
SECTION 4.9

4.  GREEDY ALGORITHMS II

Dijkstra's algorithm

minimum spanning trees

Prim, Kruskal, Boruvka

single-link clustering

min-cost arborescences
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Def.  Given a digraph G = (V, E) and a root r ∈ V, an arborescence (rooted at r) 

is a subgraph T = (V, F) such that

・T is a spanning tree of G if we ignore the direction of edges.

・There is a directed path in T from r to each other node v ∈ V.

Warmup.  Given a digraph G, find an arborescence rooted at r (if one exists).

Algorithm.  BFS or DFS from r is an arborescence (iff all nodes reachable).

Arborescences

r
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Def.  Given a digraph G = (V, E) and a root r ∈ V, an arborescence (rooted at r) 

is a subgraph T = (V, F) such that

・T is a spanning tree of G if we ignore the direction of edges.

・There is a directed path in T from r to each other node v ∈ V.

Proposition.  A subgraph T = (V, F) of G is an arborescence rooted at r iff

T has no directed cycles and each node v ≠ r has exactly one entering edge.

Pf.

⇒  If T is an arborescence, then no (directed) cycles and every node v ≠ r

      has exactly one entering edge—the last edge on the unique r v path.

⇐  Suppose T  has no cycles and each node v ≠ r has one entering edge.

・To construct an r v path, start at v and repeatedly follow edges in the 

backward direction.

・Since T has no directed cycles, the process must terminate.

・It must terminate at r since r is the only node with no entering edge.   ▪

Arborescences
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Problem.  Given a digraph G with a root node r and with a nonnegative cost 

ce ≥ 0 on each edge e, compute an arborescence rooted at r of minimum cost.

Assumption 1.  G has an arborescence rooted at r.

Assumption 2.  No edge enters r (safe to delete since they won't help).

Min-cost arborescence problem

r

4

1

2

35

6

9

7

8



52

Observations.  A min-cost arborescence need not:

・Be a shortest-paths tree.

・Include the cheapest edge (in some cut).

・Exclude the most expensive edge (in some cycle).

Simple greedy approaches do not work
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Property.  For each node v ≠ r, choose one cheapest edge entering v

and let F* denote this set of n – 1 edges. If (V, F*) is an arborescence,

then it is a min-cost arborescence.

Pf.  An arborescence needs exactly one edge entering each node v ≠ r

and (V, F*) is the cheapest way to make these choices.  ▪

A sufficient optimality condition
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Property.  For each node v ≠ r, choose one cheapest edge entering v

and let F* denote this set of n – 1 edges. If (V, F*) is an arborescence,

then it is a min-cost arborescence.

Note.  F* may not be an arborescence (since it may have directed cycles).

A sufficient optimality condition
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Def.  For each v ≠ r, let y(v) denote the min cost of any edge entering v.

The reduced cost of an edge (u, v) is c'(u, v) = c(u, v) – y(v) ≥ 0.

Observation.  T is a min-cost arborescence in G using costs c iff

T is a min-cost arborescence in G using reduced costs c'.

Pf.  Each arborescence has exactly one edge entering v.

Reduced costs
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Intuition.  Recall F* = set of cheapest edges entering v for each v ≠ r.

・Now, all edges in F* have 0 cost with respect to costs c'(u, v).

・If F* does not contain a cycle, then it is a min-cost arborescence.

・If F* contains a cycle C, can afford to use as many edges in C as desired.

・Contract nodes in C to a supernode.

・Recursively solve problem in contracted network G' with costs c'(u, v).

Edmonds branching algorithm:  intuition
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Intuition.  Recall F* = set of cheapest edges entering v for each v ≠ r.

・Now, all edges in F* have 0 cost with respect to costs c'(u, v).

・If F* does not contain a cycle, then it is a min-cost arborescence.

・If F* contains a cycle C, can afford to use as many edges in C as desired.

・Contract nodes in C to a supernode (removing any self-loops).

・Recursively solve problem in contracted network G' with costs c'(u, v).

Edmonds branching algorithm:  intuition
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Edmonds branching algorithm

EDMONDSBRANCHING(G, r , c)                          


FOREACH v ≠ r 
y(v)  ←  min cost of an edge entering v.
c'(u, v)  ← c'(u, v) –  y(v) for each edge (u, v) entering v.

FOREACH v ≠ r: choose one 0-cost edge entering v and let F*
be the resulting set of edges.
IF  F* forms an arborescence, RETURN T = (V, F*).
ELSE

C ← directed cycle in F*.
Contract C to a single supernode, yielding G' = (V', E').
T' ← EDMONDSBRANCHING(G', r , c')                          
Extend T' to an arborescence T in G by adding all but one edge of C.
RETURN T.
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Q.  What could go wrong?

A.

・Min-cost arborescence in G' has exactly one edge entering a node in C

(since C is contracted to a single node)

・But min-cost arborescence in G might have more edges entering C.

Edmonds branching algorithm

ba

r

cycle C

min-cost arborescence in G



60

Lemma.  Let C be a cycle in G consisting of 0-cost edges. There exists a min-

cost arborescence rooted at r that has exactly one edge entering C.

Pf.  Let T be a min-cost arborescence rooted at r.

Case 0. T has no edges entering C.

Since T is an arborescence, there is an r v path fore each node v  ⇒

at least one edge enters C.

Case 1. T has exactly one edge entering C.

T satisfies the lemma.

Case 2. T has more than one edge that enters C.

We construct another min-cost arborescence T' that has exactly one edge 

entering C.

Edmonds branching algorithm:  key lemma



Case 2 construction of T'.

・Let (a, b) be an edge in T entering C that lies on a shortest path from r.

・We delete all edges of T that enter a node in C except (a, b).

・We add in all edges of C except the one that enters b.

b
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Edmonds branching algorithm:  key lemma

a

r

cycle CT

path from r to C uses
only one node in C



T

Case 2 construction of T'.

・Let (a, b) be an edge in T entering C that lies on a shortest path from r.

・We delete all edges of T that enter a node in C except (a, b).

・We add in all edges of C except the one that enters b.

Claim.  T' is a min-cost arborescence.

・The cost of T' is at most that of T since we add only 0-cost edges.

・T' has exactly one edge entering each node v ≠ r.

・T' has no directed cycles.

(T had no cycles before; no cycles within C; now only (a, b) enters C)

b
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Edmonds branching algorithm:  key lemma

ba

T is an arborescence rooted at r

r

cycle CT'

path from r to C uses
only one node in C

and the only path in T' to 
a is the path from r to a

(since any path must 
follow unique entering 

edge back to r)



Theorem.  [Chu-Liu 1965, Edmonds 1967]  The greedy algorithm finds a 

min-cost arborescence.

Pf.  [by induction on number of nodes in G]

・If the edges of F* form an arborescence, then min-cost arborescence.

・Otherwise, we use reduced costs, which is equivalent.

・After contracting a 0-cost cycle C to obtain a smaller graph G',

the algorithm finds a min-cost arborescence T' in G' (by induction).

・Key lemma: there exists a min-cost arborescence T in G that 

corresponds to T'.  ▪

Theorem. The greedy algorithm can be implemented in O(m n) time.

Pf. 

・At most n contractions (since each reduces the number of nodes).

・Finding and contracting the cycle C takes O(m) time.

・Transforming T' into T takes O(m) time. ▪
63

Edmonds branching algorithm:  analysis



Theorem. [Gabow-Galil-Spencer-Tarjan 1985] There exists an O(m + n log n)

time algorithm to compute a min-cost arborescence.
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Min-cost arborescence


