
The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Minimum spanning trees

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

A network construction problem: Minimum
Spanning Tree

CLRS 23, KT 4.5, DPV 5.1

We have a set of locations.

For some pairs of locations it is possible to build a link
connecting the two locations, but it has a cost.

We want to build a network (if possible), connecting all
the locations, with total minimum cost.

So, the resulting network must be a tree.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

A network construction problem: Minimum
Spanning Tree

CLRS 23, KT 4.5, DPV 5.1

We have a set of locations.

For some pairs of locations it is possible to build a link
connecting the two locations, but it has a cost.

We want to build a network (if possible), connecting all
the locations, with total minimum cost.

So, the resulting network must be a tree.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

A network construction problem: Minimum
Spanning Tree

CLRS 23, KT 4.5, DPV 5.1

We have a set of locations.

For some pairs of locations it is possible to build a link
connecting the two locations, but it has a cost.

We want to build a network (if possible), connecting all
the locations, with total minimum cost.

So, the resulting network must be a tree.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Network construction: Minimum Spanning Tree

We have a set of locations. Build a link connecting the
locations i and j has a cost w(vi , vj).

We want to build tree spanning all the locations with total
minimum cost.

The MST

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Properties of trees

A tree on n nodes has n − 1 edges.

Any connected undirected graph with n vertices and n − 1
edges is a tree.

An undirected graph is a tree iff there is a unique path
between any pair of nodes.

Let G = (V ,E) be a (undirected) graph.

G ′ = (V ′,E ′) is a subgraph of G if V ′ ⊆ V and E ′ ⊆ E .

A subgraph G ′ = (V ′,E ′) of G is spanning if V ′ = V .

A spanning tree of G is a spanning subgraph that is a tree.

Any connected graph has a spanning tree

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Properties of trees

A tree on n nodes has n − 1 edges.

Any connected undirected graph with n vertices and n − 1
edges is a tree.

An undirected graph is a tree iff there is a unique path
between any pair of nodes.

Let G = (V ,E) be a (undirected) graph.

G ′ = (V ′,E ′) is a subgraph of G if V ′ ⊆ V and E ′ ⊆ E .

A subgraph G ′ = (V ′,E ′) of G is spanning if V ′ = V .

A spanning tree of G is a spanning subgraph that is a tree.

Any connected graph has a spanning tree

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Properties of trees

A tree on n nodes has n − 1 edges.

Any connected undirected graph with n vertices and n − 1
edges is a tree.

An undirected graph is a tree iff there is a unique path
between any pair of nodes.

Let G = (V ,E) be a (undirected) graph.

G ′ = (V ′,E ′) is a subgraph of G if V ′ ⊆ V and E ′ ⊆ E .

A subgraph G ′ = (V ′,E ′) of G is spanning if V ′ = V .

A spanning tree of G is a spanning subgraph that is a tree.

Any connected graph has a spanning tree

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Properties of trees

A tree on n nodes has n − 1 edges.

Any connected undirected graph with n vertices and n − 1
edges is a tree.

An undirected graph is a tree iff there is a unique path
between any pair of nodes.

Let G = (V ,E) be a (undirected) graph.

G ′ = (V ′,E ′) is a subgraph of G if V ′ ⊆ V and E ′ ⊆ E .

A subgraph G ′ = (V ′,E ′) of G is spanning if V ′ = V .

A spanning tree of G is a spanning subgraph that is a tree.

Any connected graph has a spanning tree

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Properties of trees

A tree on n nodes has n − 1 edges.

Any connected undirected graph with n vertices and n − 1
edges is a tree.

An undirected graph is a tree iff there is a unique path
between any pair of nodes.

Let G = (V ,E) be a (undirected) graph.

G ′ = (V ′,E ′) is a subgraph of G if V ′ ⊆ V and E ′ ⊆ E .

A subgraph G ′ = (V ′,E ′) of G is spanning if V ′ = V .

A spanning tree of G is a spanning subgraph that is a tree.

Any connected graph has a spanning tree

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Properties of trees

A tree on n nodes has n − 1 edges.

Any connected undirected graph with n vertices and n − 1
edges is a tree.

An undirected graph is a tree iff there is a unique path
between any pair of nodes.

Let G = (V ,E) be a (undirected) graph.

G ′ = (V ′,E ′) is a subgraph of G if V ′ ⊆ V and E ′ ⊆ E .

A subgraph G ′ = (V ′,E ′) of G is spanning if V ′ = V .

A spanning tree of G is a spanning subgraph that is a tree.

Any connected graph has a spanning tree

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Minimum Spanning Tree problem (MST)

Given as input an edge weighted graph G = (V ,E ,w), where
w : E → R. Find a tree T = (V ,E ′) with E ′ ⊆ E , such that it
minimizes w(T) =

∑
e∈E(T) w(e).

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Minimum Spanning Tree problem (MST)

Given as input an edge weighted graph G = (V ,E ,w), where
w : E → R. Find a tree T = (V ,E ′) with E ′ ⊆ E , such that it
minimizes w(T) =

∑
e∈E(T) w(e).

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Minimum Spanning Tree problem (MST)

Given as input an edge weighted graph G = (V ,E ,w), where
w : E → R. Find a tree T = (V ,E ′) with E ′ ⊆ E , such that it
minimizes w(T) =

∑
e∈E(T) w(e).

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Some definitions

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

For a graph G = (V ,E):

A path is a sequence of consecutive
edges.
A cycle is a path ending in an edge
connecting to the initial vertex, with
no other repeated vertex.
A cut is a partition of V into two
sets S and V − S .
The cut-set of a cut is the set of
edges with one end in S and the
other in V − S . cut(S ,V − S) =
{e = (u, v) ∈ E | u ∈ S v /∈ S}

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Some definitions

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

For a graph G = (V ,E):
A path is a sequence of consecutive
edges.

A cycle is a path ending in an edge
connecting to the initial vertex, with
no other repeated vertex.
A cut is a partition of V into two
sets S and V − S .
The cut-set of a cut is the set of
edges with one end in S and the
other in V − S . cut(S ,V − S) =
{e = (u, v) ∈ E | u ∈ S v /∈ S}

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Some definitions

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

For a graph G = (V ,E):
A path is a sequence of consecutive
edges.
A cycle is a path ending in an edge
connecting to the initial vertex, with
no other repeated vertex.

