a non-colored edge with min weight and paint it blue

- The problem
 Properties
 The cut and the
 cycle properties
 A generic algorithm
- Prim's algorithm
- Kruskal's
 algorithm

 Description
 Union-Find
 implementation
 Cost

- The two rules show the optimal substructure of the MST. So, we can design a greedy algorithm.
- Blue rule: Given a cut-set between S and V-S with no blue edges, select from the cut-set a non-colored edge with min weight and paint it blue
- Red rule: Given a cycle *C* with no red edges, selected a non-colored edge in *C* with max weight and paint it red.

- The problem
 Properties
 The cut and the
 cycle properties
 A generic algorithm
- Prim's algorithm
- Kruskal's
 algorithm
 Description
 Union-Find
 implementation
 Cost
 An application:

- The two rules show the optimal substructure of the MST. So, we can design a greedy algorithm.
- Blue rule: Given a cut-set between S and V-S with no blue edges, select from the cut-set a non-colored edge with min weight and paint it blue
- Red rule: Given a cycle *C* with no red edges, selected a non-colored edge in *C* with max weight and paint it red.
- Greedy scheme: Given G, apply the red and blue rules until having n-1 blue edges, those form the MST.
 - Robert Tarjan: Data Structures and Network Algorithms, SIAM, 1984

The problem

The cut and the

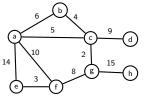
A generic algorithm

Prim's algorithm

Kruskal's

algorithm

Union-Find implementation



The problem

Properties
The cut and the

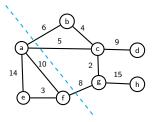
A generic algorithm

Prim's algorithm

Kruskal's

algorithm

Union-Find implementatio



The problen

Properties
The cut and the

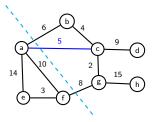
A generic algorithm

Prim's algorithm

Kruskal's

algorithm

Union-Find implementation



The problen

Properties
The cut and the

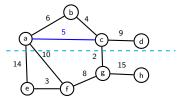
A generic algorithm

Prim's algorithm

Kruskal's

algorithm

Union-Find implementation



The problen

Properties
The cut and the

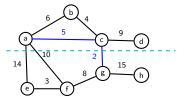
A generic algorithm

Prim's algorithm

Kruskal's

algorithm

Union-Find implementation



The probler

Properties
The cut and the

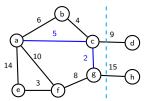
A generic algorithm

Prim's algorithm

Kruskal's

algorithm

Union-Find implementation



The probler

Properties The cut and the

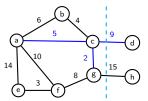
A generic algorithm

Prim's algorithm

Kruskal's

algorithm

Union-Find implementatio



The problen

Properties
The cut and the

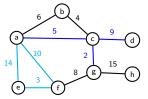
A generic algorithm

Prim's algorithm

Kruskal's

algorithm

Union-Find implementation



The problen

Properties
The cut and the

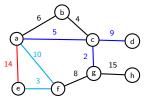
A generic algorithm

Prim's algorithm

Kruskal's

algorithm

Union-Find implementation



The probler

Properties
The cut and the

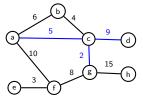
A generic algorithm

Prim's algorithm

Kruskal's

algorithm

Union-Find implementatio



The problen

Properties
The cut and the

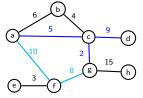
A generic algorithm

Prim's algorithm

Kruskal's

algorithm

Union-Find implementation



The problen

Properties
The cut and the

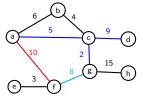
A generic algorithm

Prim's algorithm

Kruskal's

algorithm

Union-Find implementatio



The probler

Properties
The cut and the

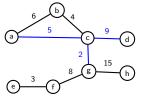
A generic algorithm

Prim's algorithm

Kruskal's

algorithm

Union-Find implementatio



The probler

Properties
The cut and the

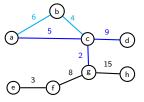
A generic algorithm

Prim's algorithm

Kruskal's

algorithm

Union-Find implementatio



The probler

Properties
The cut and the

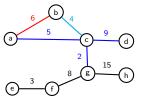
A generic algorithm

Prim's algorithm

Kruskal's

algorithm

Union-Find implementation



The probler

Properties
The cut and the

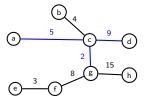
A generic algorithm

Prim's algorithm

Kruskal's

algorithm

Union-Find implementatio



The probler

Properties
The cut and the

A generic algorithm

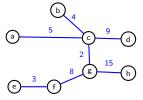
Prim's

Kruskal's

algorithm

Union-Find implementation

Cost



Greedy for MST: Correctness

Theorem

The greedy scheme finishes in at most m steps and at the end of the execution the blue edges form a MST

The problem

The cut and the

A generic algorithm

Prim's algorithm

Kruskal's

Description
Union-Find
implementation

Greedy for MST: Correctness

Theorem

The greedy scheme finishes in at most m steps and at the end of the execution the blue edges form a MST

Sketch.

