Dynamic Programming

Dynamic Programming

For a gentle introduction to DP see Chapter 6 in DPV, KT and CLRS also have a chapter devoted to DP.

Richard Bellman: An introduction to the theory of dynamic programming RAND, 1953

Dynamic programming is a powerful technique for efficiently implement recursive algorithms by storing partial results and re-using them when needed.

Dynamic Programming

Dynamic Programming works efficiently when:

DP technique
The n-th
Fibonacci
number
Guideline
W activity
selection
0-1 Knapsack
DP for pairing sequences
Framework
Edit distance
Longest common subsequence (LCS) Longest common substring

Dynamic Programming

Dynamic Programming works efficiently when:
■ Subproblems: There must be a way of breaking the global optimization problem into subproblems, each having a similar structure to the original problem but smaller size.

The n-th
Fibonacci
number
Guideline
W activity
selection
0-1 Knapsack
DP for pairing sequences

Dynamic Programming

Dynamic Programming works efficiently when:

■ Subproblems: There must be a way of breaking the global optimization problem into subproblems, each having a similar structure to the original problem but smaller size.

■ Optimal sub-structure: An optimal solution to a problem must be a composition of optimal subproblem solutions, using a relatively simple combining operation.

Dynamic Programming

Dynamic Programming works efficiently when:

■ Subproblems: There must be a way of breaking the global optimization problem into subproblems, each having a similar structure to the original problem but smaller size.

■ Optimal sub-structure: An optimal solution to a problem must be a composition of optimal subproblem solutions, using a relatively simple combining operation.
■ Repeated subproblems: The recursive algorithm solves a small number of distinct subproblems, but they are repeatedly solved many times.

Dynamic Programming

Dynamic Programming works efficiently when:
■ Subproblems: There must be a way of breaking the global optimization problem into subproblems, each having a similar structure to the original problem but smaller size.
■ Optimal sub-structure: An optimal solution to a problem must be a composition of optimal subproblem solutions, using a relatively simple combining operation.
■ Repeated subproblems: The recursive algorithm solves a small number of distinct subproblems, but they are repeatedly solved many times.
This last property allows us to take advantage of memoization, store intermediate values, using the appropriate dictionary data structure, and reuse when needed.

Difference with greedy

- Greedy problems have the greedy choice property: locally optimal choices lead to globally optimal solution. We solve recursively one subproblem

Difference with greedy

The n-th
Fibonacci
number
Guideline
W activity
selection
0-1 Knapsack
DP for pairing sequences
Framework
Edit distance
Longest common subsequence (LCS) Longest common substring

- Greedy problems have the greedy choice property: locally optimal choices lead to globally optimal solution. We solve recursively one subproblem

■ I.e. In DP we solve all possible subproblems, while in greedy we are bound for the initial choice

Difference with divide and conquer

■ Both require recursive programming with subproblems with a similar structure to the original

Difference with divide and conquer

■ Both require recursive programming with subproblems with a similar structure to the original

- D \& C breaks a problems into a small number of subproblems each of them with size a fraction of the original size (size/b).

Difference with divide and conquer

■ Both require recursive programming with subproblems with a similar structure to the original

- D \& C breaks a problems into a small number of subproblems each of them with size a fraction of the original size (size/b).
■ In DP, we break into many subproblems with smaller size, but often, their sizes are not a fraction of the initial size.

A first example: Fibonacci Recurrence.

The Fibonacci numbers are defines recursively as follows:

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=1 \\
& F_{n}=F_{n-1}+F_{n-2} \quad \text { for } n \geq 2
\end{aligned}
$$

$0,1,1,2,3,5,8,13,21,34,55,89, .$.

The golden ratio

$$
\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}=\varphi=1.61803398875 \ldots
$$

Some examples of Fibonacci sequence in life

The n-th
Fibonacci number

Guideline
W activity selection

0-1 Knapsack
DP for pairing sequences
Framework
Edit distance

In nature, there are plenty of examples that follows a Fibonacci sequence pattern, from the shells of mollusks to the leaves of the palm. Below you have some further examples:

goldenratio

YouTube: Fibonacci numbers, golden ratio and nature

Computing the n-th Fibonacci number.

The n-th
Fibonacci
number
Guideline
W activity
selection
0-1 Knapsack
DP for pairing sequences
Framework
Edit distance
Longest common subsequence (LCS) Longest common substring

INPUT: $n \in \mathbb{N}$
QUESTION: Compute F_{n}.

Computing the n-th Fibonacci number.

The n-th
Fibonacci number

Guideline
W activity
selection
0-1 Knapsack
DP for pairing sequences
Framework
Edit distance
Longest common subsequence (LCS) Longest common substing

INPUT: $n \in \mathbb{N}$
QUESTION: Compute F_{n}.
A recursive solution:
Fibonacci (n)
if $n=0$ then return 0
else if $n=1$ then return 1
else
return $(\operatorname{Fibonacci}(n-1)+\operatorname{Fibonacci}(n-2))$

Computing F_{7}.

As $F_{n+1} / F_{n} \sim(1+\sqrt{5}) / 2 \sim 1.61803$ then $F_{n}>1.6^{n}$, and to compute F_{n} we need 1.6^{n} recursive calls.

DP technique
The n-th
Fibonacci number

Guideline
W activity selection

0-1 Knapsack
DP for pairing sequences
Framework
Edit distance
Longest common subsequence (LCS)

Notice the computation of subproblem $F(i)$ is repeated many times

A DP implementation: memoization

To avoid repeating multiple computations of subproblems, keep a dictionary with the solution of the solved subproblems.

```
Fibo(n)
for i }\in[0..n] d
    F[i] = -1
F[0] = 0; F[1] = 1
return (Fibonacci(n))
```


A DP implementation: memoization

To avoid repeating multiple computations of subproblems, keep a dictionary with the solution of the solved subproblems.

$$
\begin{aligned}
& \operatorname{Fibo}(n) \\
& \text { for } i \in[0 . . n] \text { do } \\
& \quad F[i]=-1 \\
& F[0]=0 ; F[1]=1 \\
& \text { return } \quad(\operatorname{Fibonacci}(n))
\end{aligned}
$$

Fibonacci (i)

if $F[i] \neq-1$ then return ($F[i]$)
$F[i]=\operatorname{Fibonacci}(i-1)+\operatorname{Fibonacci}(i-2)$ return ($F[i]$)

A DP implementation: memoization

To avoid repeating multiple computations of subproblems, keep a dictionary with the solution of the solved subproblems.
$\operatorname{Fibo}(n)$
for $i \in[0 . . n]$ do
$\quad F[i]=-1$
$F[0]=0 ; F[1]=1$
return (Fibonacci(n))

Fibonacci (i)

if $F[i] \neq-1$ then
return ($F[i]$)
$F[i]=\operatorname{Fibonacci}(i-1)+\operatorname{Fibonacci}(i-2)$
return ($F[i]$)

Each subproblem requires $O(1)$ operations, we have $n+1$ subproblems, so the cost is $O(n)$.
We are using $O(n)$ additional space.

A DP algorithm: tabulating

The n-th
Fibonacci
number
Guideline
W activity
selection
0-1 Knapsack
DP for pairing sequences
Framework
Edit distance
Longest common subsequence (LCS)
Longest common substring

To avoid repeating multiple computations of subproblems, carry the computation bottom-up and store the partial results in a table

A DP algorithm: tabulating

To avoid repeating multiple computations of subproblems, carry the computation bottom-up and store the partial results in a table

DP-Fibonacci (n) \{Construct table\} $F[0]=0$
$F[1]=1$
for $i=2$ to n do
$F[i]=F[i-1]+F[i-2]$
return $(F[n])$

$\mathrm{F}[0]$	0
$\mathrm{~F}[1]$	1
$\mathrm{~F}[2]$	1
$\mathrm{~F}[3]$	2
$\mathrm{~F}[4]$	3
$\mathrm{~F}[5]$	5
$\mathrm{~F}[6]$	8
$\mathrm{~F}[7]$	13

A DP algorithm: tabulating

To avoid repeating multiple computations of subproblems, carry the computation bottom-up and store the partial results in a table

DP-Fibonacci (n) \{Construct table\} $F[0]=0$
$F[1]=1$
for $i=2$ to n do

$$
F[i]=F[i-1]+F[i-2]
$$

return $(F[n])$

$\mathrm{F}[0]$	0
$\mathrm{~F}[1]$	1
$\mathrm{~F}[2]$	1
$\mathrm{~F}[3]$	2
$\mathrm{~F}[4]$	3
$\mathrm{~F}[5]$	5
$\mathrm{~F}[6]$	8
$\mathrm{~F}[7]$	13

To get F_{n} need $O(n)$ time and $O(n)$ space.

