Greedy Algorithms

XYY Y
s
o
g ';fj:,‘o'f*"w'rﬁuﬂ'
o W
Eo

i
A u':;"‘ﬂ‘{
- AL,
A

e
gRsitid)

A%

0

W

Baky
A
s

o
e eRn
3‘3**?{'

A

Greedy Algorithms

m Greedy algorithms are mainly designed to solve

The combinatorial optimization problems:

technique

Given an input, we want to compute an optimal solution
according to some objective function.

m The solutions are formed by a sequence of elements.

m For example: Given a graph G = (V/, E) and two vertices
u,v € V, we want to find a path from u to v having the
minimum number of edges.

The solution is a sequence of vertices or edges.

Greedy Algorithms

The
technique

A greedy algorithm obtains an optimal solution to a
combinatorial optimization problem by making a sequence of
choices (without backtracking).

m Greedy algorithms make locally optimal myopic choices to
construct incrementally a global solution.

m In some cases this will lead to a globally optimal solution.

m Often easy greedy algorithms are used to obtain quickly
solutions to optimization problems, even though they do
not always yield optimal solutions.

m For many problems the greedy technique yields good

heuristics, or even good approximation algorithms.

Greedy Algorithms

For the greedy strategy to work correctly, it is necessary that
the problem under consideration has two characteristics:

The
technique m Greedy choice property: We can arrive to the global

optimum by selecting a sequence of local optimums.

m Optimal substructure: After making some local decision, it
must be the case that there is an optimal solution to the
problem that extends the partial solution constructed so
far.

In many cases, the local criteria for selecting a part of the
solution allow us to define a global order that directs the
greedy algorithm.

The FRACTIONAL KNAPSACK problem

FracTIiONAL KNAPSACK: Given as input a set of n items,
where item i has weight w; and value v;, together with a
maximum total weight W. We want to select a set of fractions
Fractional of items, to maximize the profit, within the allowed total

fnapsack weight.

Observe that, from each item, we can select any arbitrary
fraction of its weight keeping the same fraction of their value.

Example. n=5 and W =100
ftem 1 2 3 4 5
w 10 20 30 40 50
v 20 30 66 40 60

FRACTIONAL KNAPSACK: GREEDY SCHEMA

GreedyFKnapsack (n, v, w, W)
O={1,...,n}; S=0; Val=0; i =0;
while W > 0 do
Er:::;;ﬁ' Let i € O be the item with property P
if w[i] < W then
S=SuU{(i,1)}; W=W —wl[i]; Val = Val + v[i];
else
S=SuU{(i, W/wl[i])}; Val = Val + v[i] * W /w][i];
W=0
end if
Remove i from O.
end while
return S

GreedyFKnapsack: most valuable object

Example. n=5 and W =100

tem 1 2 3 4 5
w 10 20 30 40 50
v 20 30 66 40 60

ltem 1 2 3 4 5
Selected 0 0 1 05 1

Total selected weight 100 and total value 146

Selecting the most valuable object is a correct greedy rule?

GreedyFKnapsack: the lighter object

Example. n=5 and W =100

tem 1 2 3 4 5
w 10 20 30 40 50
v 20 30 66 40 60
Item 1 2 3 4 5
Selected 1 1 1 1 0
Total selected weight 100 and total value 156

Selecting the most valuable object does not provide a correct
solution.

Selecting the lighter object is a correct greedy rule?

GreedyFKnapsack: the highest ratio value/weight

Example. n=5 and W =100

tem 1 2 3 4 5
w 10 20 30 40 50
v 20 30 66 40 60

ltem 1 2 3 4 5
ratio 20 15 22 10 1.2
Selected 1 1 1 0 038

Total selected weight 100 and total value 164
Selecting the lighter object does not provide a correct solution.

Highest ratio value/weight is a correct greedy rule?