A cut is a partition of V into two
sets S and V − S .
The cut-set of a cut is the set of
edges with one end in S and the
other in V − S . cut(S ,V − S) =
{e = (u, v) ∈ E | u ∈ S v /∈ S}

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Some definitions

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

For a graph G = (V ,E):
A path is a sequence of consecutive
edges.
A cycle is a path ending in an edge
connecting to the initial vertex, with
no other repeated vertex.
A cut is a partition of V into two
sets S and V − S .

The cut-set of a cut is the set of
edges with one end in S and the
other in V − S . cut(S ,V − S) =
{e = (u, v) ∈ E | u ∈ S v /∈ S}

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Some definitions

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

For a graph G = (V ,E):
A path is a sequence of consecutive
edges.
A cycle is a path ending in an edge
connecting to the initial vertex, with
no other repeated vertex.
A cut is a partition of V into two
sets S and V − S .
The cut-set of a cut is the set of
edges with one end in S and the
other in V − S . cut(S ,V − S) =
{e = (u, v) ∈ E | u ∈ S v /∈ S}

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

MST: Properties

Given a weighted graph G = (V ,E ,w), assume that all edge
weights are different.

A MST T in G has the following properties:

Cut property
e ∈ T ⇔ e is the lightest edge across some cut in G .

Cycle property
e ̸∈ T ⇔ e is the heaviest edge on some cycle in G .

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

MST: Properties

Given a weighted graph G = (V ,E ,w), assume that all edge
weights are different.

A MST T in G has the following properties:

Cut property
e ∈ T ⇔ e is the lightest edge across some cut in G .

Cycle property
e ̸∈ T ⇔ e is the heaviest edge on some cycle in G .

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

MST: Properties

Given a weighted graph G = (V ,E ,w), assume that all edge
weights are different.

A MST T in G has the following properties:

Cut property
e ∈ T ⇔ e is the lightest edge across some cut in G .

Cycle property
e ̸∈ T ⇔ e is the heaviest edge on some cycle in G .

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

The cut property

Let G = (V ,E ,w), w : E → R+, such that all weights are
different. Let T be a MST of G .

Removing an edge e = (u, v) from T yields two disjoint trees
Tu and Tv , so that V (Tu) = V − V (Tv), u ∈ Tu and v ∈ Tv .
Let us call Su = V (Tu) and Sv = V (Tv).

Claim

e ∈ E (T) is the min-weight edge among those in cut(Su,Sv).

Proof.

Otherwise, we can replace e by an edge in the cut with smaller
weight. Thus, forming a new spanning tree with smaller
weight.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

The cut property

Let G = (V ,E ,w), w : E → R+, such that all weights are
different. Let T be a MST of G .

Removing an edge e = (u, v) from T yields two disjoint trees
Tu and Tv , so that V (Tu) = V − V (Tv), u ∈ Tu and v ∈ Tv .
Let us call Su = V (Tu) and Sv = V (Tv).

Claim

e ∈ E (T) is the min-weight edge among those in cut(Su,Sv).

Proof.

Otherwise, we can replace e by an edge in the cut with smaller
weight. Thus, forming a new spanning tree with smaller
weight.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

The cut property

Let G = (V ,E ,w), w : E → R+, such that all weights are
different. Let T be a MST of G .

Removing an edge e = (u, v) from T yields two disjoint trees
Tu and Tv , so that V (Tu) = V − V (Tv), u ∈ Tu and v ∈ Tv .
Let us call Su = V (Tu) and Sv = V (Tv).

Claim

e ∈ E (T) is the min-weight edge among those in cut(Su,Sv).

Proof.

Otherwise, we can replace e by an edge in the cut with smaller
weight. Thus, forming a new spanning tree with smaller
weight.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

The cut property

Let G = (V ,E ,w), w : E → R+, such that all weights are
different. Let T be a MST of G .

Removing an edge e = (u, v) from T yields two disjoint trees
Tu and Tv , so that V (Tu) = V − V (Tv), u ∈ Tu and v ∈ Tv .
Let us call Su = V (Tu) and Sv = V (Tv).

Claim

e ∈ E (T) is the min-weight edge among those in cut(Su,Sv).

Proof.

Otherwise, we can replace e by an edge in the cut with smaller
weight. Thus, forming a new spanning tree with smaller
weight.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

The cut property

Claim (The cut rule)

For S ⊆ V , let e = (u, v) be the min-weight edge in
cut(S ,V − S), then e ∈ T.

Proof.

Assume e ̸∈ T , u ∈ S and v /∈ S .

T is spanning, then a path P(u, v) from u to v exists in T .

u ∈ S and v /∈ S : there is e ′ ∈ cut(S ,V − S) in P(u, v).

Replacing e ′ with e produces another spanning tree.

But then, as w(e) > w(e ′), T was not optimal.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

The cut property

Claim (The cut rule)

For S ⊆ V , let e = (u, v) be the min-weight edge in
cut(S ,V − S), then e ∈ T.

Proof.

Assume e ̸∈ T , u ∈ S and v /∈ S .

T is spanning, then a path P(u, v) from u to v exists in T .

u ∈ S and v /∈ S : there is e ′ ∈ cut(S ,V − S) in P(u, v).

Replacing e ′ with e produces another spanning tree.

But then, as w(e) > w(e ′), T was not optimal.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

The cut property

Claim (The cut rule)

For S ⊆ V , let e = (u, v) be the min-weight edge in
cut(S ,V − S), then e ∈ T.

Proof.

Assume e ̸∈ T , u ∈ S and v /∈ S .

T is spanning, then a path P(u, v) from u to v exists in T .

u ∈ S and v /∈ S : there is e ′ ∈ cut(S ,V − S) in P(u, v).

Replacing e ′ with e produces another spanning tree.

But then, as w(e) > w(e ′), T was not optimal.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

The cut property

Claim (The cut rule)

For S ⊆ V , let e = (u, v) be the min-weight edge in
cut(S ,V − S), then e ∈ T.