- As in each iteration an edge is added or discarded, the algorithm finishes after at most m applications of the rules.
- As the red edges cannot form part of any MST and the blue ones belong to some MST, the selections are correct.
- A set of n-1 required edges form a spanning tree!

Γ<mark>he problem</mark> Properties

cycle properties

A generic algorithm

A generic algorithm

Prim's algorithm

Aruskal's
algorithm

Description
Union-Find
implementation
Cost
An application:
Clustering

Greedy for MST: Correctness

Theorem

The greedy scheme finishes in at most m steps and at the end of the execution the blue edges form a MST

Sketch.

- As in each iteration an edge is added or discarded, the algorithm finishes after at most m applications of the rules.
- As the red edges cannot form part of any MST and the blue ones belong to some MST, the selections are correct.
- A set of n-1 required edges form a spanning tree!

he problem

The cut and the cycle properties

A generic algorithm

Prim's algorithm

Kruskal's
algorithm

Description
Union-Find
implementation
Cost
An application:

We need implementations for the algorithm!

A short history of MST implementation

There has been extensive work to obtain the most efficient algorithm to find a MST in a given graph:

- O. Borůvka gave the first greedy algorithm for the MST in 1926. V. Jarnik gave a different greedy for MST in 1930, which was re-discovered by R. Prim in 1957. In 1956 J. Kruskal gave a different greedy algorithms for the MST. All those algorithms run in O(m lg n).
- Fredman and Tarjan (1984) gave a $O(m \log^* n)$ algorithm, introducing a new data structure for priority queues, the Fibbonacci heap. Recall $\log^* n$ is the number of times we have to apply iteratively the log operator to n to get a value ≤ 1 , for ex. $\log^* 1000 = 2$.
- Gabow, Galil, Spencer and Tarjan (1986) improved Fredman-Tarjan to $O(m \log(\log^* n))$.
- Karger, Klein and Tarjan (1995) O(m) randomized algorithm.
- In 1997 B. Chazelle gave an $O(m\alpha(n))$ algorithm, where $\alpha(n)$ is a very slowly growing function, the inverse of the Ackermann function.

- Fhe problem
 Properties
 The cut and the
 cycle properties
 A generic algorithm
- Prim's algorithm
- Kruskal's
 algorithm

 Description
 Union-Find
 implementation
 Cost
 An application:
 Clustering

Basic algorithms for MST

- The problem
 Properties
 The cut and the cycle properties
 A generic algorithm
- Prim's algorithm
- Aruskal's algorithm

 Description

 Union-Find implementation

 Cost

 An application:

- Jarník-Prim (Serial centralized) Starting from a vertex v, grows T adding each time the lighter edge already connected to a vertex in T, using the blue rule.
 Uses a priority queue
- Kruskal (Serial distributed) Considers every edge, in order of increasing weight, to grow a forest by using the blue and red rules. The algorithm stops when the forest became a tree.

Uses a union-find data structure.

The probler

Properties
The cut and the cycle properties

Prim's algorithm

algorithm

algorithm

Union-Find implementation

An application

V. Jarník, 1936, R. Prim, 1957

■ The algorithm keeps a tree *T* and adds one edge (and one node) to *T* at each step until it became spanning.

The probler

The cut and the cycle properties

A generic algorith

Prim's algorithm

Kruskal's

Description
Union-Find
implementation
Cost

An applica Clustering

V. Jarník, 1936, R. Prim, 1957

- The algorithm keeps a tree *T* and adds one edge (and one node) to *T* at each step until it became spanning.
- Initially the tree T has one arbitrary node r, and no edges.

The probler

Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

Kruskal's algorithm

Description
Union-Find implementation
Cost

An applicatio Clustering

V. Jarník, 1936, R. Prim, 1957

- The algorithm keeps a tree *T* and adds one edge (and one node) to *T* at each step until it became spanning.
- Initially the tree *T* has one arbitrary node *r*, and no edges.
- At each step T is enlarged adding a minimum weight edge in the set cut(V(T), V V(T)).

The probler

Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

Kruskal's algorithm

Description
Union-Find
implementation
Cost
An application:

V. Jarník, 1936, R. Prim, 1957

- The algorithm keeps a tree *T* and adds one edge (and one node) to *T* at each step until it became spanning.
- Initially the tree T has one arbitrary node r, and no edges.
- At each step T is enlarged adding a minimum weight edge in the set cut(V(T), V V(T)).
- The algorithm is correct as it applies always the blue rule.

