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A network construction problem: Minimum

Spanning Tree

CLRS 23, KT 4.5, DPV 5.1

m We have a set of locations.

The problem m For some pairs of locations it is possible to build a link

connecting the two locations, but it has a cost.

m We want to build a network (if possible), connecting all
the locations, with total minimum cost.

m So, the resulting network must be a tree.



Network construction: Minimum Spanning Tree

m We have a set of locations. Build a link connecting the
locations i and j has a cost w(v;, vj).

The problem

m We want to build tree spanning all the locations with total
minimum cost.

The MST
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Properties of trees

m A tree on n nodes has n — 1 edges.

UL G m Any connected undirected graph with n vertices and n — 1

edges is a tree.

m An undirected graph is a tree iff there is a unique path
between any pair of nodes.

Let G = (V, E) be a (undirected) graph.
m G'= (V' E')is asubgraph of Gif V/C V and E' C E.
m A subgraph G’ = (V’/, E’) of G is spanning if V' = V.

m A spanning tree of G is a spanning subgraph that is a tree.

Any connected graph has a spanning tree
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Some definitions

For a graph G = (V, E):
A path is a sequence of consecutive
edges.

A cycle is a path ending in an edge
connecting to the initial vertex, with
no other repeated vertex.

A cut is a partition of V into two
sets S and V — S.

The cut-set of a cut is the set of
edges with one end in S and the
otherin V —S. cut(5,V - 5) =
{e=(u,v)€eE|lueSv¢S}
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MST: Properties

Given a weighted graph G = (V, E, w), assume that all edge
weights are different.

A MST T in G has the following properties:
m Cut property
e € T < e is the lightest edge across some cut in G.
m Cycle property
e € T < e is the heaviest edge on some cycle in G.
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The cut property

Let G = (V,E,w), w: E — R", such that all weights are
different. Let T be a MST of G.

Removing an edge e = (u,v) from T yields two disjoint trees
T,and T,, sothat V(T,)=V - V(T,),ue T,and v € T,.
Let us call S, = V(T,) and S, = V(T,).

Claim

e € E(T) is the min-weight edge among those in cut(Sy, Sv).

Proof.

Otherwise, we can replace e by an edge in the cut with smaller
weight. Thus, forming a new spanning tree with smaller
weight. Ol
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The cut property

Claim (The cut rule)

For S C V, let e = (u,v) be the min-weight edge in
cut(S,V—S5), thenec T.

mAssumeeg T,uec Sand v ¢S.
m T is spanning, then a path P(u, v) from u to v exists in T.
mucSandv¢S: thereis € € cut(S,V —S) in P(u,v).

m Replacing €’ with e produces another spanning tree.

m But then, as w(e) > w(e’), T was not optimal.
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The cycle property

For an edge e ¢ T, adding it to T creates a graph T + e
having a unique cycle involving e. Lets call this cycle Ce.

Claim

For e ¢ E(T), e is the max-weight edge in Ce.

Otherwise, removing any edge different from e in T + e
produces a spanning tree with smaller total weight. O



The cycle property

Claim (The cycle rule)

For a cycle C in G, the edge e € C with max-weight can not
be part of T.




The cycle property

Claim (The cycle rule)

For a cycle C in G, the edge e € C with max-weight can not
be part of T.

Observe that, as G is connected,

G’ = (V,E — {e}) is connected.
Furthermore, a MST for G’ is a MST
for G.
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MST: Rules

The MST algorithms use two rules for adding/discarding edges.

The < implication of the cut property yields the blue rule
(include), which allow us to include safely in T a min weight
edge from some identified cut.

The = implication of the cycle property will yield the red rule
(exclude) which allow us to exclude from T a max weight edge
from some identified cycles.
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Generic greedy for MST: Apply blue and/or red

rules

The two rules show the optimal substructure of the MST.
So, we can design a greedy algorithm.

m Blue rule: Given a cut-set between S and V — S with no
blue edges, select from the cut-set a non-colored edge with
min weight and paint it blue

m Red rule: Given a cycle C with no red edges, selected a
non-colored edge in C with max weight and paint it red.

m Greedy scheme:

Given G, apply the red and blue rules until having n — 1
blue edges, those form the MST.