GreedyFKnapsack: highest ratio value/weight

The GreedyFKnapsack selecting the item with the best ratio
value/weight always finds an optimal solution to the
FRACTIONAL KNAPSACK problem

Assume that the n items are sorted so that

v v v,
712722...27”
w1 wp Wp

GreedyFKnapsack: highest ratio value/weight

Let X = (x1,...,%a), Xi € [0,1], be the portions of items
selected by the algorithm.

m If x; = 1, for all i, the computed solution is optimal.
We take all!

m Otherwise, let j be the smallest value for which x; < 1.

m According with the algorithm,
x; =1, for i <j, and
x; =0, for i > j.

m Furthermore, >0 ; xjw; = W

GreedyFKnapsack: highest ratio value/weight

Let Y = (y1,...,¥n), ¥i €[0,1], be the portions of items
selected in a feasible solution, i.e.,

n
ZYIWI <w
i=1
m We have, 27:1 yiwi < W = 27:1 Xj Wi

m So, 0 < 37 xiwi = Doy yiwi = 30114 (xi — yi)wi
m Then, the value difference can be expressed as

V(X —V ZX/V: Z.VIVI—Z Xi y,')v;
i=1
= Z(X,
i=1

GreedyFKnapsack: highest ratio value/weight

We want to bound v(x) — v(y) = Y i (xi — yi)wi-L.

wi

mIfi<j xi=1s0x —y >0but as X > I,
1 J

Vi Vi
(xi — y;);’i > (xi — }/i)wjj

- |f,'>j,Xi:0,sox,-—y,-§0but,as%’iﬁ
Vi Vi
(X,-—y,')wli Z(Xi_yi)wjj

m The same inequality in both cases.

GreedyFKnapsack: highest ratio value/weight

m Using the derived inequalities, we have

v(x) —v(y) = Z(Xi - Yi)Wi%
i=1 '

n n
v v
> El(Xi _YI)WIWJJ > % El(Xi —yi)w; =0
1= 1=

w; <

m So, v(X) —v(Y) >0, and x is an optimal solution.

End Proof

GreedyFKnapsack: highest ratio value/weight

GreedyFKnapsack (n, v, w, W)
O={1,...,n}; S=0; Val=0; i =0;
while W > 0 do
Let / € O be an item with highest value/weight
if w[i] < W then
S=SuU{(i,1)}; W=W —wl[i]; Val = Val + v[i];
else
S=SuU{(i, W/w[i])}; V = Val + v[i] « W/w][i];
W=0
end if
Remove i from O
end while
return S

Cost?0(n?) a better implementation?

FRACTIONAL KNAPSACK

GreedyFKnapsack (n, v, w, W)
Sort the items in decreasing value of v;/w;
S=0:Val=0;i=0;
while W >0 and i < ndo
if w[i] < W then
S=SuU{(i,1)}; W=W —wl[i]; Val = Val + v[i];
else
S=SuU{(i, W/wl[i])}; Val = Val + v[i] * W /w][i];
W =0;
end if
++i;
end while
return S

This algorithm has cost of T(n) = O(nlog n).

FRACTIONAL KNAPSACK

The FRACTIONAL KNAPSACK problem can be solved in time
O(nlog n).

0-1 KNAPSACK

0-1 KNAPSACK Given as input a set of n items, where item |
has weight w; and value v;, together with a maximum total
weight W permissible. We want to select a set of items to
maximize the profit, within allowed weight W.
?
L) r

=

Items cannot be fractioned, you have to take all or nothing.

The greedy algorithm for the fractional version does not work
for 0-1 KNAPSACK

Example: n=3 and W =50
[tem 1 2 3

w10 20 30 = 7
v 60 100 120 O
viw 6 5 4 r

)
The algorithm will select item 1, with value 60. This is not an
optimal solution, as 2 and 3 form a better solution, with value
220.
But, 0-1 KNAPSACK is known to be NP-hard.

Tasks or Activities Scheduling problems

General Setting:
m Given: A set of n tasks (with different characteristics) to
be processed by a single/multiple processor system
(according to different constrains).
m Provide a schedule, (when and where a (each) task must
be executed), so as to optimize some objective criteria.

Scheduling

Some mono processor scheduling problems

INTERVAL SCHEDULING problem: Tasks have start and
finish times. The objective is to make an executable
selection with maximum size.

WEIGHTED INTERVAL SCHEDULING problem: Tasks
have start and finish times and its execution produce
profits. The objective is to make an executable selection

Scheduling giving maximum profit.