Prim's

algorithm

```
MST(G, w, r)
T = \{r\}
for i = 2 to |V| do
  Let e be a min weight edge in the cut(V(T), V - V(T))
  T = T \cup \{e\}
end for
```

Example

The probler

Properties
The cut and the cycle properties

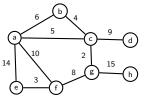
A generic algorithm

Prim's algorithm

Kruskal's

algorithm

Union-Find implementation



Example

The probler

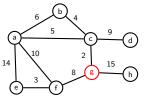
Properties
The cut and the cycle properties

Prim's algorithm

Kruskal's

algorithm

Union-Find implementation



The problen

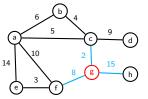
Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

Kruskal's

algorithm

Union-Find implementatio



The probler

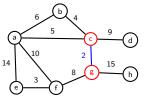
Properties
The cut and the
cycle properties
A generic algorithm

Prim's algorithm

Kruskal's

algorithm

Union-Find implementation



The probler

The cut and the cycle properties

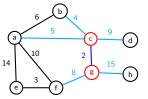
Prim's algorithm

algorithm

algorithm

Union-Find implementatio

An application



The problei

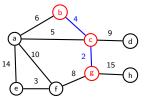
Properties
The cut and the cycle properties

Prim's algorithm

Kruskal's

algorithm

Union-Find implementation



The probler

Properties

The cut and the cycle properties

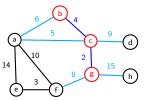
A generic algorithm

Prim's algorithm

Kruskal's

algorithm

Union-Find implementatio



The problei

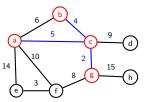
Properties
The cut and the cycle properties

Prim's algorithm

Kruskal's

algorithm

Union-Find implementatio



The probler

Properties
The cut and the cycle properties

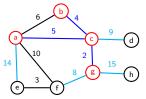
A generic algorithm

Prim's algorithm

Kruskal's

algorithm

Union-Find implementatio



The probler

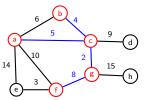
Properties
The cut and the cycle properties

Prim's algorithm

Kruskal's

algorithm

Union-Find implementation



The problen

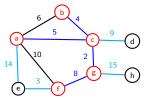
Properties
The cut and the
cycle properties
A generic algorithm

Prim's algorithm

Kruskal's

algorithm

Union-Find implementatio



The probler

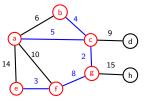
The cut and the cycle properties

Prim's algorithm

Kruskal's

algorithm

Union-Find implementatio



The problen

The cut and the cycle properties

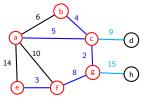
Duine's

Prim's algorithm

Kruskal's

algorithm

Union-Find implementatio



The probler

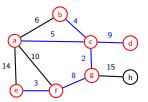
The cut and the cycle properties

Prim's algorithm

Kruskal's

algorithm

Union-Find implementation



The problen

The cut and the cycle properties

Duimia

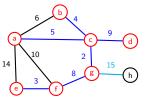
Prim's algorithm

Kruskal's

algorithm

Union-Find implementation

An application



The probler

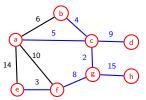
The cut and the cycle properties

Prim's algorithm

Kruskal's

algorithm

Union-Find implementation



The problem

The cut and the cycle properties

Prim's algorithm

Kruskal's

Description

Union-Find

implementation

Jarník-Prim: Implementation

Use a priority queue to choose min weight e in the cut set. In doing so we have to discard some edges

```
MST(G, w, r)
T = (\{r\}, \emptyset); Q = \emptyset; s = 0
Insert in Q all edges e = (r, v) with key w(r, v)
while s < n-1 and Q is not empty do
  (u, v, w) = Q.pop()
  if u \notin V(T) or v \notin V(T) then
     Let u' be the vertex from (u, v) that is not in T
     Insert in Q all the edges e = (u', v') \in E(G) for
     v' \notin V(T) with key w(e)
     add e to T: ++s
  end if
end while
```

```
Kruskal's algorithm

Description

Union-Find implementation

Cost
```

Prim's

algorithm

■ The algorithm discards edge e:

Prim's algorithm

■ The algorithm discards edge e: Such an edge e = (u, v) has $u, v \in V(T)$, so it forms a cycle with the edges in T. But, e is the edge with highest weight in this cycle. This is an application of the red rule.

The problem Properties The cut and the cycle properties

Prim's algorithm

Kruskal's
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

The algorithm discards edge e: Such an edge e = (u, v) has $u, v \in V(T)$, so it forms a cycle with the edges in T. But, e is the edge with highest weight in this cycle. This is an application of the red rule.

■ The algorithm adds to *T* edge *e*:

The problem Properties The cut and the cycle properties A generic algorithm

Prim's algorithm

Kruskal's
algorithm

Description
Union-Find
implementation
Cost

An application:

The algorithm discards edge e: Such an edge e = (u, v) has $u, v \in V(T)$, so it forms a cycle with the edges in T. But, e is the edge with highest weight in this cycle. This is an application of the red rule.

The algorithm adds to T edge e: Then e has minimum weight among all edges in Q, as Q contains all edges in the cut-set(V(T), V - V(T)). This is the blue rule

The problem Properties The cut and the cycle properties A generic algorithm

Prim's algorithm

Kruskal's
algorithm
Description
Union-Find
implementation
Cost
An application:

- The algorithm discards edge e: Such an edge e = (u, v) has $u, v \in V(T)$, so it forms a cycle with the edges in T. But, e is the edge with highest weight in this cycle. This is an application of the red rule.
- The algorithm adds to T edge e: Then e has minimum weight among all edges in Q, as Q contains all edges in the cut-set(V(T), V - V(T)). This is the blue rule
- Therefore the algorithm computes a MST.