Robert Tarjan: Data Structures and Network Algorithms,
SIAM, 1984



Application of red/blue rules




Application of red/blue rules




Application of red/blue rules




Application of red/blue rules




Application of red/blue rules




Application of red/blue rules




Application of red/blue rules




Application of red/blue rules




Application of red/blue rules




Application of red/blue rules




Application of red/blue rules




Application of red/blue rules




Application of red/blue rules




Application of red/blue rules




Application of red/blue rules




Application of red/blue rules




Application of red/blue rules




Greedy for MST: Correctness

The greedy scheme finishes in at most m steps and at the end
of the execution the blue edges form a MST




Greedy for MST: Correctness

The greedy scheme finishes in at most m steps and at the end
of the execution the blue edges form a MST

m As in each iteration an edge is added or discarded, the
algorithm finishes after at most m applications of the rules.

m As the red edges cannot form part of any MST and the
blue ones belong to some MST, the selections are correct.
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Greedy for MST: Correctness

The greedy scheme finishes in at most m steps and at the end
of the execution the blue edges form a MST

m As in each iteration an edge is added or discarded, the
algorithm finishes after at most m applications of the rules.

m As the red edges cannot form part of any MST and the
blue ones belong to some MST, the selections are correct.

m A set of n — 1 required edges form a spanning tree!
L]

We need implementations for the algorithm!



A short history of MST implementation

There has been extensive work to obtain the most efficient
algorithm to find a MST in a given graph:

m O. Borilivka gave the first greedy algorithm for the MST in 1926. V.
Jarnik gave a different greedy for MST in 1930, which was
re-discovered by R. Prim in 1957. In 1956 J. Kruskal gave a different
greedy algorithms for the MST. All those algorithms run in O(mlg n).

A generic algorithm

m Fredman and Tarjan (1984) gave a O(mlog™ n) algorithm,
introducing a new data structure for priority queues, the Fibbonacci
heap. Recall log™ n is the number of times we have to apply
iteratively the log operator to n to get a value <1, for ex.
log™ 1000 = 2.

m Gabow, Galil, Spencer and Tarjan (1986) improved Fredman-Tarjan
to O(mlog(log* n)).

m Karger, Klein and Tarjan (1995) O(m) randomized algorithm.

m In 1997 B. Chazelle gave an O(ma(n)) algorithm, where «(n) is a
very slowly growing function, the inverse of the Ackermann function.



Basic algorithms for MST

m Jarnik-Prim (Serial centralized) Starting from a vertex v,
grows T adding each time the lighter edge already
connected to a vertex in T, using the blue rule.

Uses a priority queue

m Kruskal (Serial distributed) Considers every edge, in order
of increasing weight, to grow a forest by using the blue
and red rules. The algorithm stops when the forest
became a tree.

Uses a union-find data structure.

)
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Jarnik—=Prim greedy algorithm.

V. Jarnik, 1936, R. Prim, 1957

m The algorithm keeps a tree T and adds one edge (and one
Prim’s - .
algorithm node) to T at each step until it became spanning.

m Initially the tree T has one arbitrary node r, and no edges.
m At each step T is enlarged adding a minimum weight edge
in the set cut(V(T),V — V(T)).

m The algorithm is correct as it applies always the blue rule.



Jarnik - Prim greedy algorithm.

