Fast Sorting Algorithms

Sorting algorithms on values in a known range

CLRS Ch.8
Counting sort
Radix sort

Bucket sort

Lower bounds for general sorting

m The algorithms will sort an array A[n|
of non-negative integers in the range [0, r|.

m The complexity of the algorithms depends on both n and r.

m For some values of r, the algorithms have cost O(n) or
o(nlog n).

Counting sort

The counting sort algorithm,
m consider all possible values i € [0, r].

Counting sort

m For each of them, count how many elements in A are
smaller or equal to i.

m Use this information to place the elements in the right
order.

m The input A[n], is an array of integers in the range [0, r].
m Uses: B[n| (output) and C[r + 1] (internal).

Counting sort: Algorithm

CountingSort (A, r)
for i=0tor do

Clil=0
fori=0ton—1 do

CIA[]]] = C[A[/]] + 1 {CUT= Wil Alil =j}}
fori=1to rdo

Cli] = Cli] + C[i — 1] {CU = Hi T Alll <Jj}}

for i=n—1downto 0 do
BICIA[]]] = Al[i];

CIA[]] = CIA[i]] - 1 {C holds the sorted elements}

Counting sort: Cost

CountingSort (A, r)
for i=0tor do

Cli]=0 {O(r)}
fori=0ton—1 do

CIA[]] = ClA[]] +1 {0(n)}
for i=0tordo

do C[i] = C[i] + C[i — 1] {o(n}

for i=n—1downto 0 do
BIC[A[]]] — 1] = A[i];
C[A[]] = C[A[]] -1 {O(n)}

T(n) = O(n+r), for r = O(n), T(n)

Counting sort: stability

An important property of counting sort is that it is stable:
numbers with the same value appear in the output in the same
order as they do in the input.

Counting sort

Radix sort: What does radix mean?

Radix means the base in which we express an integer
Radix 10=Decimal; Radix 2= Binary; Radix 16=Hexadecimal,
Radix 20 (The Maya numerical system)

Radix sort

m
o
ES

Binary Decimal
Q009
0001
0010
0011
0100
0101

0110

QD * ¢ eee eeee Sidn
5 6 7 8 9 1001
o

2o, o sese 1010
1011
10 11 12 13 14 1100

U=00-- R - RV R P S =

HEODQEWPrPCD kL=

Radix Change: Example

m To convert an integer from binary to decimal:
1011=1x23+0x224+1x2l +1x20=11

Radix sort m To convert an integer from decimal to binary:
Repeatedly dividing the enter by 2, will give a result plus a
remainder:
19=19/29/2 4/2 2/2 = 10011
ingin i

m To transform an integer radix 16 to decimal:
(4CF5)16 = (4x163+12x162+15x 161 +5x16°) = 19701

m To convert (4CF5)16 into binary you have to expand each
digit to its binary representation.

In the above example, (4CF5)16 in binary is
0011110011110101

m To convert an integer in binary to radix 16:
Make groups of 4 from left to right and replace by the
corresponding digit
110101001010001000010110111110100 in HEX is
1A9442DF4

RADIX LSD algorithm

Given an array A with n numbers, each one with d digits in
base b the Radix Least Significant Digit, algorithm is
Radix sort
RADIX LSD (A, d, b)
for i=1toddo
Use a stable sorting algorithm to sort A according to the
i-th digit values.

The values to sort are in the range [0, b9).

Example: b=10and d =3

Radix sort

Example: b=10and d =3

Radix sort

Example: b=10and d =3

Radix sort

Example: b=10and d =3

Radix sort

Correctness

RADIX LSD sorts correctly the n given numbers.

Radix sort

Induction on d.

Base: If d = 1 the stable sorting algorithm sorts correctly.
IH: Assume that it is true for d — 1 digits.

Looking at the the d-th digit, we have

m if ag < by, a < b and the algorithm places a before b,

m if ag = by, as we are using a stable sorting, a and b
remain in the same order as in the previous step.
By IH, they are already the correct one.

Time complexity

Given n numbers, each number with at most d digits, and each
digit in the range 0 to b, if we use counting sorting at each
round of RADIX LSD:

Radix sort

T(n,d, b) = ©(d(n + b)).

m Consider that each number has a value up to f(n).

m Then the number of digits in base b is d < [log, f(n)], so
T(n, b) = O(log,, f(n)(n+ b)).

m If log, f(n) = w(1), T(n) = w(n) and RADIX is not linear.

m Note that we could select a basis b = b(n) such that

b(n) = O(n).

RADIX: selecting the base

Can we tune the parameters?

m Yes, in some cases, we can select the best radix to express
the input values.