Proof.

Assume e ̸∈ T , u ∈ S and v /∈ S .

T is spanning, then a path P(u, v) from u to v exists in T .

u ∈ S and v /∈ S : there is e ′ ∈ cut(S ,V − S) in P(u, v).

Replacing e ′ with e produces another spanning tree.

But then, as w(e) > w(e ′), T was not optimal.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

The cut property

Claim (The cut rule)

For S ⊆ V , let e = (u, v) be the min-weight edge in
cut(S ,V − S), then e ∈ T.

Proof.

Assume e ̸∈ T , u ∈ S and v /∈ S .

T is spanning, then a path P(u, v) from u to v exists in T .

u ∈ S and v /∈ S : there is e ′ ∈ cut(S ,V − S) in P(u, v).

Replacing e ′ with e produces another spanning tree.

But then, as w(e) > w(e ′), T was not optimal.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

The cut property

Claim (The cut rule)

For S ⊆ V , let e = (u, v) be the min-weight edge in
cut(S ,V − S), then e ∈ T.

Proof.

Assume e ̸∈ T , u ∈ S and v /∈ S .

T is spanning, then a path P(u, v) from u to v exists in T .

u ∈ S and v /∈ S : there is e ′ ∈ cut(S ,V − S) in P(u, v).

Replacing e ′ with e produces another spanning tree.

But then, as w(e) > w(e ′), T was not optimal.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

The cycle property

For an edge e /∈ T , adding it to T creates a graph T + e
having a unique cycle involving e. Lets call this cycle Ce .

Claim

For e /∈ E (T), e is the max-weight edge in Ce .

Proof.

Otherwise, removing any edge different from e in T + e
produces a spanning tree with smaller total weight.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

The cycle property

For an edge e /∈ T , adding it to T creates a graph T + e
having a unique cycle involving e. Lets call this cycle Ce .

Claim

For e /∈ E (T), e is the max-weight edge in Ce .

Proof.

Otherwise, removing any edge different from e in T + e
produces a spanning tree with smaller total weight.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

The cycle property

For an edge e /∈ T , adding it to T creates a graph T + e
having a unique cycle involving e. Lets call this cycle Ce .

Claim

For e /∈ E (T), e is the max-weight edge in Ce .

Proof.

Otherwise, removing any edge different from e in T + e
produces a spanning tree with smaller total weight.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

The cycle property

Claim (The cycle rule)

For a cycle C in G, the edge e ∈ C with max-weight can not
be part of T .

Proof.

Observe that, as G is connected,
G ′ = (V ,E − {e}) is connected.
Furthermore, a MST for G ′ is a MST
for G .

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

The cycle property

Claim (The cycle rule)

For a cycle C in G, the edge e ∈ C with max-weight can not
be part of T .

Proof.

Observe that, as G is connected,
G ′ = (V ,E − {e}) is connected.
Furthermore, a MST for G ′ is a MST
for G .

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

MST: Rules

The MST algorithms use two rules for adding/discarding edges.

The ⇐ implication of the cut property yields the blue rule
(include), which allow us to include safely in T a min weight
edge from some identified cut.

The ⇒ implication of the cycle property will yield the red rule
(exclude) which allow us to exclude from T a max weight edge
from some identified cycles.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

MST: Rules

The MST algorithms use two rules for adding/discarding edges.

The ⇐ implication of the cut property yields the blue rule
(include), which allow us to include safely in T a min weight
edge from some identified cut.

The ⇒ implication of the cycle property will yield the red rule
(exclude) which allow us to exclude from T a max weight edge
from some identified cycles.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Generic greedy for MST: Apply blue and/or red
rules

The two rules show the optimal substructure of the MST.
So, we can design a greedy algorithm.

Blue rule: Given a cut-set between S and V − S with no
blue edges, select from the cut-set a non-colored edge with
min weight and paint it blue

Red rule: Given a cycle C with no red edges, selected a
non-colored edge in C with max weight and paint it red.

Greedy scheme:
Given G , apply the red and blue rules until having n − 1
blue edges, those form the MST.

Robert Tarjan: Data Structures and Network Algorithms,
SIAM, 1984

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Generic greedy for MST: Apply blue and/or red
rules

The two rules show the optimal substructure of the MST.
So, we can design a greedy algorithm.

Blue rule: Given a cut-set between S and V − S with no
blue edges, select from the cut-set a non-colored edge with
min weight and paint it blue

Red rule: Given a cycle C with no red edges, selected a
non-colored edge in C with max weight and paint it red.

Greedy scheme:
Given G , apply the red and blue rules until having n − 1
blue edges, those form the MST.

Robert Tarjan: Data Structures and Network Algorithms,
SIAM, 1984

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Generic greedy for MST: Apply blue and/or red
rules

The two rules show the optimal substructure of the MST.
So, we can design a greedy algorithm.

Blue rule: Given a cut-set between S and V − S with no
blue edges, select from the cut-set a non-colored edge with
min weight and paint it blue

Red rule: Given a cycle C with no red edges, selected a
non-colored edge in C with max weight and paint it red.

Greedy scheme:
Given G , apply the red and blue rules until having n − 1
blue edges, those form the MST.

Robert Tarjan: Data Structures and Network Algorithms,
SIAM, 1984

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Generic greedy for MST: Apply blue and/or red
rules

The two rules show the optimal substructure of the MST.
So, we can design a greedy algorithm.

Blue rule: Given a cut-set between S and V − S with no
blue edges, select from the cut-set a non-colored edge with
min weight and paint it blue

Red rule: Given a cycle C with no red edges, selected a
non-colored edge in C with max weight and paint it red.

Greedy scheme:
Given G , apply the red and blue rules until having n − 1
blue edges, those form the MST.