JOB SCHEDULING problem (Lateness minimization):
Tasks have processing time (could start at any time) and a
deadline, define the lateness of a task as the time from its
deadline to its starting time. Find an executable schedule,

including all the tasks, that minimizes the total lateness.

The INTERVAL SCHEDULING problem

The INTERVAL SCHEDULING (aka ACTIVITY SELECTION
problem)
m Given a set of n tasks where, for i € [n], task i has a start
time s; and a finish time f;, with s; < f;.
m The processor is a single machine, that can process only
one task at a time.
m A task must be processed completely from its starting
I time to its finish time.
m We want to find a set of mutually compatible tasks ,
where activities i and j are compatible if [s;f;) N (s;fj] = 0,
with maximum size.

A solution is a set of mutually compatible activities, and the
objective function to maximize is the cardinality of the solution
set.

Example: one input

Task :
Start (s):
Finish (f):

Interval scheduling

Designing a greedy algorithm

To apply the greedy technique to a problem, we must take into
consideration the following,

m A local criteria to allow the selection,

m having in mind a property ensuring that a partial solution
can be completed to an optimal solution.

As for the FRACTIONALKNAPSACK problem, the selection
Interval scheduing criteria might lead to a sorting criteria. In such a case, greedy
processes the input in this particular order.

The Interval Scheduling problem: Earlier finish time

IntervalScheduling(A)
S=0; T={1,...,n};
while T #(do
Let i be the task that finishes earlier among those in T
S=Su{i};
Remove from T, i and all tasks j € T with s; < t;
end while
return S.
task: 3427856
Interval scheduling s: 3 1 2 4 8 5 6
f: 3555899

SOL:3185

IntervalScheduling: correctness

The IntervalScheduling algorithm produces an optimal
solution to the INTERVAL SCHEDULING problem.

Proof.

We want to prove that:
e There is an optimal solution that includes the task with the
earlier finishing time.

We will assume that this is not the case and reach
contradiction.

IntervalScheduling: correctness

Let / be a task that finishes at the earliest finish time.

m Let S be an optimal solution with / ¢ S.
Let k € S be the task with the earlier finish time among
those in S.

m Any task in S finishes after time A[k].f, so they start also
after A[k].f. As A[i].f < A[Kk].f, S'=(S—{k})U{i}isa
set of mutually compatible tasks.

Interval scheduling

As |S'| = |S|, S’ is an optimal solution that includes /.

IntervalScheduling: correctness

Optimal substructure

After each greedy choice, we are left with an optimization
subproblem, of the same form as the original. To get the
subproblem, we remove the selected task and all tasks that
overlap with the selected one.

An optimal solution to the original problem is formed by the
selected task (one that finishes earliest possible) and an
optimal solution to the corresponding subproblem.

End Proof

Interval scheduling

Interval Scheduling: cost

IntervalScheduling(A)
S=0; T =[n]; O(n)
while T # () do
Let / be the task that finishes earlier among those in T
O(n)
S=Su{i}
Remove i and all tasks overlapping i from T O(n)
Inera sheduing end while
return S.

It takes O(n?) Too slow, a better implementation?

We have to find a fastest way to select i and discard i and the
overlapping tasks.

The Interval Scheduling problem: algorithm 2

IntervalScheduling2(A)
Sort A in increasing order of A.f
S ={0}
J = 0 {pointer to last task in solution}
fori=1ton—1do

if A[i].s > A[j].f then

S=Su{i};j=1

el scheduing end if
end for
return S.

IntervalScheduling2: correctness

Theorem

The IntervalScheduling2 algorithm produces an optimal
solution to the INTERVAL SCHEDULING problem in time
O(nlog n)

m A tasks that does not verify A[i].s > A[j].f overlaps with
task j € S. It starts before j and finishes after j finishes.
Therefore, it cannot be part of a solution together with j.

Interval scheduling

m As the tasks are sorted by finish time at each step, we
select, among those tasks that start later than j, the one
that finishes earlier.

IntervalScheduling2: correctness

m IntervalScheduling2 makes the same greedy choice as
IntervalScheduling, therefore it computes an optimal
solution.

m The most costly step in IntervalScheduling?2 is the

sorting, which can be done in O(nlog n) time using Merge
sort.

