
Backtracking

Subsets

Permutations

TSP

Knapsack

Backtracking algorithms



Backtracking

Subsets

Permutations

TSP

Knapsack

Backtracking

Backtracking is a systematic way to go through all the
possible configurations of a solutions space.

Configurations include for example all possible
arrangements of a set of objects (permutations) or all
possible ways of building a collection of them (subsets).

Other applications may demand enumerating all spanning
trees of a graph or all paths between two vertices, etc.

We must generate each one of the possible configurations
exactly once.

To avoid repetitions and missing configurations we must
define a systematic generation order among the possible
configurations.



Backtracking

Subsets

Permutations

TSP

Knapsack

Backtracking

Backtracking is a systematic way to go through all the
possible configurations of a solutions space.

Configurations include for example all possible
arrangements of a set of objects (permutations) or all
possible ways of building a collection of them (subsets).

Other applications may demand enumerating all spanning
trees of a graph or all paths between two vertices, etc.

We must generate each one of the possible configurations
exactly once.

To avoid repetitions and missing configurations we must
define a systematic generation order among the possible
configurations.



Backtracking

Subsets

Permutations

TSP

Knapsack

Backtracking

Backtracking is a systematic way to go through all the
possible configurations of a solutions space.

Configurations include for example all possible
arrangements of a set of objects (permutations) or all
possible ways of building a collection of them (subsets).

Other applications may demand enumerating all spanning
trees of a graph or all paths between two vertices, etc.

We must generate each one of the possible configurations
exactly once.

To avoid repetitions and missing configurations we must
define a systematic generation order among the possible
configurations.



Backtracking

Subsets

Permutations

TSP

Knapsack

Backtracking

Backtracking is a systematic way to go through all the
possible configurations of a solutions space.

Configurations include for example all possible
arrangements of a set of objects (permutations) or all
possible ways of building a collection of them (subsets).

Other applications may demand enumerating all spanning
trees of a graph or all paths between two vertices, etc.

We must generate each one of the possible configurations
exactly once.

To avoid repetitions and missing configurations we must
define a systematic generation order among the possible
configurations.



Backtracking

Subsets

Permutations

TSP

Knapsack

Backtracking

Backtracking is a systematic way to go through all the
possible configurations of a solutions space.

Configurations include for example all possible
arrangements of a set of objects (permutations) or all
possible ways of building a collection of them (subsets).

Other applications may demand enumerating all spanning
trees of a graph or all paths between two vertices, etc.

We must generate each one of the possible configurations
exactly once.

To avoid repetitions and missing configurations we must
define a systematic generation order among the possible
configurations.



Backtracking

Subsets

Permutations

TSP

Knapsack

Exhaustive Search

by exhaustive search we can solve small problems to
optimality, althoug the time complexity may be enourmous

backtracking is the basic technique for exhaustive search

sometimes it is possible to speed up the search using
pruning techniques like branch and bound or branch and
cut.

(S. Skiena The algorithm design manual, Springer Verlag 1998)



Backtracking

Subsets

Permutations

TSP

Knapsack

Exhaustive Search

by exhaustive search we can solve small problems to
optimality, althoug the time complexity may be enourmous

backtracking is the basic technique for exhaustive search

sometimes it is possible to speed up the search using
pruning techniques like branch and bound or branch and
cut.

(S. Skiena The algorithm design manual, Springer Verlag 1998)



Backtracking

Subsets

Permutations

TSP

Knapsack

Combinatorial Search

In combinatorial search, we represent our configurations by
a vector A = (a1, . . . , an),
where each element ai is selected from an ordered set of
possible candidates Si for position i .

The search procedure works by growing solutions one
element at a time.

At each step a partial solution (a1, . . . , ak) is constructed.

A candidate set Sk+1 for position (k + 1) is defined,
try to extend the partial solution by adding the next
element from Sk+1.
So long as the extension yields a longer partial solution, we
continue to try to extend it.
At some point, Sk+1 = ∅, if so, we must backtrack, and
replace ak , the last item in the solution value, with the
next candidate in Sk .



Backtracking

Subsets

Permutations

TSP

Knapsack

Combinatorial Search

In combinatorial search, we represent our configurations by
a vector A = (a1, . . . , an),
where each element ai is selected from an ordered set of
possible candidates Si for position i .

The search procedure works by growing solutions one
element at a time.