A DP algorithm: reducing space

In the tabulating approach, we always access only the previous two values. We can reduce space by storing only the values that we will need in the next iteration.

A DP algorithm: reducing space

In the tabulating approach, we always access only the previous two values. We can reduce space by storing only the values that we will need in the next iteration.

$$
\begin{aligned}
& \text { DP-Fibonacci }(n)\{\text { Construct table }\} \\
& p 1=0 \\
& p 2=1 \\
& \text { for } i=2 \text { to } n \text { do } \\
& p 3=p 2+p 1 \\
& p 1=p 2 ; p 2=p 3 \\
& \text { return }(\mathrm{p} 3)
\end{aligned}
$$

A DP algorithm: reducing space

In the tabulating approach, we always access only the previous two values. We can reduce space by storing only the values that we will need in the next iteration.

DP-Fibonacci (n) \{Construct table\}

$$
p 1=0
$$

$$
p 2=1
$$

$$
\text { for } i=2 \text { to } n \text { do }
$$

$$
p 3=p 2+p 1
$$

$$
p 1=p 2 ; p 2=p 3
$$

return (p3)
To get F_{n} need $O(n)$ time and $O(1)$ space.

Computing the n-th Fibonacci number: cost

INPUT: $n \in \mathbb{N}$
QUESTION: Compute F_{n}.

DP technique
The n-th
Fibonacci
number
Guideline
W activity
selection
0-1 Knapsack
DP for pairing sequences
Framework
Edit distance
Longest common subsequence (LCS) Longest common substring

Computing the n－th Fibonacci number：cost

INPUT：$n \in \mathbb{N}$
QUESTION：Compute F_{n} ．
To get F_{n} the last algorithm needs $O(n)$ time and uses $O(1)$ space．

Computing the n-th Fibonacci number: cost

INPUT: $n \in \mathbb{N}$
QUESTION: Compute F_{n}.
To get F_{n} the last algorithm needs $O(n)$ time and uses $O(1)$ space.

The initial recursive algorithm takes $O\left(1.6^{n}\right)$ time and uses $O(n)$ space

Do we have a polynomial time solution?

Computing the n-th Fibonacci number: cost

INPUT: $n \in \mathbb{N}$
QUESTION: Compute F_{n}.
To get F_{n} the last algorithm needs $O(n)$ time and uses $O(1)$ space.

The initial recursive algorithm takes $O\left(1.6^{n}\right)$ time and uses $O(n)$ space

Do we have a polynomial time solution? NO

Computing the n-th Fibonacci number: cost

INPUT: $n \in \mathbb{N}$
QUESTION: Compute F_{n}.
To get F_{n} the last algorithm needs $O(n)$ time and uses $O(1)$ space.

The initial recursive algorithm takes $O\left(1.6^{n}\right)$ time and uses $O(n)$ space

Do we have a polynomial time solution? NO the size of the input is $\log n$.

Computing the n-th Fibonacci number: cost

INPUT: $n \in \mathbb{N}$
QUESTION: Compute F_{n}.
To get F_{n} the last algorithm needs $O(n)$ time and uses $O(1)$ space.

The initial recursive algorithm takes $O\left(1.6^{n}\right)$ time and uses $O(n)$ space

Do we have a polynomial time solution? NO the size of the input is $\log n$.
We use the term pseudopolynomial for algorithms whose running time is polynomial in the value of some numbers in the input.

Guideline to implement Dynamic Programming

This first example of PD was easy, as the recurrence is given in the statement of the problem.
1 Characterize the structure of subproblems: make sure space of subproblems is not exponential. Define variables.
2 Define recursively the value of an optimal solution: Find the correct recurrence, with solution to larger problem as a function of solutions of sub-problems.
3 Compute, memoization/bottom-up, the cost of a solution: using the recursive formula, tabulate solutions to smaller problems, until arriving to the value for the whole problem.
4 Construct an optimal solution: compute additional information to trace-back from optimal solution from optimal value.

Weighted Activity Selection problem

Weighted Activity Selection problem: Given a set $S=\{1,2, \ldots, n\}$ of activities to be processed by a single resource. Each activity i has a start time s_{i} and a finish time f_{i}, with $f_{i}>s_{i}$, and a weight w_{i}. Find the set of mutually compatible activities such that it maximizes $\sum_{i \in S} w_{i}$
Recall: We saw that some greedy strategies did not provide always a solution to this problem.

W Activity Selection: looking for a recursive solution

■ Let us think of a backtracking algorithm for the problem.
■ The solution is a selection of activities, i.e., a subset $S \subseteq\{1, \ldots, n\}$.
■ We can adapt the backtracking algorithm to compute all subsets.
■ When processing element i, we branch

- i is in the solution S, then all activities that overlap with i cannot be in S.
- i is not in S.

W Activity Selection: looking for a recursive solution

This suggest to keep at each backtracking call a partial solution (S) and a candidate set (C), those activities that are compatible with the ones in S.

The n-th

Fibonacci

W Activity Selection: looking for a recursive solution

This suggest to keep at each backtracking call a partial solution (S) and a candidate set (C), those activities that are compatible with the ones in S.

The n-th

WAS-1 (S, C)
if $C=\emptyset$ then
return $(W(S))$
Let i be an element in $C ; C=C-\{i\}$;
Let A be the set of activities in C that overlap with i return (max\{WAS-1 $(S \cup\{i\}, C-A), \operatorname{WAS}-\mathbf{1}(S, C)\})$

W Activity Selection: looking for a recursive solution

This suggest to keep at each backtracking call a partial solution (S) and a candidate set (C), those activities that are compatible with the ones in S.

$$
\text { if } C=\emptyset \text { then }
$$

$$
\text { WAS-1 }(S, C)
$$

return $(W(S))$
Let i be an element in $C ; C=C-\{i\}$;
Let A be the set of activities in C that overlap with i return ($\max \{\mathbf{W A S}-\mathbf{1}(S \cup\{i\}, C-A), \operatorname{WAS}-\mathbf{1}(S, C)\})$

The recursion tree have branching 2 and height $\leq n$, so size is $O\left(2^{n}\right)$.

W Activity Selection: looking for a recursive solution

This suggest to keep at each backtracking call a partial solution (S) and a candidate set (C), those activities that are compatible with the ones in S.

```
WAS-1 (S, C)
if C=\emptyset then
    return (W(S))
Let i be an element in C;C=C-{i};
Let }A\mathrm{ be the set of activities in C that overlap with i
return (max{WAS-1(S \cup{i},C - A), WAS-1(S,C)})
```

The recursion tree have branching 2 and height $\leq n$, so size is $O\left(2^{n}\right)$.
How many subproblems appear here?

W Activity Selection: looking for a recursive solution

This suggest to keep at each backtracking call a partial solution (S) and a candidate set (C), those activities that are compatible with the ones in S.

```
WAS-1 (S, C)
if C=\emptyset then
    return (W(S))
Let i be an element in C;C=C-{i};
Let }A\mathrm{ be the set of activities in C that overlap with i
return (max{WAS-1(S \cup{i},C - A), WAS-1(S,C)})
```

The recursion tree have branching 2 and height $\leq n$, so size is $O\left(2^{n}\right)$.
How many subproblems appear here? hard to count better than $O\left(2^{n}\right)$.

W Activity Selection: looking for a recursive solution

For the unweighted case, the greedy algorithm made use of a particular ordering that helped to discard overlapping tasks.

W Activity Selection: looking for a recursive solution

For the unweighted case, the greedy algorithm made use of a particular ordering that helped to discard overlapping tasks. Assume that the activities are sorted by finish time, i.e., $f_{1} \leq f_{2} \leq \cdots \leq f_{n}$.

W Activity Selection: looking for a recursive solution

For the unweighted case, the greedy algorithm made use of a particular ordering that helped to discard overlapping tasks. Assume that the activities are sorted by finish time, i.e., $f_{1} \leq f_{2} \leq \cdots \leq f_{n}$.

WAS-2 (S, i)
if $i==1$ then
return $\left(W(S)+w_{1}\right)$
if $i==0$ then return $(W(S))$
Let j be the largest integer $j<i$ such that $f_{j} \leq s_{i}, 0$ if none is compatible. return ($\max \{$ WAS-2 $(S \cup\{i\}, j)$, WAS-2 $(S, i-1)\})$

W Activity Selection: looking for a recursive solution

For the unweighted case, the greedy algorithm made use of a particular ordering that helped to discard overlapping tasks. Assume that the activities are sorted by finish time, i.e., $f_{1} \leq f_{2} \leq \cdots \leq f_{n}$.