Robert Tarjan: Data Structures and Network Algorithms,
SIAM, 1984

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Application of red/blue rules

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Application of red/blue rules

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Application of red/blue rules

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Application of red/blue rules

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Application of red/blue rules

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Application of red/blue rules

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Application of red/blue rules

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Application of red/blue rules

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Application of red/blue rules

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Application of red/blue rules

a

b

c d

e

g h

f

46

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Application of red/blue rules

a

b

c d

e

g h

f

46

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Application of red/blue rules

a

b

c d

e

g h

f

46

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Application of red/blue rules

a

b

c d

e

g h

f

46

3
8

15

9

2

5

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Application of red/blue rules

a

b

c d

e

g h

f

46

3
8

15

9

2

5

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Application of red/blue rules

a

b

c d

e

g h

f

46

3
8

15

9

2

5

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Application of red/blue rules

a

b

c d

e

g h

f

4

3
8

15

9

2

5

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Application of red/blue rules

a

b

c d

e

g h

f

4

3
8

15

9

2

5

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Greedy for MST: Correctness

Theorem

The greedy scheme finishes in at most m steps and at the end
of the execution the blue edges form a MST

Sketch.

As in each iteration an edge is added or discarded, the
algorithm finishes after at most m applications of the rules.

As the red edges cannot form part of any MST and the
blue ones belong to some MST, the selections are correct.

A set of n − 1 required edges form a spanning tree!

We need implementations for the algorithm!

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Greedy for MST: Correctness

Theorem

The greedy scheme finishes in at most m steps and at the end
of the execution the blue edges form a MST

Sketch.

As in each iteration an edge is added or discarded, the
algorithm finishes after at most m applications of the rules.

As the red edges cannot form part of any MST and the
blue ones belong to some MST, the selections are correct.

A set of n − 1 required edges form a spanning tree!

We need implementations for the algorithm!

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Greedy for MST: Correctness

Theorem

The greedy scheme finishes in at most m steps and at the end
of the execution the blue edges form a MST

Sketch.

As in each iteration an edge is added or discarded, the
algorithm finishes after at most m applications of the rules.

As the red edges cannot form part of any MST and the
blue ones belong to some MST, the selections are correct.

A set of n − 1 required edges form a spanning tree!

We need implementations for the algorithm!

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

A short history of MST implementation

There has been extensive work to obtain the most efficient
algorithm to find a MST in a given graph:

O. Bor̊uvka gave the first greedy algorithm for the MST in 1926. V.
Jarnik gave a different greedy for MST in 1930, which was
re-discovered by R. Prim in 1957. In 1956 J. Kruskal gave a different
greedy algorithms for the MST. All those algorithms run in O(m lg n).

Fredman and Tarjan (1984) gave a O(m log∗ n) algorithm,
introducing a new data structure for priority queues, the Fibbonacci
heap. Recall log∗ n is the number of times we have to apply
iteratively the log operator to n to get a value ≤ 1, for ex.
log∗ 1000 = 2.

Gabow, Galil, Spencer and Tarjan (1986) improved Fredman-Tarjan
to O(m log(log∗ n)).

Karger, Klein and Tarjan (1995) O(m) randomized algorithm.

In 1997 B. Chazelle gave an O(mα(n)) algorithm, where α(n) is a
very slowly growing function, the inverse of the Ackermann function.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Basic algorithms for MST

Jarńık-Prim (Serial centralized) Starting from a vertex v ,
grows T adding each time the lighter edge already
connected to a vertex in T , using the blue rule.
Uses a priority queue

Kruskal (Serial distributed) Considers every edge, in order
of increasing weight, to grow a forest by using the blue
and red rules. The algorithm stops when the forest
became a tree.
Uses a union-find data structure.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Jarńık–Prim greedy algorithm.

V. Jarńık, 1936, R. Prim, 1957

The algorithm keeps a tree T and adds one edge (and one
node) to T at each step until it became spanning.

Initially the tree T has one arbitrary node r , and no edges.

At each step T is enlarged adding a minimum weight edge
in the set cut(V (T),V − V (T)).

The algorithm is correct as it applies always the blue rule.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Jarńık–Prim greedy algorithm.

V. Jarńık, 1936, R. Prim, 1957

The algorithm keeps a tree T and adds one edge (and one
node) to T at each step until it became spanning.

Initially the tree T has one arbitrary node r , and no edges.

At each step T is enlarged adding a minimum weight edge
in the set cut(V (T),V − V (T)).

The algorithm is correct as it applies always the blue rule.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Jarńık–Prim greedy algorithm.

V. Jarńık, 1936, R. Prim, 1957

The algorithm keeps a tree T and adds one edge (and one
node) to T at each step until it became spanning.

Initially the tree T has one arbitrary node r , and no edges.

At each step T is enlarged adding a minimum weight edge
in the set cut(V (T),V − V (T)).

The algorithm is correct as it applies always the blue rule.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Jarńık–Prim greedy algorithm.

V. Jarńık, 1936, R. Prim, 1957

The algorithm keeps a tree T and adds one edge (and one
node) to T at each step until it became spanning.

Initially the tree T has one arbitrary node r , and no edges.

At each step T is enlarged adding a minimum weight edge
in the set cut(V (T),V − V (T)).

The algorithm is correct as it applies always the blue rule.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Jarńık - Prim greedy algorithm.

MST (G ,w , r)
T = {r}
for i = 2 to |V | do

Let e be a min weight edge in the cut(V (T),V − V (T))
T = T ∪ {e}

end for

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Example

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Example

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Example

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Example

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Example

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Example

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Example

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Example

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Example

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Example

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Example

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Example

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Example

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Example

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Example

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Example

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Jarńık–Prim: Implementation

Use a priority queue to choose min weight e in the cut set. In
doing so we have to discard some edges

MST (G ,w , r)
T = ({r}, ∅); Q = ∅; s = 0
Insert in Q all edges e = (r , v) with key w(r , v)
while s < n − 1 and Q is not empty do
(u, v ,w) = Q.pop()
if u /∈ V (T) or v /∈ V (T) then
Let u′ be the vertex from (u, v) that is not in T
Insert in Q all the edges e = (u′, v ′) ∈ E (G) for
v ′ /∈ V (T) with key w(e)
add e to T ; ++s

end if
end while

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Jarńık - Prim greedy algorithm: Correctness

The algorithm discards edge e:

Such an edge e = (u, v) has u, v ∈ V (T), so it forms a
cycle with the edges in T . But, e is the edge with highest
weight in this cycle. This is an application of the red rule.