End Proof

Interval scheduling

IntervalScheduling2: particular case

If we know that the tasks start and finish time are given in
seconds within a day (24 hours),

IntervalScheduling2 can be implemented with cost O(n)

Interval scheduling

Adding weights: greedy choice does not always

work.

WEIGHTED ACTIVITY SELECTION problem:
Given a set of n activities to be processed by a single machine,
where each activity / has a start time s; and a finish time f;,
with s; < f;, and a weight w;.

We want to find a set S of mutually compatible activities so
that), s w; is maximum among all such sets.

IntervalScheduling?2 selects the green and the second red
activity with weight 10 which is not an optimal solution.

What about maximizing locally the selected

weight?

WeightedAS-max-weight (A)
S=0; T=In]
while T # () do
Let / be the task with highest weight among those in T.
S=Su{i}
Remove i and all tasks overlapping i from T
end while
return S

The algorithm chooses the blue task with weight 10, and the
optimal solution is formed by the two red intervals with total
weight of 12.

Greedy approach

Easy to come up with one or more greedy algorithms

Easy to analyze the running time.

Hard to establish correctness.

Most greedy algorithms we came up are not correct on all
inputs.

A Job Scheduling problem

LATENESS MINIMIZATION problem.

m We have a single processor and n tasks (or jobs) to be
processed.

m Once a task starts to be processed it continues using the
processor until its completion.

m Processing task i takes time t;. Furthermore, task i has a
deadline d;.

m The goal is to schedule all the tasks, i.e., determine the
time at which to start processing each tasks.

m We want to minimize, over all the tasks, the maximum
amount of time that the finish time of a tasks exceeds its
deadline.

Minimize Lateness: a more formal formulation

m We have a single processor
m We have n jobs such that job i:

m requires t; > 0 units of processing time,
m it has to be finished by time d;,
m A schedule will determine a finish time f;

m Under this schedule lateness of | is:

.o if fi < d,
o f; —d; otherwise.

m The lateness of a valid schedule is max; L;.

Goal: find a schedule with minimum lateness

Minimize Lateness: an example

We must assign starting time s; to each i, making sure that the
processor only processes a job at a time, in such a way that
max; L; is minimum.

6tasks: t:122334 d:98156149

2
I

EEE

0

4?6‘7§‘391‘0111‘21‘31‘415
1 (N R B L

o— L

|

1

+ 6
0

o W
)

o ——
~

o ——
)

Minimize Lateness

We can try different task selection criteria to schedule the jobs
following a generic greedy algorithm.

LatenessXX (A)
Sort A according to XX
S[0] = 0; t = A[0].t; L = max(0, t — A[0].d);
fori=1ton—1do

Sli]=t

t=t+A[i].t

L = max(L, max(0, t — A[i].d))
end for
return (S,L)

Minimize Lateness: selection criteria

Process jobs with short time first

i|t | d
1|16 1 at time 0 and 2 at time 1 lateness 1, but
5 2 at time 0 and 1 at time 5 has lateness 0.

It does not work.

Process first jobs with smaller d; — t; time

it | d | di—t
1|1 2 1 2 should start at time 0, that
10 | 10 0 does not minimize lateness.

Process urgent jobs first

Sort in increasing order of d;.
pos. sorted by d

d
9 3
8

LatenessUrgent (A)
Sort A by increasing order of A.d
S[0] = 0; t = A[0].t;
L = max(0, t — A[0].d);
fori=1ton—1do

Sli]=t

t=t+ Al.t

L = max(L, max(0, t — A[i].d))
end for
Minimizing lateness return (5, L)

OO B|W N~
BIWWINN| |~
=
(€]

—
N
SO =lo

1‘2 13 1‘4 15

Process urgent jobs first: Complexity

LatenessUrgent (A)
Sort A by increasing order of A.d
S[0] = 0; t = A[0].t; L = max(0, t — A[0].d);
fori=1ton—1do

Sli|=t

t=t+A[].t

L = max(L, max(0, t — A[i].d))
end for
return (S,L)

Time complexity
Running-time of the algorithm without sorting O(n)
Total running-time: O(nlg n)

Process urgent jobs first: Correctness

There is an optimal schedule minimizing lateness that does not
have idle steps.