WAS-2 (S, i)
if $i==1$ then
return $\left(W(S)+w_{1}\right)$
if $i==0$ then return $(W(S))$
Let j be the largest integer $j<i$ such that $f_{j} \leq s_{i}, 0$ if none is compatible. return $(\max \{$ WAS-2 $(S \cup\{i\}, j)$, WAS-2 $(S, i-1)\})$

WAS-2 (\emptyset, n) will return the cost of an optimal solution. Why?

W Activity Selection: looking for a recursive solution

For the unweighted case, the greedy algorithm made use of a particular ordering that helped to discard overlapping tasks. Assume that the activities are sorted by finish time, i.e., $f_{1} \leq f_{2} \leq \cdots \leq f_{n}$.

```
WAS-2 (S,i)
if i==1 then
    return (W(S)+w,
if i==0 then
    return (W(S))
Let j be the largest integer j<i such that }\mp@subsup{f}{j}{}\leq\mp@subsup{s}{i}{},0\mathrm{ if none is compatible.
return (max{WAS-2(S \cup{i},j),WAS-2(S,i - 1)})
```

WAS-2 (\emptyset, n) will return the cost of an optimal solution. Why? activities $j<k<i$ overlap with i any other that overlap with i also overlaps with j.

W Activity Selection: looking for a recursive solution

For the unweighted case, the greedy algorithm made use of a particular ordering that helped to discard overlapping tasks. Assume that the activities are sorted by finish time, i.e., $f_{1} \leq f_{2} \leq \cdots \leq f_{n}$.

WAS-2 (S, i)
if $i==1$ then
return $\left(W(S)+w_{1}\right)$
if $i==0$ then
return $(W(S))$
Let j be the largest integer $j<i$ such that $f_{j} \leq s_{i}, 0$ if none is compatible. return $(\max \{\mathbf{W A S}-2(S \cup\{i\}, j)$, WAS-2 $(S, i-1)\})$

WAS-2 (\emptyset, n) will return the cost of an optimal solution. Why? activities $j<k<i$ overlap with i any other that overlap with i also overlaps with j.

The algorithm has cost

W Activity Selection: looking for a recursive solution

For the unweighted case, the greedy algorithm made use of a particular ordering that helped to discard overlapping tasks. Assume that the activities are sorted by finish time, i.e., $f_{1} \leq f_{2} \leq \cdots \leq f_{n}$.

WAS-2 (S, i)
if $i==1$ then
return $\left(W(S)+w_{1}\right)$
if $i==0$ then
return $(W(S))$
Let j be the largest integer $j<i$ such that $f_{j} \leq s_{i}, 0$ if none is compatible. return $(\max \{\mathbf{W A S}-2(S \cup\{i\}, j)$, WAS-2 $(S, i-1)\})$

WAS-2 (\emptyset, n) will return the cost of an optimal solution. Why? activities $j<k<i$ overlap with i any other that overlap with i also overlaps with j.

The algorithm has cost $O\left(2^{n}\right)$.

DP from WAS-2: a recurrence

- We need a $O(n \lg n)$ time for sorting.
- We have n activities with $f_{1} \leq f_{2} \leq \cdots \leq f_{n}$ and weights $w_{i}, 1 \leq i \leq n$.

DP from WAS-2: a recurrence

- We need a $O(n \lg n)$ time for sorting.
- We have n activities with $f_{1} \leq f_{2} \leq \cdots \leq f_{n}$ and weights $w_{i}, 1 \leq i \leq n$.
■ Supproblems calls WAS-2 (S, i)
- S keeps track of the value of the solution
- i defines de supproblem: W activity selection for activities $\{1, \ldots, i\}$, for $0 \leq i \leq n$.
- $O(n)$ subproblems!

W activity selection

0-1 Knapsack
DP for pairing sequences

DP from WAS-2: a recurrence

- We need a $O(n \lg n)$ time for sorting.

■ We have n activities with $f_{1} \leq f_{2} \leq \cdots \leq f_{n}$ and weights $w_{i}, 1 \leq i \leq n$.

- Supproblems calls WAS-2 (S, i)
- S keeps track of the value of the solution
- i defines de supproblem: W activity selection for activities $\{1, \ldots, i\}$, for $0 \leq i \leq n$.
- $O(n)$ subproblems!

■ Define $p(i)$ to be the largest integer $j<i$ such that i and j are disjoints $(p(i)=0$ if no disjoint $j<i$ exists).

DP from WAS-2: a recurrence

- We need a $O(n \lg n)$ time for sorting.

■ We have n activities with $f_{1} \leq f_{2} \leq \cdots \leq f_{n}$ and weights $w_{i}, 1 \leq i \leq n$.
■ Supproblems calls WAS-2(S, i)

- S keeps track of the value of the solution
- i defines de supproblem: W activity selection for activities $\{1, \ldots, i\}$, for $0 \leq i \leq n$.
- $O(n)$ subproblems!

■ Define $p(i)$ to be the largest integer $j<i$ such that i and j are disjoints $(p(i)=0$ if no disjoint $j<i$ exists).
■ Let $\operatorname{Opt}(j)$ be the value of an optimal solution O_{j} to the sub problem consisting of activities in the range 1 to j.

DP from WAS-2: a recurrence

DP technique

The n-th
Fibonacci

Guideline
W activity selection

0-1 Knapsack
DP for pairing sequences

Let $\operatorname{Opt}(j)$ be the value of an optimal solution O_{j} to the subproblem consisting of activities in the range 1 to j. Reinterpreting WAS-2, we get

DP from WAS-2: a recurrence

DP technique

The n-th

Fibonacci

Guideline
W activity selection

0-1 Knapsack
DP for pairing sequences

Let $\operatorname{Opt}(j)$ be the value of an optimal solution O_{j} to the subproblem consisting of activities in the range 1 to j. Reinterpreting WAS-2, we get

$$
\operatorname{Opt}(j)= \begin{cases}0 & \text { if } j=0 \\ \max \left\{\left(\operatorname{Opt}(p[j])+w_{j}\right), \operatorname{Opt}[j-1]\right\} & \text { if } j \geq 1\end{cases}
$$

DP from WAS-2: a recurrence

$$
\operatorname{Opt}(j)= \begin{cases}0 & \text { if } j=0 \\ \max \left\{\left(\operatorname{Opt}(p[j])+w_{j}\right), \operatorname{Opt}[j-1]\right\} & \text { if } j \geq 1\end{cases}
$$

Correctness: From the previous discussion, we have two cases: 1.- $j \in O_{j}$:

■ As j is part of the solution, no jobs $\{p(j)+1, \ldots, j-1\}$ are in O_{j},

- $O_{j}-\{j\}$ must be an optimal solution for $\left.\{1, \ldots, p[j])\right\}$, otherwise then $O_{j}^{\prime}=O_{p[j]} \cup\{j\}$ will be better (optimal substructure)
2.- If $j \notin O_{j}$: then O_{j} is an optimal solution to $\left.\{1, \ldots, j-1)\right\}$.

DP from WAS-2: Preprocessing

Considering the set of activities S, we start by a pre-processing phase:

- Sort the activities by increasing values of finish times.
- To compute the values of $p[i]$,
- sort the activities by increasing values of start time.
- merging the sorted list of finishing times an the sorted list of start times, in case of tie put before the finish times.
- $p[j]$ is the activity whose finish time precedes s_{j} in the combined order, activity 0 , if no finish time precedes s_{j}
- We can thus compute the p values in

$$
O(n \lg n+n)=O(n \lg n)
$$

DP from WAS-2: Preprocessing

Sorted finish times: $1: 5,2: 8,3: 9,4: 11,5: 12,6: 13$
Sorted start times: $2: 0,1: 1,4: 1,3: 7,5: 9,6: 10$
Merged sequence: 2:0, 1:1, 4:1,1:5,3:7,3:9,5:9,6:10, 5:12, 6:13

DP from WAS-2: Memoization

We assume that tasks are sorted and all $p(j)$ are computed and tabulated in $P[1 \cdots n]$

We keep a table $W[n+1]$, at the end $W[i]$ will hold the weight of an optimal solution for subproblem $\{1, \ldots, i\}$. Initially, set all entries to -1 and $W[0]=0$.

```
R-Opt (j)
if \(W[j]\) ! \(=-1\) then
    return (W[j])
else
    \(\left.W[j]=\max \left(w_{j}+\mathbf{R} \mathbf{- O p t}(P[j])\right), \mathbf{R - O p t}(j-1)\right)\)
    return \(W[j]\)
```


DP from WAS-2: Memoization

We assume that tasks are sorted and all $p(j)$ are computed and tabulated in $P[1 \cdots n]$

We keep a table $W[n+1]$, at the end $W[i]$ will hold the weight of an optimal solution for subproblem $\{1, \ldots, i\}$. Initially, set all entries to -1 and $W[0]=0$.

```
R-Opt (j)
if \(W[j]\) ! \(=-1\) then
    return (W[j])
else
    \(\left.W[j]=\max \left(w_{j}+\mathbf{R} \mathbf{- O p t}(P[j])\right), \mathbf{R - O p t}(j-1)\right)\)
    return \(W[j]\)
No subproblem is solved more than once, so cost is \(O(n \log +n)=O(n \log n)\)
```


DP from WAS-2: Iterative

We assume that tasks are sorted and all $p(j)$ are computed and tabulated in $P[1 \cdots n]$

We keep a table $W[n+1]$, at the end $W[i]$ will hold the weight of an optimal solution for subproblem $\{1, \ldots, i\}$.