Jarník-Prim greedy algorithm: Cost

The probler

Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

Kruskal's algorithm

Description
Union-Find
implementation

An applicat Clustering Time: depends on the implementation of the priority queue Q. We have $\leq m$ insertions on the priority queue.

Q an unsorted array:
$$T(n) = O(|V|^2)$$
;

$$Q \text{ a heap: } T(n) = O(|E| \lg |V|).$$

$$Q$$
 a Fibonacci heap: $T(n) = O(|E| + |V| \lg |V|)$

Kruskal's algorithm.

The problen

Properties
The cut and the
cycle properties
A generic algorithm

Prim's algorithm

Kruskal's

algorithm Description

Union-Find implementation Cost

Clustering

J. Kruskal, 1956

Similar to Jarník–Prim, but chooses minimum weight edge, in some cut. The selected edges form a forest until the last step.

$$\begin{aligned} \mathbf{MST\text{-}K} \; & (G,w,r) \\ T &= \emptyset \\ \mathbf{for} \; i &= 1 \; \mathbf{to} \; |V| \; \mathbf{do} \\ & \quad \text{Let} \; e \in E : \text{with minimum weight among those that do} \\ & \quad \text{not form a cycle with} \; T \\ & \quad T &= T \cup \{e\} \\ \mathbf{end} \; \mathbf{for} \end{aligned}$$

The probler

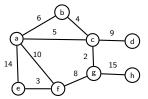
Properties
The cut and the
cycle properties
A generic algorithm

Prim's algorithm

algorith

Description

implementatio



The problen

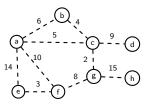
Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

algorith

Description

Union-Find implementatio



The probler

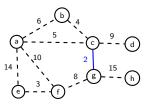
Properties
The cut and the
cycle properties
A generic algorithm

Prim's algorithm

Kruskal's

Description

Union-Find implementation



I he proble

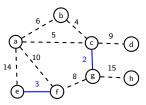
Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

algorith

Description

Union-Find implementation



The problen

Properties
The cut and the cycle properties
A generic algorithm

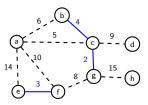
Prim's algorithm

Kruskal's

Description

Union-Find implementation

An application



The probler

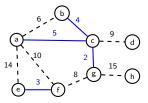
Properties
The cut and the
cycle properties
A generic algorithm

Prim's algorithm

Kruskal's

Description

Union-Find implementation



The probler

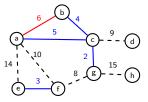
Properties
The cut and the
cycle properties
A generic algorithm

Prim's algorithm

Kruskal's

Description

Union-Find implementation



The problen

Properties
The cut and the
cycle properties
A generic algorithm

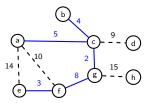
Prim's algorithm

Kruskal's

Description

Union-Find implementatio

An application



The probler

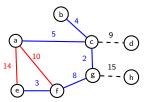
Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

algorithi

Description

Union-Find implementatio



The probler

Properties
The cut and the
cycle properties
A generic algorithm

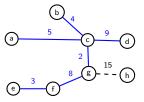
Prim's algorithm

Kruskal's

Description

Union-Find implementatio

An applica



The problei

Properties
The cut and the cycle properties

A generic algorithm

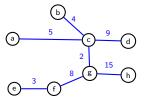
Prim's algorithm

Kruskal's

Description

Union-Find implementatio

An applicat



Kruskal's algorithm: Efficient Implementation

The proble

The cut and the cycle properties

Prim's algorithm

Kruskal's

algorithm Description

Union-Find implementation

Kruskal's algorithm: Efficient Implementation

```
The probler
```

The cut and the cycle properties

A generic algorithm

Prim's algorithm

Kruskal's

algorithm Description

Union-Find

Cost

An applical Clustering

Kruskal's algorithm: Efficient Implementation

```
The proble
```

```
Properties
The cut and the cycle properties
A generic algorithm
```

Prim's algorithm

algorithm

Description

Union-Find implementation

Cost

An applicat Clustering

```
MST-K2 (G, w, r)
Sort E by increasing weight T = \emptyset
for e \in E in sorted order do
if e does not form a cycle with T then
T = T \cup \{e\}
end if
end for
```

The output is the same as for **MST-K** but we do not need to examine the remaining edges at intermediate steps.

Kruskal's algorithm: Implementation

The probler

Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

Kruskal's

algorithm Description

Union-Find implementation

An applicatior Clustering ■ We have a cost of $O(m \lg m)$ to sort the edges. But as $m \le n^2$, $O(m \lg m) = O(m \lg n)$.