From a schedule with idle steps, we always can eliminate gaps
to obtain another schedule with the same or better lateness:

LatenessUrgent has no idle steps.

Inversions and the exchange argument

A schedule S has an inversion if S(i) < S(j) and d; < d;.

m If there is an inversion, there must be one in consecutive
positions.

m Exchanging two adjacent inverted jobs reduces the number
of inversions by 1

m If we can show that the change does not increase the max
lateness. We can apply the exchanging process as many
times as needed until we get the jobs scheduled according
to our criteria without increasing the max lateness.

m The above will show that our ordering provides an optimal
solution

Inversions and exchange argument

Exchanging two adjacent inverted jobs reduces the number of
inversions by 1 and does not increase the max lateness.

Assume that in schedule S, i is scheduled just before j and that
they form an inversion.
Let S’ be the schedule obtained from S interchanging i with j.

m S[k] = S'[K] for k # i and k # j.
m Thus, only i and j can change lateness.

m Job j is scheduled earlier in S’ than in S, so its lateness
cannot increase.

Inversions and exchange argument: Cont.

Let L;,L; and L}, L} be the lateness of jobs i and j in S
and S’, respectively. Recall d; < d.

m Let fi,f; and f/, f/ be the finish times of jobs i and j in S
and S, respectively.

We have f; < f;, zj-’ < f!, f/ = f;, and f;-’ < f.
Furthermore, Lj- <L

If f; < d,

S
Sl

So, L = L; = 0 Both schedules have the same latency.

Inversions and exchange argument: Cont.

Let L;,L; and L}, L} be the lateness of jobs i and j in S
and S’, respectively. Recall d; < d.

m Let fi,f; and f/, f/ be the finish times of jobs i and j in S
and S, respectively.
m We have f; < fj, zj-’<f,-’, f! = f;, and f;-’<f

j.
milf d < f},

So, L’ < L;j and S’ has the same or better lateness than S.

Inversions and exchange argument: Cont.

Therefore, in both cases, the swapping does not increase the
maximum lateness of the schedule.

End Proof

Correctness of LatenessUrgent

Algorithm LatenessUrgent solves correctly the LATENESS
MINIMIZATION problem. in O(nlog n) time

According to the design, the schedule S produced by
LatenessUrgent has no inversions and no idle steps.

Assume § is an optimal schedule. We can assume that it has
no idle steps.

Correctness of LatenessUrgent

m If S has 0 inversions, S sorts jobs by deadlines and § = S.

m Otherwise, $ has an inversion on two adjacent jobs.
Let /,j be an adjacent inversion.
As we have seen, exchanging i and j does not increase
lateness but it decreases the number of inversions.
As S is optimal, the new schedule is also optimal but has
one inversion less.

m Repeating, if needed the interchange of adjacent
inversions, we will reach an optimal schedule with no
inversions. Therefore, S is optimal.

End Proof

DATA COMPRESSION

Given as input a text T over a finite
alphabet . We want to represent T
with as few bits as possible.
.Comprasszd
(encoded)
-

The goal of data compression is to
reduce the time to transmit large
files, and to reduce the space to
store them.

If we are using variable-length
encoding we need a system easy to
encode and decode.

data compression

Example.

AAACAGTTGCAT --- GGTCCCTAGG
130.000.000

m Fixed-length encoding: A=00,C =01, G =10 and

T = 11. Needs 260Mbites to store.
m Variable-length encoding: If A appears 7 x 108 times, C
appears 3 x 10° times, G 2 x 10% and T 37 x 107, better
to assign a shorter string to A and longer to C

Prefix codes

Given a set of symbols ¥, a prefix code, is ¢ : & — {0,1}T
(symbols to chain of bits) where for distinct x,y € ¥, ¢(x) is
not a prefix of ¢(y).
m ¢(A) =1 and ¢(C) = 101 then ¢ is not a prefix code.
m p(A)=1,¢(T)=01,¢(G) =000,p(C) =001 is a prefix
code.

m Prefix codes easy to decode (left-to-right):