DP from WAS-2: Iterative

We assume that tasks are sorted and all $p(j)$ are computed and tabulated in $P[1 \cdots n]$

We keep a table $W[n+1]$, at the end $W[i]$ will hold the weight of an optimal solution for subproblem $\{1, \ldots, i\}$.

```
Opt-Val (n)
\(W[0]=0\)
for \(j=1\) to \(n\) do
    \(W[j]=\max \left(W[P[j]]+w_{j}, W[j-1]\right)\)
return \(W[n]\)
```

Time complexity: $O(n \lg n+n)$.
Notice: Both algorithms gave only the numerical max. weight We have to keep more info to recover a solution form $W[n]$.

DP from WAS-2: Returning an optimal solution

To get also the list of activities in an optimal solution, we use W to recover the decision taken in computing $W[n]$.

DP from WAS-2: Returning an optimal solution

To get also the list of activities in an optimal solution, we use W to recover the decision taken in computing $W[n]$.

```
Find-Opt (j)
if j=0 then
        return \emptyset
    else if W[p[j]] + wj}>>>W[j-1] the
        return ({j}\cup Find-Opt(p[j]))
    else
        return (Find-Opt(j - 1))
```

Time complexity: $O(n)$

DP for Weighted Activity Selection

■ We started from a suitable recursive algorithm, which runs $O\left(2^{n}\right)$ but solves only $O(n)$ different subproblemes.
■ Perform some preprocesing.
■ Compute the weight of an optimal solution to each of the $O(n)$ subproblems.
■ Guided by optimal value, obtain an optimal solution .

0－1 KNAPSACK

（This example is from Section 6.4 in Dasgupta，Papadimritriou，Vazirani＇s book．）

Guideline
W activity selection

0－1 Knapsack
DP for pairing sequences Framework Edit distance

0－1 Knapsack：Given as input a set of n items that can NOT be fractioned，item i has weight w_{i} and value v_{i} ，and a maximum permissible weight W ．
QUESTION：select a set of items S that maximize the profit．
Recall that we can NOT take fractions of items．

－ロ • 」 回－
三

subproblems and and recurrence

Input: $\left(w_{1}, \ldots, w_{n}\right),\left(v_{1}, \ldots, v_{n}\right), W$.
■ Let $S \subseteq\{1, \ldots, n\}$ be an optimal solution to the problem The optimal benefit is $\sum_{i \in S} v_{i}$

subproblems and and recurrence

Input: $\left(w_{1}, \ldots, w_{n}\right),\left(v_{1}, \ldots, v_{n}\right), W$.
■ Let $S \subseteq\{1, \ldots, n\}$ be an optimal solution to the problem The optimal benefit is $\sum_{i \in S} v_{i}$
■ With respect to the last item we have two cases:

- $n \notin S$, then S is an optimal solution to the problem $\left(w_{1}, \ldots, w_{n-1}\right),\left(v_{1}, \ldots, v_{n-1}\right), W$
- $n \in S$, then $S-\{n\}$ is an optimal solution to the problem $\left(w_{1}, \ldots, w_{n-1}\right),\left(v_{1}, \ldots, v_{n-1}\right), W-w_{n}$

subproblems and and recurrence

Input: $\left(w_{1}, \ldots, w_{n}\right),\left(v_{1}, \ldots, v_{n}\right), W$.

- Let $S \subseteq\{1, \ldots, n\}$ be an optimal solution to the problem The optimal benefit is $\sum_{i \in S} v_{i}$
■ With respect to the last item we have two cases:
■ $n \notin S$, then S is an optimal solution to the problem $\left(w_{1}, \ldots, w_{n-1}\right),\left(v_{1}, \ldots, v_{n-1}\right), W$
■ $n \in S$, then $S-\{n\}$ is an optimal solution to the problem $\left(w_{1}, \ldots, w_{n-1}\right),\left(v_{1}, \ldots, v_{n-1}\right), W-w_{n}$
■ in both cases we get an optimal solution of a subproblem in which the last item is removed and in which the maximum weight can be W or a value smaller than W.

subproblems and and recurrence

Input: $\left(w_{1}, \ldots, w_{n}\right),\left(v_{1}, \ldots, v_{n}\right), W$.
■ Let $S \subseteq\{1, \ldots, n\}$ be an optimal solution to the problem The optimal benefit is $\sum_{i \in S} v_{i}$
■ With respect to the last item we have two cases:
■ $n \notin S$, then S is an optimal solution to the problem $\left(w_{1}, \ldots, w_{n-1}\right),\left(v_{1}, \ldots, v_{n-1}\right), W$
■ $n \in S$, then $S-\{n\}$ is an optimal solution to the problem $\left(w_{1}, \ldots, w_{n-1}\right),\left(v_{1}, \ldots, v_{n-1}\right), W-w_{n}$
■ in both cases we get an optimal solution of a subproblem in which the last item is removed and in which the maximum weight can be W or a value smaller than W.

- This identifies subproblems of the form $[i, x]$ that are knapsack instances in which the set of items is $\{1, \ldots, i\}$ and the maximum weight that can hold the knapsack is x.

Subproblems and recurrence

Let $v[i, x]$ be the maximum value (optimum) we can get from objects $\{1,2, \ldots, i\}$ within total weight $\leq x$.

Subproblems and recurrence

Let $v[i, x]$ be the maximum value (optimum) we can get from objects $\{1,2, \ldots, i\}$ within total weight $\leq x$.

To compute $v[i, x]$, the two possibilities we have considered give raise to the recurrence:

$$
v[i, x]= \begin{cases}0 & \text { if } i=0 \text { or } w=0 \\ \max v\left[i-1, x-w_{i}\right]+v_{i}, v[i-1, x] & \text { otherwise }\end{cases}
$$

DP algorithm: tabulating

Define a table $P[n+1, W+1]$ to hold optimal values for the corresponding subproblem.

```
Knapsack( \(i, x\) )
for \(i=0\) to \(n\) do
        \(P[i, 0]=0\)
    for \(x=1\) to \(W\) do
        \(P[0, x]=0\)
    for \(i=1\) to \(n\) do
        for \(x=1\) to \(W\) do
        \(P[i, x]=\max \{P[i-1, x], P[i-1, x-w[i]]+v[i]\}\)
    return \(P[n, W]\)
```

The number of steps is $O(n W)$

DP algorithm: tabulating

Define a table $P[n+1, W+1]$ to hold optimal values for the corresponding subproblem.

```
Knapsack( \(i, x\) )
for \(i=0\) to \(n\) do
        \(P[i, 0]=0\)
    for \(x=1\) to \(W\) do
        \(P[0, x]=0\)
    for \(i=1\) to \(n\) do
        for \(x=1\) to \(W\) do
        \(P[i, x]=\max \{P[i-1, x], P[i-1, x-w[i]]+v[i]\}\)
    return \(P[n, W]\)
```

The number of steps is $O(n W)$ which is

DP algorithm: tabulating

Define a table $P[n+1, W+1]$ to hold optimal values for the corresponding subproblem.

```
Knapsack( \(i, x\) )
for \(i=0\) to \(n\) do
        \(P[i, 0]=0\)
for \(x=1\) to \(W\) do
        \(P[0, x]=0\)
    for \(i=1\) to \(n\) do
        for \(x=1\) to \(W\) do
        \(P[i, x]=\max \{P[i-1, x], P[i-1, x-w[i]]+v[i]\}\)
    return \(P[n, W]\)
```

The number of steps is $O(n W)$ which is pseudopolynomial.