MST (G, w,r)
Primis T - {r}
sieorthm for i =2 to |V| do
Let e be a min weight edge in the cut(V(T),V — V(T))
T=TuU{e}
end for
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Jarnik—=Prim: Implementation

Use a priority queue to choose min weight e in the cut set. In
doing so we have to discard some edges

MST (G, w,r)
T = ({r},0); @ =0;5=0
Prim's Insert in Q all edges e = (r, v) with key w(r, v)

algorithm

while s < n—1 and Q is not empty do
(uv v, W) = Q-pOp()
if u¢ V(T)orve V(T) then
Let ' be the vertex from (u, v) that is not in T
Insert in Q all the edges e = (', V') € E(G) for
v ¢ V(T) with key w(e)
add eto T; ++s
end if
end while
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m The algorithm discards edge e:
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m The algorithm discards edge e:
Such an edge e = (u, v) has u,v € V(T), so it forms a
orints cycle with the edges in T. But, e is the edge with highest
algorithm weight in this cycle. This is an application of the red rule.
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Jarnik - Prim greedy algorithm: Correctness

m The algorithm discards edge e:
Such an edge e = (u, v) has u,v € V(T), so it forms a
orints cycle with the edges in T. But, e is the edge with highest
algorithm weight in this cycle. This is an application of the red rule.

m The algorithm adds to T edge e:
Then e has minimum weight among all edges in Q, as @
contains all edges in the cut-set(V(T),V — V(T)). This
is the blue rule

m Therefore the algorithm computes a MST.



Jarnik—Prim greedy algorithm: Cost

Time: depends on the implementation of the priority queue Q.
Prim’s We have < m insertions on the priority queue.

algorithm
Q an unsorted array: T(n) = O(|V|?);
Q a heap: T(n) = O(|E|lg|V]).
Q a Fibonacci heap: T(n) = O(|E| + |V|lg|V])



Kruskal's algorithm.

J. Kruskal, 1956

Similar to Jarnik—Prim, but chooses minimum weight edge, in
some cut. The selected edges form a forest until the last step.
MST-K (G, w,r)
T=10
fori=1to |V| do
Let e € E : with minimum weight among those that do
not form a cycle with T
T=TuU{e}
end for
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MST-K2 (G, w,r)
Sort E by increasing weight
T=90
for e € E in sorted order do
if e does not form a cycle with T then
T =TuU/{e}
end if
end for



Kruskal's algorithm: Efficient Implementation

MST-K2 (G, w,r)
Sort E by increasing weight
T=90
for e € E in sorted order do
if e does not form a cycle with T then
T =TuU/{e}
end if
end for
The output is the same as for MST-K but we do not need to
examine the remaining edges at intermediate steps.
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But as m < n?, O(mlgm) = O(mlgn).
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Kruskal's algorithm: Implementation

m We have a cost of O(mlgm) to sort the edges.
But as m < n?, O(mlgm) = O(mlgn).

m We need an efficient implementation of the algorithm
selecting an adequate data structure.

m Let us look to some properties of the objects constructed
along the execution of the algorithm.
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A data structure for Kruskal algorithm

Kruskal evolves by building spanning forests, merging two
trees (blue rule) or discarding an edge (red rule) so as to
do not create a cycle.

m The connectivity relation is an equivalence relation: tRrv
iff there is a path between u and v.

m Kruskal, starts with a partition of V into n sets and ends
with a partition of V into one set.

m R partition the elements of V' in equivalence classes,
which are the connected components of the forest



The Union-Find data structure

B. Galler, M. Fisher: An improved equivalence algorithm. ACM
Comm., 1964; R.Tarjan 1979-1985

m Is a data structure to maintain a dynamic partition of a
set.

m One of the most elegant in the algorithmic toolkit.



The Union-Find data structure

B. Galler, M. Fisher: An improved equivalence algorithm. ACM
Comm., 1964; R.Tarjan 1979-1985

m Is a data structure to maintain a dynamic partition of a
set.

m One of the most elegant in the algorithmic toolkit.

m It makes possible to design almost linear time algorithms
for problems that otherwise would be unfeasible.