Kruskal's algorithm: Implementation

The proble

Properties
The cut and the cycle properties
A generic algorithn

Prim's algorithm

algorithm

algorithn Description

Union-Find implementation

- We have a cost of $O(m \lg m)$ to sort the edges. But as $m \le n^2$, $O(m \lg m) = O(m \lg n)$.
- We need an efficient implementation of the algorithm selecting an adequate data structure.

Kruskal's algorithm: Implementation

The proble

Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

algorithm

Description

Union-Find implementation

Cost

- We have a cost of $O(m \lg m)$ to sort the edges. But as $m \le n^2$, $O(m \lg m) = O(m \lg n)$.
- We need an efficient implementation of the algorithm selecting an adequate data structure.
- Let us look to some properties of the objects constructed along the execution of the algorithm.

he probler

Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

Kruskal's

algorithm Description

> Union-Find implementation Cost

An application Clustering Kruskal evolves by building spanning forests, merging two trees (blue rule) or discarding an edge (red rule) so as to do not create a cycle.

ie problei

Properties
The cut and the
cycle properties
A generic algorithn

Prim's algorithm

Description
Union-Find

Union-Find implementation Cost

- Kruskal evolves by building spanning forests, merging two trees (blue rule) or discarding an edge (red rule) so as to do not create a cycle.
- The connectivity relation is an equivalence relation: uR_Fv iff there is a path between u and v.

Properties

The cut and the cycle properties

A generic algorith

Prim's algorithm

Rruskal's
algorithm
Description
Union-Find
implementation
Cost
An application:

- Kruskal evolves by building spanning forests, merging two trees (blue rule) or discarding an edge (red rule) so as to do not create a cycle.
- The connectivity relation is an equivalence relation: uR_Fv iff there is a path between u and v.
- Kruskal, starts with a partition of V into n sets and ends with a partition of V into one set.

The problem Properties The cut and the cycle properties

Prim's algorithm

Kruskal's
algorithm

Description

Union-Find
implementation

Cost

An application:

- Kruskal evolves by building spanning forests, merging two trees (blue rule) or discarding an edge (red rule) so as to do not create a cycle.
- The connectivity relation is an equivalence relation: $u\mathcal{R}_F v$ iff there is a path between u and v.
- Kruskal, starts with a partition of V into n sets and ends with a partition of V into one set.
- $m{\mathcal{R}}$ partition the elements of V in equivalence classes, which are the connected components of the forest

The Union-Find data structure

B. Galler, M. Fisher: An improved equivalence algorithm. ACM Comm., 1964; R.Tarjan 1979-1985

- Is a data structure to maintain a dynamic partition of a set.
- One of the most elegant in the algorithmic toolkit.

- The cut and the cycle properties
 A generic algorithm's algorithm
 Kruskal's
- algorithm

 Description

 Union-Find
 implementation

 Cost
- An application

The Union-Find data structure

Properties
The cut and the cycle properties

Prim's algorithm

Kruskal's algorithm

Description
Union-Find implementation
Cost

B. Galler, M. Fisher: An improved equivalence algorithm. ACM Comm., 1964; R.Tarjan 1979-1985

- Is a data structure to maintain a dynamic partition of a set.
- One of the most elegant in the algorithmic toolkit.
- It makes possible to design almost linear time algorithms for problems that otherwise would be unfeasible.

The Union-Find data structure

The problem Properties The cut and the cycle properties A generic algorithm

Prim's algorithm

Kruskal's
algorithm

Description

Union-Find
implementation

Cost

An application:

B. Galler, M. Fisher: An improved equivalence algorithm. ACM Comm., 1964; R.Tarjan 1979-1985

- Is a data structure to maintain a dynamic partition of a set.
- One of the most elegant in the algorithmic toolkit.
- It makes possible to design almost linear time algorithms for problems that otherwise would be unfeasible.
- Union-Find is a first introduction to an active research field in algorithmics: Self organizing data structures used in data stream computation.

The problen

Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

Kruskal's algorithm

Description

Union-Find implementation Cost

An application Clustering Union-Find maintains a partition of a set i.e. a collection of pairwise disjoint sets.

he probler

Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

Kruskal's
algorithm
Description
Union-Find
implementation

- Union-Find maintains a partition of a set i.e. a collection of pairwise disjoint sets.
- A set is represented by a rooted tree with labels. The root of the tree the representative of the tree (set).

The problei

Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

Kruskal's algorithm Description Union-Find implementation

- Union-Find maintains a partition of a set i.e. a collection of pairwise disjoint sets.
- A set is represented by a rooted tree with labels. The root of the tree the representative of the tree (set).
- Internally a partition is a spanning forest.

Union-Find supports three operations on partitions of a set:

Union-Find implementation

Union-Find supports three operations on partitions of a set:

■ MAKESET(x): creates a new set containing the single element x.

```
The problem
Properties
The cut and the cycle properties
A generic algorithm
Prim's
```

Prim's algorithm

algorithm

Union-Find implementation

he problen

Properties
The cut and the
cycle properties
A generic algorithm

Prim's algorithm

Kruskal's algorithm

Union-Find implementation Cost

An applicatior Clustering Union-Find supports three operations on partitions of a set:

■ MAKESET(x): creates a new set containing the single element x.