An example

i	1	2	3	4	5
w_{i}	1	2	5	6	7
v_{i}	1	6	18	22	28

$$
W=11
$$

DP technique
The n-th
Fibonacci
number
Guideline
W activity
selection
0-1 Knapsack
DP for pairing sequences
Framework
Edit distance
Longest common subsequence (LCS) Longest common substring

		0	1	2	3	4	5	$\begin{gathered} w \\ 6 \end{gathered}$	7	8	9	10	11
1	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	1	1	1	1	1	1	1	1	1	1	1
	2	0	1	6	7	7	7	7	7	7	7	7	7
	3	0	1	6	7	7	18	19	24	25	25	25	25
	4	0	1	6	7	7	18	22	23	28	29	29	40
	5	0	1	6	7	7	18	22	28	29	34	35	40

For instance, $v[4,10]=\max \{v[3,10], v[3,10-6]+22\}=$ $\max \{25,7+22\}=29$.
$v[5,11]=\max \{v[4,11], v[4,11-7]+28\}=$ $\max \{40,4+28\}=40$.

Recovering the solution

To compute the actual subset $S \subseteq I$ that is the solution, we modify the algorithm to compute also
a Boolean table
$K[n+1, W+1]$, so that
$K[i, x]$ is 1 when the max is
attained in the second alternative $(i \in S), 0$ otherwise.

Recovering the solution

To compute the actual subset $S \subseteq I$ that is the solution, we modify the algorithm to compute also
a Boolean table $K[n+1, W+1]$, so that $K[i, x]$ is 1 when the max is attained in the second alternative $(i \in S), 0$ otherwise.

$$
\begin{aligned}
& \text { Knapsack }(i, x) \\
& \text { for } i=0 \text { to } n \text { do } \\
& P[i, 0]=0 ; K[i, 0]=0 \\
& \text { for } x=1 \text { to } W \text { do } \\
& P[0, x]=0 ; K[0, x]=0 \\
& \text { for } i=1 \text { to } n \text { do } \\
& \text { for } x=1 \text { to } W \text { do } \\
& \text { if } P[i-1, x] \geq \\
& P[i-1, x-w[i]]+v[i] \text { then } \\
& P[i, x]=P[i-1, x] ; \\
& K[i, x]=0 \\
& \text { else } \\
& P[i, x]= \\
& P[i-1, x-w[i]]+v[i] ; \\
& K[i, x]=1 \\
& \text { return } P[n, W] \\
& \text { Complexity: } O(n W)
\end{aligned}
$$

An example

	0	1	2	3	4	5	6	7	8	9	10	11
0	00	00	00	00	00	00	00	00	00	00	00	00
1	00	11	11	11	11	11	11	11	11	11	11	11
2	00	10	61	71	71	71	71	71	71	71	71	71
3	00	10	60	70	70	181	191	241	251	251	251	251
4	00	10	60	70	70	181	221	231	281	291	291	401
5	00	10	60	70	70	180	220	281	291	341	351	400

Recovering the solution

- To compute an optimal solution $S \subseteq I$, we use K to trace backwards the elements in the solution.
■ $K[i, x]$ is 1 when the max is attained in the second alternative: $i \in S$.

Recovering the solution

- To compute an optimal solution $S \subseteq I$, we use K to trace backwards the elements in the solution.
- $K[i, x]$ is 1 when the max is attained in the second alternative: $i \in S$.

$$
\begin{aligned}
& x=W, S=\emptyset \\
& \text { for } i=n \text { downto } 1 \text { do } \\
& \text { if } K[i, x]=1 \text { then } \\
& S=S \cup\{i\} \\
& \\
& x=x-w_{i}
\end{aligned}
$$

Output S

Complexity: $O(n W)$

An example

DP technique
The n-th
Fibonacci
number

i	1	2	3	4	5
w_{i}	1	2	5	6	7
v_{i}	1	6	18	22	28

$$
W=11 .
$$

An example

DP technique

The n-th

Fibonacci

number

Guideline
W activity selection

0-1 Knapsack
DP for pairing sequences

Framework

Edit distance
Longest common subsequence (LCS) Longest common substring

i	1	2	3	4	5
w_{i}	1	2	5	6	7
v_{i}	1	6	18	22	28

$$
W=11
$$

	0	1	2	3	4	5	6	7	8	9	10	11
0	00	00	00	00	00	00	00	00	00	00	00	00
1	00	11	11	11	11	11	11	11	11	11	11	11
2	00	10	61	71	71	71	71	71	71	71	71	71
3	00	10	60	70	70	181	191	241	251	251	251	251
4	00	10	60	70	70	181	221	231	281	291	291	401
5	00	10	60	70	70	180	220	281	291	341	351	400

$K[5,11] \rightarrow K[4,11] \rightarrow K[3,5] \rightarrow K[2,0]$. So $S=\{4,3\}$

Complexity

The 0-1 Knapsack is NP-complete.

- 0-1 Knapsack, has complexity $O(n W)$, and its length is $O(n \lg M)$ taking $M=\max \left\{W, \max _{i} w_{i}, \max _{i} v_{i}\right\}$.
- If W requires k bits, the cost and space of the algorithm is $n 2^{k}$, exponential in the length W. However the DP algorithm works fine when $W=\Theta(n)$, here $k=O(\log n)$.
- Consider the unary knapsack problem, where all integers are coded in unary $(7=1111111)$. In this case, the complexity of the DP algorithm is polynomial on the size, i.e., Unary Knapsack \in P.

Matching DNA sequences

The n-th

Fibonacci

Guideline
W activity selection

0-1 Knapsack
DP for pairing sequences Framework

- DNA, is the hereditary material in almost all living organisms. They can reproduce by themselves.
- Its function is like a program unique to each individual organism that rules the working and evolution of the organism.
- Model as a string of 3×10^{9} characters over $\{A, T, G, C\}$.

Computational genomics: Some questions

- When a new gene is discovered, one way to gain insight into its working, is to find well known genes (not necessarily in the same species) which match it closely. Biologists suggest a generalization of edit distance as a definition of approximately match.

■ GenBank (https://www.ncbi.nlm.nih.gov/genbank/) has a collection of $>10^{10}$ well studied genes, BLAST is a software to do fast searching for similarities between a gene an those in a DB of genes.

- Sequencing DNA: consists in the determination of the order of DNA bases, in a short sequence of 500-700 characters of DNA. To get the global picture of the whole DNA chain, we generate a large amount of DNA sequences and try to assembled them into a coherent DNA sequence. This last part is usually a difficult one, as the position of each sequence is the global DNA chain is not know before hand.

How to compare sequences?

A	C	C	G	G	T	C	G	A	G	T	. .

Guideline
W activity
selection
0.1 Knapsack

DP for pairing sequences
Framework
Edit distance
Longest common subsequence (LCS) Longest common substring

Three problems

Longest common substring: Substring $=$ consecutive characters in the string.

1	C	A	T	T	G	T	A	G	
/									
C	T		A	T	C	A	G	A	

Longest common subsequence: Subsequence = ordered chain of characters (might have gaps).

Edit distance: Convert one string into another one using a given set of operations.

The Edit Distance problem

(Section 6.3 in Dasgupta, Papadimritriou, Vazirani's book.)

$$
\text { In } \underbrace{f}_{\text {replace }} \mathrm{f} \text { r a m in oin }
$$

The edit distance between strings $X=x_{1} \cdots x_{n}$ and $Y=y_{1} \cdots y_{m}$ is defined to be the minimum number of edit operations needed to transform X into Y.

All the operations are done on X

Edit distance: Applications

■ Computational genomics: evolution between generations, i.e. between strings on $\{A, T, G, C,-\}$.

■ Natural Language Processing: distance, between strings on the alphabet.

- Text processor, suggested corrections

Edit Distance: Levenshtein distance

In the Levenshtein distance the set of operations are
■ $\operatorname{insert}(X, i, a)=x_{1} \cdots x_{i} a x_{i+1} \cdots x_{n}$.
■ $\operatorname{delete}(X, i)=x_{1} \cdots x_{i-1} x_{i+1} \cdots x_{n}$
■ modify $(X, i, a)=x_{1} \cdots x_{i-1} a x_{i+1} \cdots x_{n}$.
the cost of modify is 2 , and the cost of insert/delete is 1 .
To simplify, in the following we assume that the cost of each operation is 1 .

For other operations and costs the structure of the DP will be similar.