The Union-Find data structure

B. Galler, M. Fisher: An improved equivalence algorithm. ACM
Comm., 1964; R.Tarjan 1979-1985

m Is a data structure to maintain a dynamic partition of a
set.

m One of the most elegant in the algorithmic toolkit.

m It makes possible to design almost linear time algorithms
for problems that otherwise would be unfeasible.

m Union-Find is a first introduction to an active research
field in algorithmics: Self organizing data structures used
in data stream computation.
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of pairwise disjoint sets.
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Union-Find

m Union-Find maintains a partition of a set i.e. a collection
of pairwise disjoint sets.

m A set is represented by a rooted tree with labels. The root
of the tree the representative of the tree (set).

Union-Find

implementation m Internally a partition is a spanning forest.
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Union-Find

Union-Find supports three operations on partitions of a set:

m MAKESET(x): creates a new set containing the single
element x.
Creates a tree with only one node, the root, associated
with x.

m UNION(x, y): Merge the sets containing x and y, by using
their union.
Define how to merge the trees and choose the root of the
merged trees.

m FIND(x): Return the representative of the set containing
X.

Find the root of the tree containing x and return the

associated element.




Warning about UNION operation

m Warning: For any x,y € S, we might need to do
UNION(x, y), for x,y that are not representatives.
Depending on the implementation this might or might not
be allowed.




Warning about UNION operation

m Warning: For any x,y € S, we might need to do
UNION(x, y), for x,y that are not representatives.
Depending on the implementation this might or might not
be allowed.

m To determine the complexity under different
implementations, we consider that

UNION(x, y) = UNION(FIND(x), FIND(y)).




Union-Find implementation for Kruskal

MST (G(V,E),w,r), |V|=n,|E|=m
Sort E by increasing weight: {e1,...,en}
T=0
for all v € V do
MAKESET(v)
end for
for i=1to mdo
Assume that & = (u, v)
if FIND(u) # Find(v) then
T=TU {e,-}
UNION(u, v)
end if
end for




Union-Find implementation for Kruskal

MST (G(V,E),w,r), |V|=n,|E|=m
Sort E by increasing weight: {e1,...,en}
T=0
for all v € V do
MAKESET(v)
end for
for i=1to mdo
Assume that & = (u, v)
if FIND(u) # Find(v) then
Union-Find T=TU {ei}
Il UNION(u, v)
end if
end for

m Sorting takes time O(mlog n).

m The remaining part of the algorithm is a sequence of n MAKESET
and O(m) operations of type FIND/UNION




Amortized analysis

(See for ex. Sect. 17-1 to 17.3 in CLRS)

m An amortized analysis is any strategy for analyzing a
sequence of operations on a Data Structure, to provide the
"average’ cost per operation, even though a single
operation within the sequence might be expensive.

m An amortized analysis guarantees the average performance
of each operation is the worst case on the sequence.

m The easier way to think about amortized analysis is to
consider total cost of the steps, for a sequence of
operations, divided by its size.
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(4.6 KT)
For a set with n elements.

m Using an array holding the representative of each element.

m MAKESET and FIND takes O(1)
m UNION takes O(n).
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(4.6 KT)
For a set with n elements.

m Using an array holding the representative of each element.
m MAKESET and FIND takes O(1)
m UNION takes O(n).
m Using an array holding the representative, a list by set, and
in a UNION keeping the representative of the larger set.

m MAKESET and FIND takes O(1)
m any sequence of k UNION takes O(k log k).
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Amortized cost

For a set with n elements.

m Using a rooted tree by set, in a UNION keeping the
representative of the larger set.

m MAKESET and UNION takes O(1)
m FIND takes O(log n).
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Complexity of Union Find implementations:

Amortized cost

For a set with n elements.

m Using a rooted tree by set, in a UNION keeping the
representative of the larger set.
m MAKESET and UNION takes O(1)
m FIND takes O(log n).

m Using a rooted tree by set, in a UNION keeping the
representative of the larger set, and doing path
compression during a FIND.

m MAKESET takes O(1)

m any intermixed sequence of k FIND and UNION takes
O(ka(n)).