000
G

Prefix tree

We can identify an encoding with prefix property with a labeled
binary tree.
A prefix tree T is a binary tree with the following properties:

m One leaf for symbol,
m Left edge labeled 0 and right edge labeled 1,

m Labels on the path from the root to a leaf specify the code
for the symbol in that leaf.

code f .
1 4%
01 o\
000 0

1
o0n yan

OO 94> M

encoding length

Given a text S on X, with |S| = n, and a prefix code ¢,
B(S) is the length of the encoded text.

m For x € ¥, define the frequency of x as

number occurrencies of x € S

f(x) = :

Note: > s f(x) =1.
m We get the formula,

B(S) =) nf(x)lo(x)| =n)_ f(x)|o(x)|.
XEX XEX

m aS) =) o5 f(x)|#(x)| is the average number of bits
per symbol or compression factor.

The encoding length

m In terms of the prefix tree of ¢, the length of a codeword
|p(x)| is the depth of the leaf labeled x in T (d7(x)).

m Thus, o(T) = > o5 F(x)dT(x).

Fixed versus variable length codes: Example.

m Let ¥ ={a,b,c,d, e} and let S be a text over ¥ with
frequencies:
f(a) =.32,f(b) = .25,f(c) = .20,f(d) = .18, f(e) = .05

m If we use a fixed length ¢ code, we need [lg5] = 3 bits,
we get compression 3.

m Consider the prefix-code ¢1:

0)~
AR

® O ®
Jh

o=.32-24.256-24.20-3+.18-2+.05-3=2.25
m In average, ¢ reduces the bits per symbol over the
fixed-length code from 3 to 2.25, about 25%

Fixed versus variable length codes: Example.

Is 2.25 the maximum compression? Consider the prefix-code

¢2:

o=.32:-24.256-24.20-2+.18-3+.05-3=2.23

is that the best? (the maximum compression using a prefix
code)

Optimal prefix code.

Given a text, an optimal prefix code is a prefix code that
minimizes the total number of bits needed to encode the text,
ie., o.

Intuitively, in the prefix tree of an optimal prefix code, symbols
with high frequencies should have small depth ans symbols with
low frequency should have large depth.

Before describing the algorithm we analyze some properties of
optimal prefix trees.

A property of optimal prefix trees.

A binary tree T is full if every interior node has two sons.

Lemma

The prefix tree describing an optimal prefix code is full.

m Let T be the prefix tree of an optimal code, and suppose
it contains a u with a unique son v.

m If u is the root, construct T’ by deleting u and using v as
root. Otherwise, let w be the father of u. Construct T’ by
deleting u and connecting directly v to w.

m In both cases T’ is a prefix tree and all the leaves in the
subtree rooted at v reduce its height by 1 in T".

m T’ yields a code with less bits, so T is not optimal.

Greedy approach: Huffman code

Greedy approach due to David Huffman
(1925-99) in 1952, while he was a PhD student
at MIT

Wish to produce a labeled binary full tree, in which the leaves
are as close to the root as possible. Moreover symbols with low
frequency will be placed deeper than the symbol with high
frequency.

Greedy approach: Huffman code

m Given the frequencies f(x) for every x € &

m The algorithm keeps a dynamic sorted list in a priority
queue Q.
m Construct a tree in bottom-up fashion

m Insert symbols as leaves with key f.

m Extract the two first elements of @ and join them by a
new virtual node with key the sum of the f's of its
children. Insert the new node in Q.

m When Q has size 1, the resulting tree will be the prefix
tree of an optimal prefix code.

Huffman Coding: Construction of the tree.

Huffman X, S
Given X and S {compute the frequencies {f}}
Construct priority queue Q of leaves for ¥, ordered by
increasing f
while Q.size() > 1 do

create a new node z

x =Extract-Min (Q)

y =Extract-Min (Q)

make x, y the sons of z

f(z) = f(x) + f(y)

Insert (Q, z, f(2))
end while
¢ =Extract-Min (Q)

If Q is implemented with a Heap, takes time O(nlgn).

Example

Consider the text: for each rose, a rose is a rose, the rose
with X = {for/ each/ rose/ a/ is/ the/ ,/ b }
Frequencies:

f(for) =1/21, f(rose) = 4/21, f(is) = 1/21,

f(a) =2/21, f(each) = 1/21, f(,) = 2/21,

f(the) =1/21, f(b) =9/21.