Exemple-1

$X=a a b a b$ and $Y=b a b b$
$a a b a b=X$
$X^{\prime}=\operatorname{insert}(X, 0, b) \quad$ baabab
$X^{\prime \prime}=\operatorname{delete}\left(X^{\prime}, 2\right) \quad b a b a b$
$X^{\prime \prime}=\operatorname{delete}\left(X^{\prime \prime}, 4\right) \quad b a b b$
$X=a a b a b \rightarrow Y=b a b b$

Exemple-1

$X=a a b a b$ and $Y=b a b b$
$a a b a b=X$
$X^{\prime}=\operatorname{insert}(X, 0, b)$ baabab
$X^{\prime \prime}=\operatorname{delete}\left(X^{\prime}, 2\right) \quad b a b a b$
$X^{\prime \prime}=\operatorname{delete}\left(X^{\prime \prime}, 4\right) \quad b a b b$
$X=a a b a b \rightarrow Y=b a b b$
A shortest edit distance
$a a b a b=X$
$X^{\prime}=\operatorname{modify}(X, 1, b) \quad b a b a b$
$Y=\operatorname{delete}\left(X^{\prime}, 4\right) \quad b a b b$
Use dynamic programming.

The structure of an optimal solution

- In a solution O with minimum edit distance from $X=x_{1} \cdots x_{n}$ to $Y=y_{1} \cdots y_{m}$, we have three possible alignments for the last terms

(1)	(2)	(3)
x_{n}	-	x_{n}
-	y_{m}	y_{m}

- In (1), O performs delete x_{n}, and it transforms optimally, $x_{1} \cdots x_{n-1}$ into $y_{1} \cdots y_{m}$.
$\square \ln (2), O$ performs insert y_{m} at the end of x, and it transforms optimally, $x_{1} \cdots x_{n}$ into $y_{1} \cdots y_{m-1}$.
■ In (3), if $x_{n} \neq y_{m}, O$ performs modify x_{n} by y_{m}, otherwise O, aligns them without cost. Furthermore O transforms optimally $x_{1} \cdots x_{n-1}$ into $y_{1} \cdots y_{m-1}$.

The recurrence

$$
\begin{aligned}
& \text { Let } X[i]=x_{1} \cdots x_{i}, Y[j]=y_{1} \cdots y_{j} \text {. } \\
& E[i, j]=\text { edit distance from } X[i] \text { to } Y[j] \text { is the maximum of }
\end{aligned}
$$

■ I put y_{j} at the end of $x: E[i, j-1]+1$

- D delete $x_{i}: E[i-1, j]+1$

■ if $x_{i} \neq y_{j}$, M change x_{i} into $y_{j}: E[i-1, j-1]+1$, otherwise $E[i-1, j-1]$

Edit distance: Recurrence

Adding the base cases, we have the recurrence

DP technique

The n-th
Fibonacci
number
Guideline
W activity
selection
0-1 Knapsack
DP for pairing sequences

$$
E[i, j]=\left\{\begin{array}{ll}
j & \text { if } i=0(\text { converting } \lambda \rightarrow Y[j]) \\
i & \text { if } j=0(\text { converting } X[i] \rightarrow \lambda)
\end{array}\right\} \begin{array}{ll}
E[i-1, j]+1 & \text { if D } \\
\min \{[i, j-1]+1, & \text { if I } \\
E[i-1, j-1]+\delta\left(x_{i}, y_{j}\right) & \text { otherwise }
\end{array}
$$

Edit distance

$$
\delta\left(x_{i}, y_{j}\right)= \begin{cases}0 & \text { if } x_{i}=y_{j} \\ 1 & \text { otherwise }\end{cases}
$$

Computing the optimal costs and pointers

```
\(\operatorname{Edit}(X, Y)\)
for \(i=0\) to \(n\) do
    \(E[i, 0]=i\)
for \(j=0\) to \(m\) do
    \(E[0, j]=j\)
for \(i=1\) to \(n\) do
    for \(j=1\) to \(m\) do
        \(\delta=0\)
        if \(x_{i} \neq y_{j}\) then
            \(\delta=1\)
        \(E[i, j]=E[i, j-1]+1 b[i, j]=\uparrow\)
        if \(E[i-1, j-1]+\delta<E[i, j]\) then
            \(E[i, j]=E[i-1, j-1]+\delta, b[i, j]:=\nwarrow\)
        if \(E[i-1, j]+1<E[i, j]\) then
            \(E[i, j]=E[i-1, j]+1, b[i, j]:=\leftarrow\)
```

Space and time complexity: $O(n m)$.
\leftarrow is a 1 operation, \uparrow is a D
operation, and
\nwarrow is either a M or a
no-operation.

Computing the optimal costs: Example

$X=$ aabab; $Y=b a b b$. Therefore, $n=5, m=4$

DP technique
The n-th
Fibonacci number

Guideline
W activity selection

0-1 Knapsack
DP for pairing sequences Framework
Edit distance

		0	1	2	3	4
		λ	b	a	b	b
0	λ	0	$\leftarrow 1$	$\leftarrow 2$	$\leftarrow 3$	$\leftarrow 4$
1	a	$\uparrow 1$	$\nwarrow 1$	$\nwarrow 1$	$\leftarrow 2$	$\leftarrow 3$
2	a	$\uparrow 2$	$\nwarrow 2$	$\nwarrow 1$	$\leftarrow 2$	$\leftarrow 3$
3	b	$\uparrow 3$	$\nwarrow 2$	$\uparrow 2$	$\nwarrow 1$	$\nwarrow 2$
4	a	$\uparrow 4$	$\uparrow 3$	$\nwarrow 2$	$\uparrow 2$	$\nwarrow 2$
5	b	$\uparrow 5$	$\nwarrow 4$	$\uparrow 3$	$\uparrow 2$	$\nwarrow 2$

\leftarrow is a I operation, \uparrow is a D operation, and
\nwarrow is either a M or a no-operation.

Obtain Y in edit distance from X

Uses as input the arrays E and b.
The first call to the algorithm is con-Edit (n, m)

```
con-Edit(i,j)
if i=0 or j=0 then
    return
    if b[i,j]=\nwarrow and }\mp@subsup{x}{i}{}=\mp@subsup{y}{j}{}\mathrm{ then
        change(X,i, yj)); con-Edit(i-1,j-1)
    if b[i,j]=\uparrow then
        delete(X,i); con-Edit(i-1,j)
    if b[i,j]=\leftarrow then
        insert(X,i, yj), con-Edit(i,j-1)
```

This algorithm has time complexity $O(n m)$.

The Longest Common Subsequence

DP technique

The n-th
Fibonacci
number
Guideline
W activity
selection
0-1 Knapsack
DP for pairing sequences
Framework
Edit distance
Longest common subsequence (LCS) Longest common substring
(Section 15.4 in CormenLRS' book.)

The Longest Common Subsequence

(Section 15.4 in CormenLRS' book.)
■ $Z=z_{1} \cdots z_{k}$ is a subsequence of X if there is a subsequence of integers $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$ such that $z_{j}=x_{i j}$.
TTT is a subsequence of ATATAT.

The Longest Common Subsequence

(Section 15.4 in CormenLRS' book.)
■ $Z=z_{1} \cdots z_{k}$ is a subsequence of X if there is a subsequence of integers $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$ such that $z_{j}=x_{i j}$.
TTT is a subsequence of ATATAT.
■ If Z is a subsequence of X and Y, then Z is a common subsequence of X and Y.

The Longest Common Subsequence

(Section 15.4 in CormenLRS' book.)

■ $Z=z_{1} \cdots z_{k}$ is a subsequence of X if there is a subsequence of integers $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$ such that $z_{j}=x_{i j}$.
TTT is a subsequence of ATATAT.
■ If Z is a subsequence of X and Y, then Z is a common subsequence of X and Y.

LCS Given sequences $X=x_{1} \cdots x_{n}$ and $Y=y_{1} \cdots y_{m}$, compute the longest common subsequence Z.

DP approach: Characterization of optimal solution

Let $X=x_{1} \cdots x_{n}$ and $Y=y_{1} \cdots y_{m}$ and let Z be a longest common subsequence (Ics). Then,

DP approach: Characterization of optimal solution

Let $X=x_{1} \cdots x_{n}$ and $Y=y_{1} \cdots y_{m}$ and let Z be a longest common subsequence (Ics). Then,
$\square Z=x_{i_{1}} \ldots x_{i_{k}}=y_{j_{1}} \ldots y_{j_{k}}$

DP approach: Characterization of optimal solution

Let $X=x_{1} \cdots x_{n}$ and $Y=y_{1} \cdots y_{m}$ and let Z be a longest common subsequence (Ics). Then,

■ $Z=x_{i_{1}} \ldots x_{i_{k}}=y_{j_{1}} \ldots y_{j_{k}}$
■ There are no i, j, with $i>i_{k}$ and $j>j_{k}$, s.t. $x_{i}=y_{j}$. Otherwise, Z will not be optimal.