The algorithm adds to T edge e:
Then e has minimum weight among all edges in Q, as Q
contains all edges in the cut-set(V (T),V − V (T)). This
is the blue rule

Therefore the algorithm computes a MST.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Jarńık - Prim greedy algorithm: Correctness

The algorithm discards edge e:
Such an edge e = (u, v) has u, v ∈ V (T), so it forms a
cycle with the edges in T . But, e is the edge with highest
weight in this cycle. This is an application of the red rule.

The algorithm adds to T edge e:
Then e has minimum weight among all edges in Q, as Q
contains all edges in the cut-set(V (T),V − V (T)). This
is the blue rule

Therefore the algorithm computes a MST.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Jarńık - Prim greedy algorithm: Correctness

The algorithm discards edge e:
Such an edge e = (u, v) has u, v ∈ V (T), so it forms a
cycle with the edges in T . But, e is the edge with highest
weight in this cycle. This is an application of the red rule.

The algorithm adds to T edge e:

Then e has minimum weight among all edges in Q, as Q
contains all edges in the cut-set(V (T),V − V (T)). This
is the blue rule

Therefore the algorithm computes a MST.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Jarńık - Prim greedy algorithm: Correctness

The algorithm discards edge e:
Such an edge e = (u, v) has u, v ∈ V (T), so it forms a
cycle with the edges in T . But, e is the edge with highest
weight in this cycle. This is an application of the red rule.

The algorithm adds to T edge e:
Then e has minimum weight among all edges in Q, as Q
contains all edges in the cut-set(V (T),V − V (T)). This
is the blue rule

Therefore the algorithm computes a MST.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Jarńık - Prim greedy algorithm: Correctness

The algorithm discards edge e:
Such an edge e = (u, v) has u, v ∈ V (T), so it forms a
cycle with the edges in T . But, e is the edge with highest
weight in this cycle. This is an application of the red rule.

The algorithm adds to T edge e:
Then e has minimum weight among all edges in Q, as Q
contains all edges in the cut-set(V (T),V − V (T)). This
is the blue rule

Therefore the algorithm computes a MST.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Jarńık–Prim greedy algorithm: Cost

Time: depends on the implementation of the priority queue Q.
We have ≤ m insertions on the priority queue.

Q an unsorted array: T (n) = O(|V |2);
Q a heap: T (n) = O(|E | lg |V |).
Q a Fibonacci heap: T (n) = O(|E |+ |V | lg |V |)

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Kruskal’s algorithm.

J. Kruskal, 1956

Similar to Jarńık–Prim, but chooses minimum weight edge, in
some cut. The selected edges form a forest until the last step.

MST-K (G ,w , r)
T = ∅
for i = 1 to |V | do
Let e ∈ E : with minimum weight among those that do
not form a cycle with T
T = T ∪ {e}

end for

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Example

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Example

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Example

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Example

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Example

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Example

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Example

a

b

c d

e

g h

f

46

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Example

a

b

c d

e

g h

f

4

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Example

a

b

c d

e

g h

f

4

14

3
8

15

9

2

5

10

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Example

a

b

c d

e

g h

f

4

3
8

15

9

2

5

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Example

a

b

c d

e

g h

f

4

3
8

15

9

2

5

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Kruskal’s algorithm: Efficient Implementation

MST-K2 (G ,w , r)
Sort E by increasing weight
T = ∅
for e ∈ E in sorted order do

if e does not form a cycle with T then
T = T ∪ {e}

end if
end for

The output is the same as for MST-K but we do not need to
examine the remaining edges at intermediate steps.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Kruskal’s algorithm: Efficient Implementation

MST-K2 (G ,w , r)
Sort E by increasing weight
T = ∅
for e ∈ E in sorted order do

if e does not form a cycle with T then
T = T ∪ {e}

end if
end for

The output is the same as for MST-K but we do not need to
examine the remaining edges at intermediate steps.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Kruskal’s algorithm: Efficient Implementation

MST-K2 (G ,w , r)
Sort E by increasing weight
T = ∅
for e ∈ E in sorted order do

if e does not form a cycle with T then
T = T ∪ {e}

end if
end for

The output is the same as for MST-K but we do not need to
examine the remaining edges at intermediate steps.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Kruskal’s algorithm: Implementation

We have a cost of O(m lgm) to sort the edges.
But as m ≤ n2, O(m lgm) = O(m lg n).

We need an efficient implementation of the algorithm
selecting an adequate data structure.

Let us look to some properties of the objects constructed
along the execution of the algorithm.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Kruskal’s algorithm: Implementation

We have a cost of O(m lgm) to sort the edges.
But as m ≤ n2, O(m lgm) = O(m lg n).

We need an efficient implementation of the algorithm
selecting an adequate data structure.

Let us look to some properties of the objects constructed
along the execution of the algorithm.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Kruskal’s algorithm: Implementation

We have a cost of O(m lgm) to sort the edges.
But as m ≤ n2, O(m lgm) = O(m lg n).

We need an efficient implementation of the algorithm
selecting an adequate data structure.

Let us look to some properties of the objects constructed
along the execution of the algorithm.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

A data structure for Kruskal algorithm

Kruskal evolves by building spanning forests, merging two
trees (blue rule) or discarding an edge (red rule) so as to
do not create a cycle.

The connectivity relation is an equivalence relation: uRF v
iff there is a path between u and v .

Kruskal, starts with a partition of V into n sets and ends
with a partition of V into one set.

R partition the elements of V in equivalence classes,
which are the connected components of the forest

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

A data structure for Kruskal algorithm

Kruskal evolves by building spanning forests, merging two
trees (blue rule) or discarding an edge (red rule) so as to
do not create a cycle.

The connectivity relation is an equivalence relation: uRF v
iff there is a path between u and v .

Kruskal, starts with a partition of V into n sets and ends
with a partition of V into one set.

R partition the elements of V in equivalence classes,
which are the connected components of the forest

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

A data structure for Kruskal algorithm

Kruskal evolves by building spanning forests, merging two
trees (blue rule) or discarding an edge (red rule) so as to
do not create a cycle.

The connectivity relation is an equivalence relation: uRF v
iff there is a path between u and v .