At each step a partial solution (a1, . . . , ak) is constructed.

A candidate set Sk+1 for position (k + 1) is defined,
try to extend the partial solution by adding the next
element from Sk+1.
So long as the extension yields a longer partial solution, we
continue to try to extend it.
At some point, Sk+1 = ∅, if so, we must backtrack, and
replace ak , the last item in the solution value, with the
next candidate in Sk .



Backtracking

Subsets

Permutations

TSP

Knapsack

Combinatorial Search

In combinatorial search, we represent our configurations by
a vector A = (a1, . . . , an),
where each element ai is selected from an ordered set of
possible candidates Si for position i .

The search procedure works by growing solutions one
element at a time.

At each step a partial solution (a1, . . . , ak) is constructed.

A candidate set Sk+1 for position (k + 1) is defined,
try to extend the partial solution by adding the next
element from Sk+1.
So long as the extension yields a longer partial solution, we
continue to try to extend it.
At some point, Sk+1 = ∅, if so, we must backtrack, and
replace ak , the last item in the solution value, with the
next candidate in Sk .



Backtracking

Subsets

Permutations

TSP

Knapsack

Backtracking schema

procedure Backtrack(A)
Compute S1, the set of candidates for first position
k = 1
while k > 0 do

while Sk 6= ∅ do . (*advance*)

ak = the next element from Sk
Sk = Sk − {ak}
if A = (a1, . . . , ak) is a solution then

report it

k = k + 1
compute Sk , the set of candidate
k-th elements of solution A.

k = k − 1 . (*backtrack*)



Backtracking

Subsets

Permutations

TSP

Knapsack

Recursive implementation

Backtracking performs a traversal of the tree of solutions.
We may use a recursive algorithm:

procedure BacktrackR(A, k)
if A = (a1, . . . , ak) is a solution then

report it
else

k = k + 1
compute Sk
while Sk 6= ∅ do

ak = an element in Sk
Sk = Sk − {ak}
BacktrackR(A, k)

Each recursive call identifies a subproblem that is solved
“recursively”.



Backtracking

Subsets

Permutations

TSP

Knapsack

Recursive implementation

Backtracking performs a traversal of the tree of solutions.
We may use a recursive algorithm:

procedure BacktrackR(A, k)
if A = (a1, . . . , ak) is a solution then

report it
else

k = k + 1
compute Sk
while Sk 6= ∅ do

ak = an element in Sk
Sk = Sk − {ak}
BacktrackR(A, k)

Each recursive call identifies a subproblem that is solved
“recursively”.



Backtracking

Subsets

Permutations

TSP

Knapsack

Generating subsets

Let [n] = {1, . . . , n} be a set of n elements
There are 2n subsets in total and

(n
k

)
subsets with k

elements

We can use lexicographic order to enumerate all subsets
For example when n = 3, and ∗ marks a configuration
with no extensions, the backtracking algorithm follows the
ordering

()→(1)→ (1, 2)→ (1, 2, 3)∗ → (1, 2)∗ → (1)→ (1, 3)∗ → (1)∗ →
()→(2)→ (2, 3)∗ → (2)∗ →
()→(3)∗ → ()∗

The enumeration performs a depth-first traversal of the
recursion tree(n

k

)
can be upperbounded by nk which is polynomial when k is

a constant.



Backtracking

Subsets

Permutations

TSP

Knapsack

Generating subsets

Let [n] = {1, . . . , n} be a set of n elements
There are 2n subsets in total and

(n
k

)
subsets with k

elements
We can use lexicographic order to enumerate all subsets

For example when n = 3, and ∗ marks a configuration
with no extensions, the backtracking algorithm follows the
ordering

()→(1)→ (1, 2)→ (1, 2, 3)∗ → (1, 2)∗ → (1)→ (1, 3)∗ → (1)∗ →
()→(2)→ (2, 3)∗ → (2)∗ →
()→(3)∗ → ()∗

The enumeration performs a depth-first traversal of the
recursion tree(n

k

)
can be upperbounded by nk which is polynomial when k is

a constant.