DP approach: Characterization of optimal solution

Let $X=x_{1} \cdots x_{n}$ and $Y=y_{1} \cdots y_{m}$ and let Z be a longest common subsequence (Ics). Then,

■ $Z=x_{i_{1}} \ldots x_{i_{k}}=y_{j_{1}} \ldots y_{j_{k}}$
■ There are no i, j, with $i>i_{k}$ and $j>j_{k}$, s.t. $x_{i}=y_{j}$. Otherwise, Z will not be optimal.

■ $a=x_{i_{k}}$ might appear after i_{k} in X, but not after j_{k} in Y, or viceversa.

DP approach: Characterization of optimal solution

Let $X=x_{1} \cdots x_{n}$ and $Y=y_{1} \cdots y_{m}$ and let Z be a longest common subsequence (Ics). Then,

■ $Z=x_{i_{1}} \ldots x_{i_{k}}=y_{j_{1}} \ldots y_{j_{k}}$
■ There are no i, j, with $i>i_{k}$ and $j>j_{k}$, s.t. $x_{i}=y_{j}$. Otherwise, Z will not be optimal.
■ $a=x_{i_{k}}$ might appear after i_{k} in X, but not after j_{k} in Y, or viceversa.

- There is an optimal solution in which i_{k} and j_{k} are the last occurrence of a in X and Y respectively.

DP approach: Characterization of optimal solution

Let $X=x_{1} \cdots x_{n}$ and $Y=y_{1} \cdots y_{m}$ and let $Z=x_{i_{1}} \ldots x_{i_{k}}=y_{j_{1}} \ldots y_{j_{k}}$ a Ics s.t. the index of the final common symbol in Z is its last occurrence in both X and Y.

DP approach: Characterization of optimal solution

Let $X=x_{1} \cdots x_{n}$ and $Y=y_{1} \cdots y_{m}$ and let $Z=x_{i_{1}} \ldots x_{i_{k}}=y_{j_{1}} \ldots y_{j_{k}}$ a Ics s.t. the index of the final common symbol in Z is its last occurrence in both X and Y.

Let $X^{-}=x_{1} \cdots x_{n-1}$ and $Y^{-}=y_{1} \cdots y_{m-1}$

DP approach: Characterization of optimal solution

Let $X=x_{1} \cdots x_{n}$ and $Y=y_{1} \cdots y_{m}$ and let $Z=x_{i_{1}} \ldots x_{i_{k}}=y_{j_{1}} \ldots y_{j_{k}}$ a Ics s.t. the index of the final common symbol in Z is its last occurrence in both X and Y.

Let $X^{-}=x_{1} \cdots x_{n-1}$ and $Y^{-}=y_{1} \cdots y_{m-1}$
■ Let us look at x_{n} and y_{m}.
■ If $x_{n}=y_{m}, i_{k}=n$ and $j_{k}=m$ so, $x_{i_{1}} \ldots x_{i_{k-1}}$ is a Ics of X^{-}and Y^{-}.

DP approach: Characterization of optimal solution

Let $X=x_{1} \cdots x_{n}$ and $Y=y_{1} \cdots y_{m}$ and let $Z=x_{i_{1}} \ldots x_{i_{k}}=y_{j_{1}} \ldots y_{j_{k}}$ a Ics s.t. the index of the final common symbol in Z is its last occurrence in X and Y.

$$
\text { Let } X^{-}=x_{1} \cdots x_{n-1} \text { and } Y^{-}=y_{1} \cdots y_{m-1}
$$

■ Let us look at x_{n} and y_{m}.

- If $x_{n} \neq y_{m}$,

DP approach: Characterization of optimal solution

Let $X=x_{1} \cdots x_{n}$ and $Y=y_{1} \cdots y_{m}$ and let
$Z=x_{i_{1}} \ldots x_{i_{k}}=y_{j_{1}} \ldots y_{j_{k}}$ a Ics s.t. the index of the final common symbol in Z is its last occurrence in X and Y.

$$
\text { Let } X^{-}=x_{1} \cdots x_{n-1} \text { and } Y^{-}=y_{1} \cdots y_{m-1}
$$

■ Let us look at x_{n} and y_{m}.

- If $x_{n} \neq y_{m}$,

■ If $i_{k}<n$ and $j_{k}<m, Z$ is a Ics of X^{-}and Y^{-}.

- If $i_{k}=n$ and $j_{k}<m, Z$ is a Ics of X and Y^{-}.

■ If $i_{k}<$ and $j_{k}=m, Z$ is a Ics of X^{-}and Y.

- The last two include the first one!

DP approach: Supproblems

Subproblems $=$ Ics of pairs of prefixes of the initial strings.

DP approach: Supproblems

Subproblems $=$ Ics of pairs of prefixes of the initial strings. Notation:

■ $X[i]=x_{1} \ldots x_{i}$, for $0 \leq i \leq n$

- $Y[j]=y_{1} \ldots y_{j}$, for $0 \leq j \leq m$
- $c[i, j]=$ length of the LCS of $X[i]$ and $Y[j]$.
- Want $c[n, m]$ i.e. length of the LCS for X and Y.

DP approach: Recursion

Guideline
W activity selection

0-1 Knapsack
DP for pairing sequences
Framework

Edit distance

Therefore, given X and Y

$$
c[i, j]= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ c[i-1, j-1]+1 & \text { if } x_{i}=y_{j} \\ \max (c[i, j-1], c[i-1, j]) & \text { otherwise }\end{cases}
$$

The recursive algorithm

LCS (X, Y)
$n=X . \operatorname{size}() ; m=Y . \operatorname{size}()$
if $n=0$ or $m=0$ then return 0
else if $x_{n}=y_{m}$ then
return $1+\operatorname{LCS}\left(X^{-}, Y^{-}\right)$
else
return $\max \left\{\mathbf{L C S}\left(X, Y^{-}\right), \mathbf{L C S}\left(X^{-}, Y\right)\right\}$

The recursive algorithm

$\operatorname{LCS}(X, Y)$
$n=X . \operatorname{size}() ; m=Y . \operatorname{size}()$
if $n=0$ or $m=0$ then return 0
else if $x_{n}=y_{m}$ then
return $1+\operatorname{LCS}\left(X^{-}, Y^{-}\right)$
else

$$
\text { return } \max \left\{\mathbf{L C S}\left(X, Y^{-}\right), \operatorname{LCS}\left(X^{-}, Y\right)\right\}
$$

The algorithm makes 1 or 2 recursive calls and explores a tree of depth $O(n+m)$, therefore the time complexity is $2^{O(n+m)}$.

DP: tabulating

We need to find the correct traversal of the table holding the $c[i, j]$ values.

DP technique
The n-th
Fibonacci
number
Guideline
W activity
selection
0-1 Knapsack
DP for pairing sequences
Framework
Edit distance
Longest common subsequence (LCS)

DP: tabulating

We need to find the correct traversal of the table holding the $c[i, j]$ values.

- Base case is $c[0, j]=0$, for $0 \leq j \leq m$, and $c[i, 0]=0$, for $0 \leq i \leq n$.
■ To compute $c[i, j]$, we have to access

$c[i-1, j-1]$	$c[i-1, j]$
$c[i, j-1]$	$c[i, j]$

A row traversal provides a correct ordering.
■ To being able to recover a solution we use a table b, to indicate which one of the three options provided the value $c[i, j]$.

Tabulating

The n-th
Fibonacci

Guideline
W activity selection

0-1 Knapsack
DP for pairing sequences

Edit distance

$$
\begin{aligned}
& \text { LCS }(X, Y) \\
& \text { for } i=0 \text { to } n \text { do } \\
& \quad c[i, 0]=0 \\
& \text { for } j=1 \text { to } m \text { do } \\
& \quad c[0, j]=0 \\
& \text { for } i=1 \text { to } n \text { do } \\
& \quad \text { for } j=1 \text { to } m \text { do } \\
& \quad \text { if } x_{i}=y_{j} \text { then } \\
& \quad c[i, j]=c[i-1, j-1]+1, b[i . j]=\nwarrow \\
& \quad \text { else if } c[i-1, j] \geq c[i, j-1] \text { then } \\
& \quad c[i, j]=c[i-1, j], b[i, j]=\leftarrow \\
& \quad \text { else } \\
& \quad c[i, j]=c[i, j-1], b[i, j]=\uparrow .
\end{aligned}
$$

Example.