Creates a tree with only one node, the root, associated with x.

The problem
Properties
The cut and the

Prim's algorithm

Description
Union-Find
implementation
Cost

- MAKESET(x): creates a new set containing the single element x.
 - Creates a tree with only one node, the root, associated with x.
- **UNION**(x, y): Merge the sets containing x and y, by using their union.

The problem
Properties
The cut and the

A generic aigi Prim's algorithm

Kruskal's algorithm Description Union-Find implementation Cost

- MAKESET(x): creates a new set containing the single element x.
 - Creates a tree with only one node, the root, associated with x.
- **UNION**(x, y): Merge the sets containing x and y, by using their union.
 - Define how to merge the trees and choose the root of the merged trees.

- MAKESET(x): creates a new set containing the single element x.
 - Creates a tree with only one node, the root, associated with \boldsymbol{x} .
- **UNION**(x, y): Merge the sets containing x and y, by using their union.
 - Define how to merge the trees and choose the root of the merged trees.
- FIND(x): Return the representative of the set containing x.

- The problem
 Properties
 The cut and the
 cycle properties
 A generic algorithm
- Kruskal's algorithm Description Union-Find implementation Cost

The problem
Properties
The cut and the cycle properties

Prim's algorithm

Kruskal's
algorithm
Description
Union-Find
implementation
Cost
An application:
Clustering

- MAKESET(x): creates a new set containing the single element x.
 - Creates a tree with only one node, the root, associated with x.
- **UNION**(x, y): Merge the sets containing x and y, by using their union.
 - Define how to merge the trees and choose the root of the merged trees.
- FIND(x): Return the representative of the set containing x.
 - Find the root of the tree containing x and return the associated element.

Warning about UNION operation

Union-Find implementation

■ Warning: For any $x, y \in S$, we might need to do UNION(x, y), for x, y that are not representatives. Depending on the implementation this might or might not be allowed.

Warning about UNION operation

Union-Find implementation

■ Warning: For any $x, y \in S$, we might need to do UNION(x, y), for x, y that are not representatives. Depending on the implementation this might or might not be allowed.

■ To determine the complexity under different implementations, we consider that

$$UNION(x, y) = UNION(FIND(x), FIND(y)).$$

Union-Find implementation for Kruskal

```
MST (G(V, E), w, r), |V| = n, |E| = m
Sort E by increasing weight: \{e_1, \ldots, e_m\}
T = \emptyset
for all v \in V do
   MAKESET(v)
end for
for i = 1 to m do
   Assume that e_i = (u, v)
   if FIND(u) \neq Find(v) then
      T = T \cup \{e_i\}
      UNION(u, v)
   end if
end for
```

Union-Find

implementation

Union-Find implementation for Kruskal

```
MST (G(V, E), w, r), |V| = n, |E| = m
                  Sort E by increasing weight: \{e_1, \ldots, e_m\}
                  T = \emptyset
                  for all v \in V do
                     MAKESET(v)
                  end for
                  for i \equiv 1 to m do
                     Assume that e_i = (u, v)
                     if FIND(u) \neq Find(v) then
                         T = T \cup \{e_i\}
Union-Find
                        UNION(u, v)
implementation
                     end if
                  end for
```

- Sorting takes time $O(m \log n)$.
- The remaining part of the algorithm is a sequence of n MAKESET and O(m) operations of type FIND/UNION

Amortized analysis

The problem Properties

Prim's

Prim's algorithm

algorithm

Description

Union-Find implementation

Cost

An application:
Clustering

(See for ex. Sect. 17-1 to 17.3 in CLRS)

- An amortized analysis is any strategy for analyzing a sequence of operations on a Data Structure, to provide the "average" cost per operation, even though a single operation within the sequence might be expensive.
- An amortized analysis guarantees the average performance of each operation is the worst case on the sequence.
- The easier way to think about amortized analysis is to consider total cost of the steps, for a sequence of operations, divided by its size.

Union Find implementations: Amortized Costs

The problen

The cut and the cycle properties

A generic algorith

Prim's algorithm

Kruskal's algorithm

algorithm

Description

implementation

An applic

(4.6 KT)

For a set with n elements.

- Using an array holding the representative of each element.
 - MAKESET and FIND takes O(1)
 - UNION takes O(n).

Union Find implementations: Amortized Costs

The problem
Properties
The cut and the

Prim's

Kruskal's algorithm

Description
Union-Find
implementation
Cost
An application:

(4.6 KT)

For a set with n elements.

- Using an array holding the representative of each element.
 - MAKESET and FIND takes O(1)
 - UNION takes O(n).
- Using an array holding the representative, a list by set, and in a UNION keeping the representative of the larger set.
 - MAKESET and FIND takes *O*(1)
 - any sequence of k UNION takes $O(k \log k)$.

Complexity of Union Find implementations: Amortized cost

For a set with *n* elements.

- Using a rooted tree by set, in a UNION keeping the representative of the larger set.
 - MAKESET and UNION takes O(1)
 - FIND takes O(log n).

Complexity of Union Find implementations: Amortized cost

For a set with *n* elements.