Backtracking

Subsets

Permutations

TSP

Knapsack

Generating subsets

Let [n] = {1, . . . , n} be a set of n elements
There are 2n subsets in total and

(n
k

)
subsets with k

elements
We can use lexicographic order to enumerate all subsets
For example when n = 3, and ∗ marks a configuration
with no extensions, the backtracking algorithm follows the
ordering

()→(1)→ (1, 2)→ (1, 2, 3)∗ → (1, 2)∗ → (1)→ (1, 3)∗ → (1)∗ →
()→(2)→ (2, 3)∗ → (2)∗ →
()→(3)∗ → ()∗

The enumeration performs a depth-first traversal of the
recursion tree(n

k

)
can be upperbounded by nk which is polynomial when k is

a constant.



Backtracking

Subsets

Permutations

TSP

Knapsack

Generating subsets

Let [n] = {1, . . . , n} be a set of n elements
There are 2n subsets in total and

(n
k

)
subsets with k

elements
We can use lexicographic order to enumerate all subsets
For example when n = 3, and ∗ marks a configuration
with no extensions, the backtracking algorithm follows the
ordering

()→(1)→ (1, 2)→ (1, 2, 3)∗ → (1, 2)∗ → (1)→ (1, 3)∗ → (1)∗ →
()→(2)→ (2, 3)∗ → (2)∗ →
()→(3)∗ → ()∗

The enumeration performs a depth-first traversal of the
recursion tree

(n
k

)
can be upperbounded by nk which is polynomial when k is

a constant.



Backtracking

Subsets

Permutations

TSP

Knapsack

Generating subsets

Let [n] = {1, . . . , n} be a set of n elements
There are 2n subsets in total and

(n
k

)
subsets with k

elements
We can use lexicographic order to enumerate all subsets
For example when n = 3, and ∗ marks a configuration
with no extensions, the backtracking algorithm follows the
ordering

()→(1)→ (1, 2)→ (1, 2, 3)∗ → (1, 2)∗ → (1)→ (1, 3)∗ → (1)∗ →
()→(2)→ (2, 3)∗ → (2)∗ →
()→(3)∗ → ()∗

The enumeration performs a depth-first traversal of the
recursion tree(n

k

)
can be upperbounded by nk which is polynomial when k is

a constant.



Backtracking

Subsets

Permutations

TSP

Knapsack

Generating all permutations

There are n! permutations of the elements of [n].

Than means, there are n choices for the first element and
n − 1 for the second and so on.

The candidate set for the i-th position is the elements that
are not in the previous position, using the notation of the
backtrack algorithm Sk = [n]− A.

n! can be bounded using Stirling’s formula

n! ≈
√

2πn
(n
e

)n



Backtracking

Subsets

Permutations

TSP

Knapsack

Generating all permutations

There are n! permutations of the elements of [n].

Than means, there are n choices for the first element and
n − 1 for the second and so on.

The candidate set for the i-th position is the elements that
are not in the previous position, using the notation of the
backtrack algorithm Sk = [n]− A.

n! can be bounded using Stirling’s formula

n! ≈
√

2πn
(n
e

)n



Backtracking

Subsets

Permutations

TSP

Knapsack

Generating all permutations

There are n! permutations of the elements of [n].

Than means, there are n choices for the first element and
n − 1 for the second and so on.

The candidate set for the i-th position is the elements that
are not in the previous position, using the notation of the
backtrack algorithm Sk = [n]− A.

n! can be bounded using Stirling’s formula

n! ≈
√

2πn
(n
e

)n



Backtracking

Subsets

Permutations

TSP

Knapsack

The algorithm performs a depth-first traversal of the
configuration tree

For example when n = 3, the configuration tree is

(1)→(1, 2)→ (1, 2, 3)∗ → (1, 2)→ (1)→ (1, 3)→ (1, 3, 2)∗ →
(1, 3)→ (1)→ ()→ (2)→ (2, 1)→ (2, 1, 3)∗ → (2, 1)→
(2)→ (2, 3)∗ → (2, 3, 1)∗ → (2, 3)→ (2)→ ()→ (3)→
(3, 1)→ (3, 1, 2)∗ → (3, 1)→ (3)→ (3, 2)→ (3, 2, 1)∗ →
(3, 2)→ (3)→ ()



Backtracking

Subsets

Permutations

TSP

Knapsack

Travelling Sales Person

Given n cities and the distances dij between any two of them,
we wish to find the shortest tour going, only once, through all
the cities.

First idea
Use the backtracking algorithm generating all permutations
and modify it to compute the length of the associated
permutation and take the minimum.

this algorithm will produce the optimum
in O(n!d) where n is the number of cities and d is the length
of the maximum distance.