Radix sort

m For numbers in binary, we can select as new radix ba
power of 2. This simplifies the computation as we have
only to look to pieces of bits to change from one
representation to anoter.

m For ex., if we have numbers of d = 64 bits (b = 2), and
take the new radix to be b = 28, we have d = 4 new digits
per number.

11001010001101001110100111001000

RADIX: selecting the base

Given n, d(n)-bits integers, we want to choose c¢(n),
1 < c(n) < d(n) to use as new radix b = 2¢(").

Radix sort m In the new radix, the number of digits is
d(n) = [d(n)/c(n)] digits,
m Running RADIX LSD with base 2¢(") has cost

T(n) = ©(d(n)(n +2°™)) = ©((d(n)/c(n)(n +25")).

m The highest choice for c is roughly [lg n].

m Then, 2¢(" = O(n).

m So, the cost is, O(Iginn).

m Which provides, linear cost if % =0(1), ie
d(n) = O(Ig(n)).

Bucket sort

m Suppose the values to sort are in the range [0...m — 1].

m The algorithm starts with an array of m empty buckets
numbered 0 to m — 1.

Bucket sort m Scan the list and place element A[i] in bucket A[i].

m Output the buckets in order.

m It needs an array of buckets.

m The values in the list to be sorted are the indexes to the
buckets.

m No comparisons are done.

Bucket sort: values or keys?

m When sorting values, each bucket can be just a counter.

m When sorting entries according to keys, a bucket is a
queue.

Bucket sort

Bucket sort: complexity

m Bucket initialization: O(m)
m From array to buckets: O(n)

m From buckets to array: O(m + n)
m Total cost is O(n + m)

Bucket sort

When m = O(n), Bucket sort has cost O(n)

Bucket sort: extensions

In the presented algorithm each bucket contains elements
with the same key.

m The algorithm can be implemented in such a way that
Bucket sort buckets hold elements with different keys.

m In such a case we have to take care of the additional cost
of sorting the elements in each bucket.

m A typical implementation assumes that the input is drawn
from a uniform distribution on [0, 1), divides the range of
values, from lowest to highest key value, into n equal sized
ranks. In the worst case the algorithm has cost O(nlg n)
and average cost O(n).

A bit of history

LSD Radix and counting sort ideas are due
to Herman Hollerith.

In 1890 he invented the card sorter that,
for ex., allowed to process the US census in
5 weeks, using punching cards.

Bucket sort

https://www.cs.cornell.edu/courses/JavaAndDS/files/sort6RadixHistory.pdf

A bit of history

Counting/Radix sort
H. H Seward
Enhanced Generic Key-Address Mapping
Sort Algorithm

MIT 1954.

Bucket sort

Bucket sort
E. J. Isaac and R. C. Singleton
Sorting by Address Calculation
JACM 1956

https://dl.acm.org/doi/10.1145/320831.320834

Upper and lower bounds on time complexity of a

problem.

m A problem has a time upper bound T(n) if there is an
algorithm A such that, for any input x of size n,
A(x) gives the correct answer in < T(n) steps.

m A problem has a time lower bound L(n) if there is NO
algorithm which solves the problem in time < L(n), for
any input e of size n.

Lower bounds

m Lower bounds are hard to prove, as we have to consider
every possible algorithm.

Upper and lower bounds on time complexity of a

problem.

m Upper bound: 34, Vx t4(x) <
m Lower bound: VA, 3x t4(x) >

T(Ix]),
L(]x]),
To prove an upper bound: produce an A so that the bound
PO holds for any input x (n = |x|).

To prove a lower bound , show that for any possible algorithm,
the time on one input is greater than or equal to the lower
bound.

Lower bound for comparison based sorting

algorithm.

To prove the lower bound, we consider binary decision trees a
way to represent the comparisons made by a sorting algorithm
to distinguish the possible inputs of size n.

m each leaf represents one of the n! possible permutations
(37r(1)7 ar(2)s -+ s a,r(n)). The tree has exactly n! leaves as
the algorithm has to sort correctly all possible
permutations.

Lower bounds

m In a particular example, each internal node can be labeled
by a comparison a; : a;, the leaves in the left subtree verify
a; < aj and the ones in the right subtree verify a; > a;.

An example of binary decision tree for

Lower bounds

For any comparison sort algorithm that sorts n elements, there
is an input in which it has to perform Q(nlg n) comparisons.

Lower bounds P rOOf.

m Equivalent to prove: Any decision tree that sorts n
elements must have height Q(nlg n).

m Let h the height of a decision tree with n! leaves,

nl <2 = h>lg(n!) > Ig(g)” = Q(nlgn).

	Counting sort
	Radix sort
	Bucket sort
	Lower bounds