Priority Queue:

Q=((for:1/21), (each:1/21), (is:1/21), (the:1/21), (a:2/21), (,:2/21), ,
(rose:4/21), (b: 9/21))

2/21

Then, Q=((is:1/21), (the:1/21), (a:2/21), (:2/21), (z1:2/21), (rose:4/21),
(b:9/21))

Example.

Q=((is:1/21), (the:1/21), (a:2/21), (

112/21),(21:2/21), (rose:4/21), (b:9/21))

2/21

e

Then, Q=((a:2/21), (,:2/21), (21:2/21), (22:2/21),(rose:4/21), (b:9/21))

4/21

s

Then, Q=((z1:2/21), (22:2/21), (rose:4/21), (z3:4/21), (h:9/21))

Example.

Q=((21:2/21), (22:2/21),(rose:4/21), (z3:4/21), (h:9/21))

%

2/21 2/21

5 wme

Then, Q=((rose:4/21), (z3:4/21),(z4:4/21), (b:9/21))

Example.

Q=((rose:4/21), (z3:4/21), (z4:4/21), (b:9/21))

8/21

-/ k?) a/21

Then, Q=((z:4/21), (z5:8/21), (b:9/21))

Example.

Q=((2z4:4/21), (z5:8/21), (b:9/21))

12/21
@ 4/21 8/21

0 0 1
G% \‘\@ 2/21 \GD 421
/ \Il ./ N E/ \D

Then, Q=((h:9/21),(z:12/21))

Example.

Q=((»:9/21),(2z5:12/21))

21/21

e

Then, Q=((z7:21/21))

Example

Therefore for each rose, a rose is a rose, the rose
is Huffman coded as
100001001011011111110011001010011100110111110110110
m The solution is not unique!

m The encoded length is 51, and compression is

51/21 =2.428....

m With a fixed size code, we need 4 bits per symbol, length
84 bits instead of 51.

m Why does the Huffman's algorithm produce an optimal
prefix code?

Correctness

Theorem (Greedy property)

Let X be an alphabet, and let x,y be two symbols with the
lowest frequency. There is an optimal prefix code ¢ in which
|o(x)| = |6(y)|, both codes differ only in the last bit, and

|[¢(x)| = maxzex [¢(2)] -

Proof.

Assume that T is optimal but that x and y have not the same
code length. In T there must be two symbols a and b siblings
at max. depth. Assume f(a) < f(b) and f(x) < f(y),
otherwise sort them accordingly.

We construct T’ by exchanging x with a and y with b. As
f(x) < f(a) and f(y) < f(b) then B(T') < B(T). So T' is
optimal and verifies the property. [

Correctness

Theorem (Optimal substructure)

Assume T' is an optimal prefix tree for (X — {x,y})U{z}
where x, y are two symbols with the lowest frequencies, and z
has frequency f(x) + f(y). The T obtained from T' by making
x and y children of z is an optimal prefix tree for ¥.

Proof.

Let Tp be any prefix tree for £. We must show B(T) < B(Tp).

By the previous result, we only need to consider Ty where x
and y are siblings, their parent has frequency f(x) + f(y).

Correctness

m Let 7§ be obtained by removing x, y from To. As T is a
prefix tree for (X — {x,y})U{z}, then B(T{) > B(T’).
m Comparing To with T] we get,

B(To) = B(Ty) + f(x) + f(y),
B(T) = B(T') + f(x) + f(y) = B(T).

m Putting together the three identities, we get
B(T) < B(Ty).

End Proof

More on Huffman codes

Huffman is optimal under assumptions:

m The compression is lossless, i.e. uncompressing the
compressed file yield the original file.

m We must know the alphabet beforehand (characters,
words, etc.),

m We must pre-compute the frequencies of symbols, i.e.
read the data twice, which make it very slow for many real
applications.

m A good source for extensions of Huffman encoding
compression is the Wikipedia article on it:
https://en.wikipedia.org/wiki/Huffman_coding.

https://en.wikipedia.org/wiki/Huffman_coding

Approximation algorithms

Many times the Greedy strategy yields a feasible solution
with value which is near to the optimum solution.

m In many practical cases, when finding the global optimum
is hard, the greedy may yield a good enough feasible
solution: An approximation to the optimal solution.

m An approximation algorithm for the problem always
computes a close valid output. Heuristics also could yield
good solutions, but they do not have a theoretical
guarantee of closeness.

m Greedy is one of the algorithmic techniques used to design
approximations algorithms.