Backtracking

Subsets

Permutations

TSP

Knapsack

Travelling Sales Person

Given n cities and the distances dij between any two of them,
we wish to find the shortest tour going, only once, through all
the cities.

First idea
Use the backtracking algorithm generating all permutations
and modify it to compute the length of the associated
permutation and take the minimum.

this algorithm will produce the optimum
in O(n!d) where n is the number of cities and d is the length
of the maximum distance.



Backtracking

Subsets

Permutations

TSP

Knapsack

Travelling Sales Person

Given n cities and the distances dij between any two of them,
we wish to find the shortest tour going, only once, through all
the cities.

Second idea: prun the tree
If we are lucky and found early a short tour, we can exclude all
partial solutions with higher cost.

This may speed up the algorithm, however the worst case is
still as hard as before, and we have exponential cost.



Backtracking

Subsets

Permutations

TSP

Knapsack

Travelling Sales Person

To implement the branch and cut prunning idea we have to

Set a huge length as upper bound to start with.
This can be n times the maximum length, no tour will
have bigger cost

For each partial solution keep the length of the initial part.
This can be computed incrementally
and continue extending the solution only when the
computed length is below the upper bound.

Each time we arrive a complete solution, update the global
bound
we have the guarantee that the bound corresponds to the
best seen solution



Backtracking

Subsets

Permutations

TSP

Knapsack

0-1 Knapsack

We have a set I of n items, item i is of weight wi and worth vi .
We can carry at most weight W in our knapsack. Considering
that we can NOT take fractions of items, what items should we
carry to maximize the profit?

First idea
Use the backtracking algorithm generating all subsets and
modify it to compute the width and profit of the associated
selection and take the minimum among those with weight not
overpassing W .

this will produce the optimum
in time O(2nk) where n is the number of objects and k is the
length of the biggest number appearing in the input.



Backtracking

Subsets

Permutations

TSP

Knapsack

Second idea: do not consider infeasible assignments
Adapt the backtracking algorithm generating all subsets to
generate only those subsets with weight not overpassing W .
It will be useful to sort items by weight, compute incrementally
the weight of a partial solution, and redefine the set of
candidates for next position.

This will produce the optimum, and may be faster than the
first but the worst case has the same exponential cost.



Backtracking

Subsets

Permutations

TSP

Knapsack

Third idea: prune the tree
If we are lucky and found early a worth assignment, by
excluding all partial solutions with smaller cost we can reduce
the overall search.
The implementation uses the same idea as for the Min-TSP

However the worst case is still as hard as before, and we have
exponential cost.



Backtracking

Subsets

Permutations

TSP

Knapsack

Branch and bound

Fourth idea: discard some branches by bounding improvement
Assume that objects are sorted in decreasing ratio of
value/weigth, that is

v1
w1
≥ v2

w2
≥ · · · ≥ vn−1

wn−1
≥ vn

wn



Backtracking

Subsets

Permutations

TSP

Knapsack

Branch and bound

When objects are sorted in decreasing ratio of
value/weigth, for a partial solution (i1, . . . , ik) for which

k∑
j=1

wij ≤W

the maximum value that can be added to this selection is

≤
k∑

j=1

vij +

W −
k∑

j=1

wij

 vk+1

wk+1

We can discard the exploration of a branch for which the
maximum possible plus the actual value is equal or less
than the best seen assignment value.



Backtracking

Subsets

Permutations

TSP

Knapsack

Branch and bound

When objects are sorted in decreasing ratio of
value/weigth, for a partial solution (i1, . . . , ik) for which

k∑
j=1

wij ≤W

the maximum value that can be added to this selection is

≤
k∑

j=1

vij +

W −
k∑

j=1

wij

 vk+1

wk+1

We can discard the exploration of a branch for which the
maximum possible plus the actual value is equal or less
than the best seen assignment value.



Backtracking

Subsets

Permutations

TSP

Knapsack

Branch and bound

When objects are sorted in decreasing ratio of
value/weigth, for a partial solution (i1, . . . , ik) for which

k∑
j=1

wij ≤W

the maximum value that can be added to this selection is

≤
k∑

j=1

vij +

W −
k∑

j=1

wij

 vk+1

wk+1

We can discard the exploration of a branch for which the
maximum possible plus the actual value is equal or less
than the best seen assignment value.


	Backtracking
	Subsets
	Permutations
	TSP
	 Knapsack