Kruskal, starts with a partition of V into n sets and ends
with a partition of V into one set.

R partition the elements of V in equivalence classes,
which are the connected components of the forest

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

A data structure for Kruskal algorithm

Kruskal evolves by building spanning forests, merging two
trees (blue rule) or discarding an edge (red rule) so as to
do not create a cycle.

The connectivity relation is an equivalence relation: uRF v
iff there is a path between u and v .

Kruskal, starts with a partition of V into n sets and ends
with a partition of V into one set.

R partition the elements of V in equivalence classes,
which are the connected components of the forest

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

The Union-Find data structure

B. Galler, M. Fisher: An improved equivalence algorithm. ACM
Comm., 1964; R.Tarjan 1979-1985

Is a data structure to maintain a dynamic partition of a
set.

One of the most elegant in the algorithmic toolkit.

It makes possible to design almost linear time algorithms
for problems that otherwise would be unfeasible.

Union-Find is a first introduction to an active research
field in algorithmics: Self organizing data structures used
in data stream computation.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

The Union-Find data structure

B. Galler, M. Fisher: An improved equivalence algorithm. ACM
Comm., 1964; R.Tarjan 1979-1985

Is a data structure to maintain a dynamic partition of a
set.

One of the most elegant in the algorithmic toolkit.

It makes possible to design almost linear time algorithms
for problems that otherwise would be unfeasible.

Union-Find is a first introduction to an active research
field in algorithmics: Self organizing data structures used
in data stream computation.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

The Union-Find data structure

B. Galler, M. Fisher: An improved equivalence algorithm. ACM
Comm., 1964; R.Tarjan 1979-1985

Is a data structure to maintain a dynamic partition of a
set.

One of the most elegant in the algorithmic toolkit.

It makes possible to design almost linear time algorithms
for problems that otherwise would be unfeasible.

Union-Find is a first introduction to an active research
field in algorithmics: Self organizing data structures used
in data stream computation.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Union-Find

Union-Find maintains a partition of a set i.e. a collection
of pairwise disjoint sets.

A set is represented by a rooted tree with labels. The root
of the tree the representative of the tree (set).

Internally a partition is a spanning forest.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Union-Find

Union-Find maintains a partition of a set i.e. a collection
of pairwise disjoint sets.

A set is represented by a rooted tree with labels. The root
of the tree the representative of the tree (set).

Internally a partition is a spanning forest.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Union-Find

Union-Find maintains a partition of a set i.e. a collection
of pairwise disjoint sets.

A set is represented by a rooted tree with labels. The root
of the tree the representative of the tree (set).

Internally a partition is a spanning forest.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Union-Find

Union-Find supports three operations on partitions of a set:

MAKESET(x): creates a new set containing the single
element x .
Creates a tree with only one node, the root, associated
with x .

UNION(x , y): Merge the sets containing x and y , by using
their union.
Define how to merge the trees and choose the root of the
merged trees.

FIND(x): Return the representative of the set containing
x .
Find the root of the tree containing x and return the
associated element.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Union-Find

Union-Find supports three operations on partitions of a set:

MAKESET(x): creates a new set containing the single
element x .

Creates a tree with only one node, the root, associated
with x .

UNION(x , y): Merge the sets containing x and y , by using
their union.
Define how to merge the trees and choose the root of the
merged trees.

FIND(x): Return the representative of the set containing
x .
Find the root of the tree containing x and return the
associated element.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Union-Find

Union-Find supports three operations on partitions of a set:

MAKESET(x): creates a new set containing the single
element x .
Creates a tree with only one node, the root, associated
with x .

UNION(x , y): Merge the sets containing x and y , by using
their union.
Define how to merge the trees and choose the root of the
merged trees.

FIND(x): Return the representative of the set containing
x .
Find the root of the tree containing x and return the
associated element.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Union-Find

Union-Find supports three operations on partitions of a set:

MAKESET(x): creates a new set containing the single
element x .
Creates a tree with only one node, the root, associated
with x .

UNION(x , y): Merge the sets containing x and y , by using
their union.

Define how to merge the trees and choose the root of the
merged trees.

FIND(x): Return the representative of the set containing
x .
Find the root of the tree containing x and return the
associated element.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Union-Find

Union-Find supports three operations on partitions of a set:

MAKESET(x): creates a new set containing the single
element x .
Creates a tree with only one node, the root, associated
with x .

UNION(x , y): Merge the sets containing x and y , by using
their union.
Define how to merge the trees and choose the root of the
merged trees.

FIND(x): Return the representative of the set containing
x .
Find the root of the tree containing x and return the
associated element.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Union-Find

Union-Find supports three operations on partitions of a set:

MAKESET(x): creates a new set containing the single
element x .
Creates a tree with only one node, the root, associated
with x .

UNION(x , y): Merge the sets containing x and y , by using
their union.
Define how to merge the trees and choose the root of the
merged trees.

FIND(x): Return the representative of the set containing
x .

Find the root of the tree containing x and return the
associated element.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Union-Find

Union-Find supports three operations on partitions of a set:

MAKESET(x): creates a new set containing the single
element x .
Creates a tree with only one node, the root, associated
with x .

UNION(x , y): Merge the sets containing x and y , by using
their union.
Define how to merge the trees and choose the root of the
merged trees.

FIND(x): Return the representative of the set containing
x .
Find the root of the tree containing x and return the
associated element.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Warning about UNION operation

Warning: For any x , y ∈ S , we might need to do
UNION(x , y), for x , y that are not representatives.
Depending on the implementation this might or might not
be allowed.

To determine the complexity under different
implementations, we consider that

UNION(x , y) = UNION(FIND(x),FIND(y)).

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Warning about UNION operation

Warning: For any x , y ∈ S , we might need to do
UNION(x , y), for x , y that are not representatives.
Depending on the implementation this might or might not
be allowed.

To determine the complexity under different
implementations, we consider that

UNION(x , y) = UNION(FIND(x),FIND(y)).