- Using a rooted tree by set, in a UNION keeping the representative of the larger set.
 - MAKESET and UNION takes *O*(1)
 - FIND takes $O(\log n)$.
- Using a rooted tree by set, in a UNION keeping the representative of the larger set, and doing path compression during a FIND.
 - MAKESET takes *O*(1)
 - **a** any intermixed sequence of k FIND and UNION takes $O(k\alpha(n))$.

 $\alpha(n)$ is the inverse Ackerman's function which grows extremely slowly. For practical applications it behaves as a constant.

- roperties
 The cut and the cycle properties
- Prim's algorithm
- algorithm

 Description

 Union-Find
 implementation

 Cost
- Clustering

Union-Find implementation for Kruskal

```
The problem
Properties
The cut and the cycle properties
A generic algorithm
```

Prim's algorithm

Kruskal's algorithm Description Union-Find implementation Cost

An applica Clustering

```
MST (G(V, E), w, r), |V| = n, |E| = m
Sort E by increasing weight: \{e_1, \ldots, e_m\}
T = \emptyset
for all v \in V do
   MAKESET(v)
end for
for i \equiv 1 to m do
   Assume that e_i = (u, v)
   if FIND(u) \neq Find(v) then
      T = T \cup \{e_i\}
      UNION(u, v)
   end if
end for
```

- Sorting take time $O(m \log n)$.
- The remaining part of the algorithm has cost $n + O(m\alpha(n)) = O(n + m)$.

Some applications of Union-Find

The problen

Properties
The cut and the
cycle properties
A generic algorithm

Prim's algorithm

Kruskal's algorithm

Union-Find implementation

Cost

- Kruskal's algorithm for MST.
- Dynamic graph connectivity in networks with a large number of edges.
- Cycle detection in undirected graphs.
- Random maze generation and exploration.
- Strategies for games: Hex and Go.
- Least common ancestor.
- Compiling equivalence statements.
- Equivalence of finite state automata.

Clustering

- The problem
 Properties
 The cut and the cycle properties
 A generic algorithm
- Prim's algorithm
- Kruskal's algorithm Description Union-Find implementation Cost
- An application: Clustering

- Clustering: process of finding interesting structure in a set of data.
- Given a collection of objects, organize them into similar coherent groups with respect to some (distance function $d(\cdot, \cdot)$).
- The distance function not necessarily has to be the physical (Euclidean) distance. The interpretation of $d(\cdot, \cdot)$ is that for any two objects x, y, the larger that d(x, y) is, the less similar that x and y are.
- If x, y are two species, we can define d(x, y) as the years since they diverged in the course of evolution.

Generic k-clustering setting

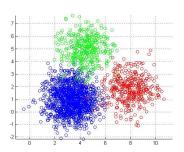
Given a set of data points $\mathcal{U} = \{x_1, x_2, \dots, x_n\}$ together with a distance function d on X, and given a k > 0, a k-clustering is a partition of X into k disjoint subsets.

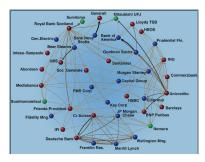
The problem
Properties
The cut and the
cycle properties
A generic algorithr

Prim's algorithm

Kruskal's algorithm

Description





The single-link clustering problem

The problen

Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

Kruskal's

algorithm

Union-Find implementatio

An application: Clustering Let \mathcal{U} be a set of n data points, assume $\{C_1, \ldots, C_k\}$ is a k-clustering for \mathcal{U} .

Define the spacing s in the k-clustering as the minimum distance between any pair of points in different clusters.

The single-link clustering problem

The probler

Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

Kruskal's

Description
Union-Find

An application: Clustering Let \mathcal{U} be a set of n data points, assume $\{C_1, \ldots, C_k\}$ is a k-clustering for \mathcal{U} .

Define the spacing s in the k-clustering as the minimum distance between any pair of points in different clusters.

The single-link clustering problem: Given $\mathcal{U} = \{x_1, x_2, \dots, x_n\}$, a distance function d, and k > 0, find a k-clustering of \mathcal{U} maximizing the spacing s.

The single-link clustering problem

The problei

Properties
The cut and the cycle properties
A generic algorithm

algorithm

Kruskal's algorithm

Description

Union-Find implementation Cost

An application: Clustering Let \mathcal{U} be a set of n data points, assume $\{C_1, \ldots, C_k\}$ is a k-clustering for \mathcal{U} .

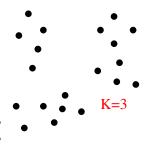
Define the spacing s in the k-clustering as the minimum distance between any pair of points in different clusters.

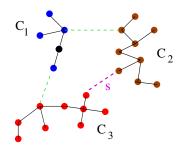
The single-link clustering problem: Given $\mathcal{U} = \{x_1, x_2, \dots, x_n\}$, a distance function d, and k > 0, find a k-clustering of \mathcal{U} maximizing the spacing s.

Notice there are exponentially many different k-clusterings of \mathcal{U} .