a(n) is the inverse Ackerman’s function which grows
extremely slowly. For practical applications it behaves as a
constant.


http://www.gabrielnivasch.org/fun/inverse-ackermann

Union-Find implementation for Kruskal

MST (G(V,E),w,r), |V|=n,|E|=m
Sort E by increasing weight: {e1,...,em}
T=0
for all v € V do
MAKESET(v)
end for
for i=1to mdo
Assume that e; = (u, v)
if FIND(u) # Find(v) then
T=Tu{e}
UNION(u, v)
end if
end for

m Sorting take time O(mlog n).

m The remaining part of the algorithm has cost
n+ O(ma(n)) = O(n+ m).

But due to the sorting instruction, cost is O(n + mlg,n).



Some applications of Union-Find

Kruskal's algorithm for MST.

Dynamic graph connectivity in networks with a large
number of edges.

Cycle detection in undirected graphs.
Random maze generation and exploration.
Strategies for games: Hex and Go.

Least common ancestor.

Compiling equivalence statements.

Equivalence of finite state automata.



Clustering

Clustering: process of finding interesting structure in a set
of data.

m Given a collection of objects, organize them into similar
coherent groups with respect to some (distance function
d(-,))-

m The distance function not necessarily has to be the
physical (Euclidean) distance. The interpretation of d(-,-)
is that for any two objects x, y, the larger that d(x,y) is,
the less similar that x and y are.

m If x, y are two species, we can define d(x, y) as the years
since they diverged in the course of evolution.



Generic k-clustering setting

Given a set of data points U = {xy, x2, ..., Xy} together with a
distance function d on X, and given a k > 0, a k-clustering is
a partition of X into k disjoint subsets.

Generali

Sumitomo
]

An application:
Clustering

Frankiin Res.  Werril Lynch




The single-link clustering problem

Let U be a set of n data points, assume {Cy,...,Cx} is a
k-clustering for U.

Define the spacing s in the k-clustering as the minimum
distance between any pair of points in different clusters.
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The single-link clustering problem

., Ck}isa

Let U be a set of n data points, assume {Cy, ..
k-clustering for U.
Define the spacing s in the k-clustering as the minimum
distance between any pair of points in different clusters.

The single-link clustering problem: Given U = {x1,x2,...,Xn},
a distance function d, and k > 0, find a k-clustering of U
maximizing the spacing s.

Notice there are exponentially many different k-clusterings of
Uu.




TrKruskal: An algorithm for the single-link
clustering problem

m Represent U as vertices of an undirected graph where the
edge (x,y) has weight d(x,y).
m Apply Kruskal's algorithm until the forest has k trees.




Complexity and correctness

TrKruskal solves the single-link clustering problem in O(n? g n)

We have to create a complete graph and sort the n? edges.
Thus TrKruskal has cost O(n” g n)
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TrKruskal solves the single-link clustering problem in O(n? g n)

We have to create a complete graph and sort the n? edges.
Thus TrKruskal has cost O(n” g n)

Correctness
Let C ={C,..., Ck} be the k-clustering produced by
TrKruskal, and let s be its spacing.

Assume there is another k-clustering C" = {({,..., C.} with
spacing s’ and s.t. C # C’. We must show that s’ < s.




Complexity and correctness

m If C#C/, then 3C, € C s.t.
VClec,C ¢ Cl.
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If C # (', then 3C, € C s.t.
vCl el C & (.

m Then 3x,y € G, st. xe C, y €
and a # b.
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Complexity and correctness

If C # (', then 3C, € C s.t.
vCl el C & (.

m Then 3x,y € G, st. xe C, y €
and a # b.

m Ja path x ~ y in C, contained in the
spanning tree T, obtained by
TrKruskal for C,.

m Then, 3(x',y") € E(T;) with x’ € C]
and y' € ], so s’ <d(x,y).

m As (x',y') € E(T;) d(x',y') <s and
s’ <s.

End Proof
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