$X=(A T C T G A T) ; Y=(T G C A T A)$. Therefore, $m=6, n=7$
DP technique
The n-th
Fibonacci number

Guideline
W activity
selection
0-1 Knapsack
DP for pairing sequences
Framework
Edit distance

		0	1	2	3	4	5	6
		T	G	C	A	T	A	
0		0	0	0	0	0	0	0
1	A	0	$\uparrow 0$	$\uparrow 0$	$\uparrow 0$	$\nwarrow 1$	$\leftarrow 1$	$\nwarrow 1$
2	T	0	$\nwarrow 1$	$\leftarrow 1$	$\leftarrow 1$	$\uparrow 1$	$\nwarrow 2$	$\leftarrow 2$
3	C	0	$\uparrow 1$	$\uparrow 1$	$\nwarrow 2$	$\leftarrow 2$	$\uparrow 2$	$\uparrow 2$
4	T	0	$\nwarrow 1$	$\uparrow 1$	$\uparrow 2$	$\uparrow 2$	$\nwarrow 3$	$\leftarrow 3$
5	G	0	$\uparrow 1$	$\nwarrow 2$	$\uparrow 2$	$\uparrow 2$	$\uparrow 3$	$\uparrow 3$
6	A	0	$\uparrow 1$	$\uparrow 2$	$\uparrow 2$	$\nwarrow 3$	$\uparrow 3$	$\nwarrow 4$
7	T	0	$\nwarrow 1$	$\uparrow 2$	$\uparrow 2$	$\uparrow 3$	$\nwarrow 4$	$\uparrow 4$

Following the arrows: TCTA

Construct the solution

Access the tables c and d.
The first call to the algorithm is sol-LCS (n, m) sol-LCS (i, j)
if $i=0$ or $j=0$ then STOP.
else if $b[i, j]=\nwarrow$ then sol-LCS $(i-1, j-1)$ return x_{i}
else if $b[i, j]=\uparrow$ then sol-LCS $(i-1, j)$
else

$$
\text { sol-LCS }(i, j-1)
$$

The algorithm has time complexity $O(n+m)$.

Longest common substring

- A slightly different problem with a similar solution

Longest common substring

- A slightly different problem with a similar solution

■ LCSt: Given two strings $X=x_{1} \ldots x_{n}$ and $Y=y_{1} \ldots y_{m}$, compute their longest common substring Z, i.e., the largest k for which there are indices i and j with $x_{i} x_{i+1} \ldots x_{i+k}=y_{j} y_{j+1} \ldots y_{j+k}$.

Longest common substring

■ A slightly different problem with a similar solution
■ LCSt: Given two strings $X=x_{1} \ldots x_{n}$ and $Y=y_{1} \ldots y_{m}$, compute their longest common substring Z, i.e., the largest k for which there are indices i and j with $x_{i} x_{i+1} \ldots x_{i+k}=y_{j} y_{j+1} \ldots y_{j+k}$.
■ For example:
X : DEADBEEF
Y : EATBEEF
Z:

Longest common substring

DP technique

The n-th

Fibonacci

- A slightly different problem with a similar solution

■ LCSt Given two strings $X=x_{1} \ldots x_{n}$ and $Y=y_{1} \ldots y_{m}$, compute their longest common substring Z, i.e., corresponding to the largest k for which there are indices i and j with $x_{i} x_{i+1} \ldots x_{i+k}=y_{j} y_{j+1} \ldots y_{j+k}$.
■ For example:
X : DEADBBEEF
Y: EATBEEF
Z:

Longest common substring

- A slightly different problem with a similar solution
- LCSt Given two strings $X=x_{1} \ldots x_{n}$ and $Y=y_{1} \ldots y_{m}$, compute their longest common substring Z, i.e., corresponding to the largest k for which there are indices i and j with $x_{i} x_{i+1} \ldots x_{i+k}=y_{j} y_{j+1} \ldots y_{j+k}$.
■ For example:
X : DEADBBEEF
Y: EATBEEF
Z : BEEF pick the longest substring

Characterization of optimal solution

- Let $X=x_{1} \cdots x_{n}$ and $Y=y_{1} \cdots y_{m}$ and let Z be a longest common substring.

$$
\square=x_{i} \ldots x_{i+k}=y_{j} \ldots y_{j+k}
$$

Characterization of optimal solution

■ Let $X=x_{1} \cdots x_{n}$ and $Y=y_{1} \cdots y_{m}$ and let Z be a longest common substring.

■ $Z=x_{i} \ldots x_{i+k}=y_{j} \ldots y_{j+k}$

- Z is the longest common suffix of $X(i+k)$ and $Y(j+k)$.

Characterization of optimal solution

■ Let $X=x_{1} \cdots x_{n}$ and $Y=y_{1} \cdots y_{m}$ and let Z be a longest common substring.

■ $Z=x_{i} \ldots x_{i+k}=y_{j} \ldots y_{j+k}$

- Z is the longest common suffix of $X(i+k)$ and $Y(j+k)$.

■ We can consider the subproblems $\operatorname{LCStf}(i, j)$: compute the longest common suffix of $X(i)$ and $Y(j)$.

Characterization of optimal solution

■ Let $X=x_{1} \cdots x_{n}$ and $Y=y_{1} \cdots y_{m}$ and let Z be a longest common substring.

$$
Z=x_{i} \ldots x_{i+k}=y_{j} \ldots y_{j+k}
$$

- Z is the longest common suffix of $X(i+k)$ and $Y(j+k)$.

■ We can consider the subproblems $\operatorname{LCStf}(i, j)$: compute the longest common suffix of $X(i)$ and $Y(j)$.

- The $\operatorname{LCSf}(X, Y)$ is the longest of such common suffixes.

Computing the LC Suffixes

- To solve $\operatorname{LCSf}(i, j)$ it is enough to go backward from position i in X and j in Y until we find two different characters.
- This has cost $O(n+m)$ per subproblem.
in X and j until wefind two differt

Computing the LC Suffixes

- To solve $\operatorname{LCSf}(i, j)$ it is enough to go backward from position i in X and j in Y until we find two different characters.
- This has cost $O(n+m)$ per subproblem.
- We get a $O(n m(n+m))$ algorithm for LCSt

Computing the LC Suffixes

- To solve $\operatorname{LCSf}(i, j)$ it is enough to go backward from position i in X and j in Y until we find two different characters.
- This has cost $O(n+m)$ per subproblem.
- We get a $O(n m(n+m))$ algorithm for LCSt

■ Can we do it faster?

Computing the LC Suffixes

- To solve $\operatorname{LCSf}(i, j)$ it is enough to go backward from position i in X and j in Y until we find two different characters.
- This has cost $O(n+m)$ per subproblem.
- We get a $O(n m(n+m))$ algorithm for LCSt
- Can we do it faster? Let us use DP!

A recursive solution for LC Suffixes

Notation:
$\square X[i]=x_{1} \ldots x_{i}$, for $0 \leq i \leq n$

- $Y[j]=y_{1} \ldots y_{j}$, for $0 \leq j \leq m$

■ $s[i, j]=$ the length of the LC Suffix of $X[i]$ and $Y[j]$.
■ Want $\max _{i, j} s[i, j]$ i.e., the length of the LCSt of X, Y.

DP approach: Recursion

DP technique
The n-th
Fibonacci
number
Guideline
W activity
selection
0-1 Knapsack
DP for pairing sequences
Framework
Edit distance
Longest common subsequence (LCS) Longest common substring

Therefore, given X and Y

$$
s[i, j]= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ 0 & \text { if } x_{i} \neq y_{j} \\ s[i-1, j-1]+1 & \text { if } x_{i}=y_{j}\end{cases}
$$

DP approach: Recursion

Therefore, given X and Y

$$
s[i, j]= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ 0 & \text { if } x_{i} \neq y_{j} \\ s[i-1, j-1]+1 & \text { if } x_{i}=y_{j}\end{cases}
$$

Using the recurrence the cost per recursive call (or per element in the table) is constant

Tabulating

The n-th
Fibonacci

number

Guideline
W activity
selection
0-1 Knapsack
DP for pairing sequences
Framework
Edit distance
Longest common suibsequence (LCS) Longest common substring
$\operatorname{LCSf}(X, Y)$
for $i=0$ to n do $s[i, 0]=0$
for $j=1$ to m do

$$
s[0, j]=0
$$

$$
\text { for } i=1 \text { to } n \text { do }
$$

$$
\text { for } j=1 \text { to } m \text { do }
$$

$$
s[i, j]=0
$$

if $x_{i}=y_{j}$ then

$$
s[i, j]=s[i-1, j-1]+1
$$

complexity:
$O(n m)$.
Which gives an algorithm with cost $O(n m)$ for LCSt