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Union-Find implementation for Kruskal

MST (G(V ,E),w , r), |V | = n, |E | = m
Sort E by increasing weight: {e1, . . . , em}
T = ∅
for all v ∈ V do

MAKESET(v)
end for
for i = 1 to m do

Assume that ei = (u, v)
if FIND(u) ̸= Find(v) then

T = T ∪ {ei}
UNION(u, v)

end if
end for

Sorting takes time O(m log n).

The remaining part of the algorithm is a sequence of n MAKESET
and O(m) operations of type FIND/UNION

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Union-Find implementation for Kruskal

MST (G(V ,E),w , r), |V | = n, |E | = m
Sort E by increasing weight: {e1, . . . , em}
T = ∅
for all v ∈ V do

MAKESET(v)
end for
for i = 1 to m do

Assume that ei = (u, v)
if FIND(u) ̸= Find(v) then

T = T ∪ {ei}
UNION(u, v)

end if
end for

Sorting takes time O(m log n).

The remaining part of the algorithm is a sequence of n MAKESET
and O(m) operations of type FIND/UNION

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Amortized analysis

(See for ex. Sect. 17-1 to 17.3 in CLRS)

An amortized analysis is any strategy for analyzing a
sequence of operations on a Data Structure, to provide the
”average” cost per operation, even though a single
operation within the sequence might be expensive.

An amortized analysis guarantees the average performance
of each operation is the worst case on the sequence.

The easier way to think about amortized analysis is to
consider total cost of the steps, for a sequence of
operations, divided by its size.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Union Find implementations: Amortized Costs

(4.6 KT)
For a set with n elements.

Using an array holding the representative of each element.

MAKESET and FIND takes O(1)
UNION takes O(n).

Using an array holding the representative, a list by set, and
in a UNION keeping the representative of the larger set.

MAKESET and FIND takes O(1)
any sequence of k UNION takes O(k log k).

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Union Find implementations: Amortized Costs

(4.6 KT)
For a set with n elements.

Using an array holding the representative of each element.

MAKESET and FIND takes O(1)
UNION takes O(n).

Using an array holding the representative, a list by set, and
in a UNION keeping the representative of the larger set.

MAKESET and FIND takes O(1)
any sequence of k UNION takes O(k log k).

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Complexity of Union Find implementations:
Amortized cost

For a set with n elements.

Using a rooted tree by set, in a UNION keeping the
representative of the larger set.

MAKESET and UNION takes O(1)
FIND takes O(log n).

Using a rooted tree by set, in a UNION keeping the
representative of the larger set, and doing path
compression during a FIND.

MAKESET takes O(1)
any intermixed sequence of k FIND and UNION takes
O(kα(n)).

α(n) is the inverse Ackerman’s function which grows
extremely slowly. For practical applications it behaves as a
constant.

http://www.gabrielnivasch.org/fun/inverse-ackermann

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Complexity of Union Find implementations:
Amortized cost

For a set with n elements.

Using a rooted tree by set, in a UNION keeping the
representative of the larger set.

MAKESET and UNION takes O(1)
FIND takes O(log n).

Using a rooted tree by set, in a UNION keeping the
representative of the larger set, and doing path
compression during a FIND.

MAKESET takes O(1)
any intermixed sequence of k FIND and UNION takes
O(kα(n)).

α(n) is the inverse Ackerman’s function which grows
extremely slowly. For practical applications it behaves as a
constant.

http://www.gabrielnivasch.org/fun/inverse-ackermann

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Union-Find implementation for Kruskal

MST (G(V ,E),w , r), |V | = n, |E | = m
Sort E by increasing weight: {e1, . . . , em}
T = ∅
for all v ∈ V do

MAKESET(v)
end for
for i = 1 to m do

Assume that ei = (u, v)
if FIND(u) ̸= Find(v) then

T = T ∪ {ei}
UNION(u, v)

end if
end for

Sorting take time O(m log n).

The remaining part of the algorithm has cost
n + O(mα(n)) = O(n +m).

But due to the sorting instruction, cost is O(n +m lg n).

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Some applications of Union-Find

Kruskal’s algorithm for MST.

Dynamic graph connectivity in networks with a large
number of edges.

Cycle detection in undirected graphs.

Random maze generation and exploration.

Strategies for games: Hex and Go.

Least common ancestor.

Compiling equivalence statements.

Equivalence of finite state automata.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Clustering

Clustering: process of finding interesting structure in a set
of data.

Given a collection of objects, organize them into similar
coherent groups with respect to some (distance function
d(·, ·)).
The distance function not necessarily has to be the
physical (Euclidean) distance. The interpretation of d(·, ·)
is that for any two objects x , y , the larger that d(x , y) is,
the less similar that x and y are.

If x , y are two species, we can define d(x , y) as the years
since they diverged in the course of evolution.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Generic k-clustering setting

Given a set of data points U = {x1, x2, . . . , xn} together with a
distance function d on X , and given a k > 0, a k-clustering is
a partition of X into k disjoint subsets.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

The single-link clustering problem

Let U be a set of n data points, assume {C1, . . . ,Ck} is a
k-clustering for U .
Define the spacing s in the k-clustering as the minimum
distance between any pair of points in different clusters.

The single-link clustering problem: Given U = {x1, x2, . . . , xn},
a distance function d , and k > 0, find a k-clustering of U
maximizing the spacing s.

Notice there are exponentially many different k-clusterings of
U .

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

The single-link clustering problem

Let U be a set of n data points, assume {C1, . . . ,Ck} is a
k-clustering for U .
Define the spacing s in the k-clustering as the minimum
distance between any pair of points in different clusters.

The single-link clustering problem: Given U = {x1, x2, . . . , xn},
a distance function d , and k > 0, find a k-clustering of U
maximizing the spacing s.

Notice there are exponentially many different k-clusterings of
U .

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

The single-link clustering problem

Let U be a set of n data points, assume {C1, . . . ,Ck} is a
k-clustering for U .
Define the spacing s in the k-clustering as the minimum
distance between any pair of points in different clusters.

The single-link clustering problem: Given U = {x1, x2, . . . , xn},
a distance function d , and k > 0, find a k-clustering of U
maximizing the spacing s.

Notice there are exponentially many different k-clusterings of
U .

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

TrKruskal: An algorithm for the single-link
clustering problem

Represent U as vertices of an undirected graph where the
edge (x , y) has weight d(x , y).