TrKruskal: An algorithm for the single-link clustering problem

- lacktriangle Represent $\mathcal U$ as vertices of an undirected graph where the edge (x, y) has weight d(x, y).
- Apply Kruskal's algorithm until the forest has *k* trees.





Theorem

TrKruskal solves the single-link clustering problem in $O(n^2 \lg n)$

Proof.

We have to create a complete graph and sort the n^2 edges. Thus TrKruskal has cost $O(n^2 \lg n)$

Properties

Properties

The cut and the cycle properties

A generic algorithm

Prim's algorithm

algorithm

Description

Union-Find implementation

Theorem

TrKruskal solves the single-link clustering problem in $O(n^2 \lg n)$

Proof.

We have to create a complete graph and sort the n^2 edges. Thus TrKruskal has cost $O(n^2 \lg n)$

Correctness

Let $C = \{C_1, \dots, C_k\}$ be the k-clustering produced by TrKruskal, and let s be its spacing.

Assume there is another k-clustering $\mathcal{C}' = \{C'_1, \dots, C'_k\}$ with spacing s' and s.t. $\mathcal{C} \neq \mathcal{C}'$. We must show that $s' \leq s$.

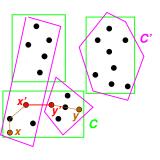
The cut and the cycle properties

A generic algorith

Prim's algorithm

Kruskal's
algorithm
Description
Union-Find
implementation

An application: Clustering



■ If $C \neq C'$, then $\exists C_r \in C$ s.t. $\forall C'_t \in C', C_r \not\subseteq C'_t$.

The proble

Properties
The cut and the cycle properties
A generic algorithm

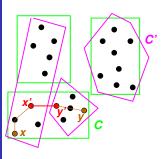
Prim's algorithm

algorithm

algorithm

Description

Union-Find implementation



- If $C \neq C'$, then $\exists C_r \in C$ s.t. $\forall C'_t \in C'$, $C_r \not\subseteq C'_t$.
- Then $\exists x, y \in C_r$ s.t. $x \in C'_a$, $y \in C'_b$ and $a \neq b$.

The proble

Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

Kruskal's

Description
Union-Find
implementatio



- If $C \neq C'$, then $\exists C_r \in C$ s.t. $\forall C'_t \in C'$, $C_r \not\subseteq C'_t$.
- Then $\exists x, y \in C_r$ s.t. $x \in C'_a$, $y \in C'_b$ and $a \neq b$.
- \exists a path $x \rightsquigarrow y$ in C_r contained in the spanning tree T_r obtained by TrKruskal for C_r .

The proble

Properties
The cut and the cycle properties
A generic algorithm

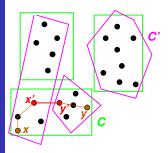
Prim's algorithm

Kruskal's

algorithm

Description

Union-Find



- If $C \neq C'$, then $\exists C_r \in C$ s.t. $\forall C'_t \in C'$, $C_r \not\subseteq C'_t$.
- Then $\exists x, y \in C_r$ s.t. $x \in C'_a$, $y \in C'_b$ and $a \neq b$.
- \exists a path $x \rightsquigarrow y$ in C_r contained in the spanning tree T_r obtained by TrKruskal for C_r .
- Then, $\exists (x', y') \in E(T_r)$ with $x' \in C'_a$ and $y' \in C'_b$, so $s' \leq d(x', y')$.

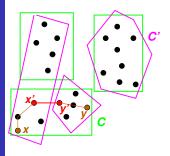
The proble

Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

Kruskal's algorithm

Description
Union-Find



- If $C \neq C'$, then $\exists C_r \in C$ s.t. $\forall C'_t \in C'$, $C_r \not\subseteq C'_t$.
- Then $\exists x, y \in C_r$ s.t. $x \in C'_a$, $y \in C'_b$ and $a \neq b$.
- \exists a path $x \rightsquigarrow y$ in C_r contained in the spanning tree T_r obtained by TrKruskal for C_r .
- Then, $\exists (x', y') \in E(T_r)$ with $x' \in C'_a$ and $y' \in C'_b$, so $s' \leq d(x', y')$.
- As $(x', y') \in E(T_r)$ $d(x', y') \le s$ and $s' \le s$.

The proble

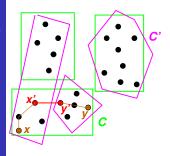
Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

Kruskal's algorithm

Description
Union-Find

An application: Clustering



- If $C \neq C'$, then $\exists C_r \in C$ s.t. $\forall C'_t \in C'$, $C_r \not\subseteq C'_t$.
- Then $\exists x, y \in C_r$ s.t. $x \in C'_a$, $y \in C'_b$ and $a \neq b$.
- \exists a path $x \rightsquigarrow y$ in C_r contained in the spanning tree T_r obtained by TrKruskal for C_r .
- Then, $\exists (x', y') \in E(T_r)$ with $x' \in C'_a$ and $y' \in C'_b$, so $s' \leq d(x', y')$.
- As $(x', y') \in E(T_r)$ $d(x', y') \le s$ and $s' \le s$.

End Proof