Approximation
algorithms

Greedy and approximation algorithms

m For any optimization problem, let c(x) be the value of the
optimization function, let Apx be an algorithm, that for
each input x produces a valid solution Apx(x) to x. Let
opt(x) be the cost of an optimal solution to x.

m We want to design a fast algorithm that produce solutions
close to the optimal.

m For a NP-hard problem, we don’t know if it has polynomial

time algorithms, we want to design algorithms that are

fast (polynomial) and that outputs good solutions always.

Approximation

algorithms

Approximation algorithm: Formal definition

For a given optimization problem, let Apx be an
algorithm, that for each input x produces a valid solution
with cost Apx(x) to x. Let opt(x) be the cost of an
optimal solution to x.

m For r > 1, Apx is an r-approximation algorithm if, for any
input x:

m r is called the approximation ratio.

m Given an optimization problem, for any input x, we require

Approximation

algorithms m in a MAX problem, Apx(x
m in a MIN problem, opt(x)

pt(x) < rdpx(x).

)<o
< Apx(x) < ropt(x).

An easy example: VERTEX COVER problem

Recall the problem of Vertex cover: Given a graph G = (V, E)
with |V| = n,|E| = m find the minimum set of vertices S C V
such that it covers every edge of G.

GreedyVC for I: G = (V,E)
E'=E, S=10, IEI\
while E' # () do

Pick e € E’, say e = (u, V)

S=SuU{u,v},
E' = E' — {(u,v) U {edges incident to u,v}}
end while

Approximation
algorithms return S.

An easy example: VERTEX COVER problem

Given a graph G = (V, E) with |V| = n, |E| = m find the
minimum set of vertices S C V such that it covers every edge
of G.

GreedyVC G = (V, E)
E'=E S=10, IZI\
while E’ # () do

Pick e € E’, say e = (u,v)

S=SuU{u,v},
E' = E' — {(u, v) U {edges incident to u,v}}
end while

Approximation
algorithms return S.

An easy example: VERTEX COVER problem

Given a graph G = (V, E) with |V| = n, |E| = m find the
minimum set of vertices S C V such that it covers every edge
of G.

GreedyVC G = (V, E) °®
E'=E, S=10, I : I \
while E’ # () do

Pick e € E’, say e = (u,v)

S=SuU{u,v},
E' = E' — {(u, v) U {edges incident to u,v}}
end while

Approximation
algorithms return S.

An easy example: VERTEX COVER problem

Given a graph G = (V, E) with |V| = n, |E| = m find the
minimum set of vertices S C V such that it covers every edge
of G

GreedyVC G = (V,E) e o o
E'=E S=10,
while E’ # () do O ® O o

Pick e € E’, say e = (u,v)

S=SuU{u,v},

E' = E' — {(u, v) U {edges incident to u,v}}

- end while

Approximation
algorithms return S.

Approximation
algorithms

An easy example: Vertex cover

GreedyVC runs in O(m + n) steps. Moreover, if S is solution
computed on input G, |S| < 20pt(G).

m The edges selected among by GreedyVC do not share any
vertex.

m Therefore, an optimal solution must have at least one of
the two endpoints of each edge while GreedyVC takes
both.

= So, |S| < 20pt(G).

An easy example: Vertex cover

m The decision problem for Vertex Cover: given G and k,
does G have a vertex cover with k or less vertices?, is
NP-complete.

m Moreover, unless P=NP, vertex cover can not be
approximated within a factor r < 1.36

m No approximate algorithm with r < 2 is known.

Approximation
algorithms

	The technique
	Fractional Knapsack
	Some selection criteria
	Highest v/w
	0-1 Knapsack

	Scheduling
	Interval scheduling
	Weighted activity selection
	Minimizing lateness

	Optimal prefix codes
	data compression
	prefix codes
	Huffman code

	Approximation algorithms