Apply Kruskal’s algorithm until the forest has k trees.

K=3

s

C

C

C

1

2

3

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Complexity and correctness

Theorem

TrKruskal solves the single-link clustering problem in O(n2 lg n)

Proof.

We have to create a complete graph and sort the n2 edges.
Thus TrKruskal has cost O(n2 lg n)

Correctness
Let C = {C1, . . . ,Ck} be the k-clustering produced by
TrKruskal, and let s be its spacing.

Assume there is another k-clustering C′ = {C ′
1, . . . ,C

′
k} with

spacing s ′ and s.t. C ̸= C′. We must show that s ′ ≤ s.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Complexity and correctness

Theorem

TrKruskal solves the single-link clustering problem in O(n2 lg n)

Proof.

We have to create a complete graph and sort the n2 edges.
Thus TrKruskal has cost O(n2 lg n)

Correctness
Let C = {C1, . . . ,Ck} be the k-clustering produced by
TrKruskal, and let s be its spacing.

Assume there is another k-clustering C′ = {C ′
1, . . . ,C

′
k} with

spacing s ′ and s.t. C ̸= C′. We must show that s ′ ≤ s.

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Complexity and correctness

C
x

y

x’
y’

C’

If C ̸= C′, then ∃Cr ∈ C s.t.
∀C ′

t ∈ C′,Cr ̸⊆ C ′
t .

Then ∃x , y ∈ Cr s.t. x ∈ C ′
a, y ∈ C ′

b

and a ̸= b.

∃ a path x ; y in Cr contained in the
spanning tree Tr obtained by
TrKruskal for Cr .

Then, ∃(x ′, y ′) ∈ E (Tr) with x ′ ∈ C ′
a

and y ′ ∈ C ′
b, so s ′ ≤ d(x ′, y ′).

As (x ′, y ′) ∈ E (Tr) d(x
′, y ′) ≤ s and

s ′ ≤ s.

End Proof

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Complexity and correctness

C
x

y

x’
y’

C’

If C ̸= C′, then ∃Cr ∈ C s.t.
∀C ′

t ∈ C′,Cr ̸⊆ C ′
t .

Then ∃x , y ∈ Cr s.t. x ∈ C ′
a, y ∈ C ′

b

and a ̸= b.

∃ a path x ; y in Cr contained in the
spanning tree Tr obtained by
TrKruskal for Cr .

Then, ∃(x ′, y ′) ∈ E (Tr) with x ′ ∈ C ′
a

and y ′ ∈ C ′
b, so s ′ ≤ d(x ′, y ′).

As (x ′, y ′) ∈ E (Tr) d(x
′, y ′) ≤ s and

s ′ ≤ s.

End Proof

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Complexity and correctness

C
x

y

x’
y’

C’

If C ̸= C′, then ∃Cr ∈ C s.t.
∀C ′

t ∈ C′,Cr ̸⊆ C ′
t .

Then ∃x , y ∈ Cr s.t. x ∈ C ′
a, y ∈ C ′

b

and a ̸= b.

∃ a path x ; y in Cr contained in the
spanning tree Tr obtained by
TrKruskal for Cr .

Then, ∃(x ′, y ′) ∈ E (Tr) with x ′ ∈ C ′
a

and y ′ ∈ C ′
b, so s ′ ≤ d(x ′, y ′).

As (x ′, y ′) ∈ E (Tr) d(x
′, y ′) ≤ s and

s ′ ≤ s.

End Proof

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Complexity and correctness

C
x

y

x’
y’

C’

If C ̸= C′, then ∃Cr ∈ C s.t.
∀C ′

t ∈ C′,Cr ̸⊆ C ′
t .

Then ∃x , y ∈ Cr s.t. x ∈ C ′
a, y ∈ C ′

b

and a ̸= b.

∃ a path x ; y in Cr contained in the
spanning tree Tr obtained by
TrKruskal for Cr .

Then, ∃(x ′, y ′) ∈ E (Tr) with x ′ ∈ C ′
a

and y ′ ∈ C ′
b, so s ′ ≤ d(x ′, y ′).

As (x ′, y ′) ∈ E (Tr) d(x
′, y ′) ≤ s and

s ′ ≤ s.

End Proof

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Complexity and correctness

C
x

y

x’
y’

C’

If C ̸= C′, then ∃Cr ∈ C s.t.
∀C ′

t ∈ C′,Cr ̸⊆ C ′
t .

Then ∃x , y ∈ Cr s.t. x ∈ C ′
a, y ∈ C ′

b

and a ̸= b.

∃ a path x ; y in Cr contained in the
spanning tree Tr obtained by
TrKruskal for Cr .

Then, ∃(x ′, y ′) ∈ E (Tr) with x ′ ∈ C ′
a

and y ′ ∈ C ′
b, so s ′ ≤ d(x ′, y ′).

As (x ′, y ′) ∈ E (Tr) d(x
′, y ′) ≤ s and

s ′ ≤ s.

End Proof

The problem

Properties

The cut and the
cycle properties

A generic algorithm

Prim’s
algorithm

Kruskal’s
algorithm

Description

Union-Find
implementation

Cost

An application:
Clustering

Complexity and correctness

C
x

y

x’
y’

C’

If C ̸= C′, then ∃Cr ∈ C s.t.
∀C ′

t ∈ C′,Cr ̸⊆ C ′
t .

Then ∃x , y ∈ Cr s.t. x ∈ C ′
a, y ∈ C ′

b

and a ̸= b.

∃ a path x ; y in Cr contained in the
spanning tree Tr obtained by
TrKruskal for Cr .

Then, ∃(x ′, y ′) ∈ E (Tr) with x ′ ∈ C ′
a

and y ′ ∈ C ′
b, so s ′ ≤ d(x ′, y ′).

As (x ′, y ′) ∈ E (Tr) d(x
′, y ′) ≤ s and

s ′ ≤ s.

End Proof

	The problem
	Properties
	The cut and the cycle properties
	A generic algorithm

	Prim's algorithm
	Kruskal's algorithm
	Description
	Union-Find implementation
	Cost
	An application: Clustering

