
4. Greedy Algorithms II
, Dijkstra's algorithm

- minimum spanning trees
- Prim Kruskal Borıvka
, single-link clustering
- min-cost arborescences

Section 4.9

## Arborescences

Def. Given a digraph $G=(V, E)$ and a root $r \in V$, an arborescence (rooted at $r$ ) is a subgraph $T=(V, F)$ such that

- $T$ is a spanning tree of $G$ if we ignore the direction of edges.
- There is a directed path in $T$ from $r$ to each other node $v \in V$.


Warmup. Given a digraph $G$, find an arborescence rooted at $r$ (if one exists). Algorithm. BFS or DFS from $r$ is an arborescence (iff all nodes reachable).

## Arborescences

Def. Given a digraph $G=(V, E)$ and a root $r \in V$, an arborescence (rooted at $r$ ) is a subgraph $T=(V, F)$ such that

- $T$ is a spanning tree of $G$ if we ignore the direction of edges.
- There is a directed path in $T$ from $r$ to each other node $v \in V$.

Proposition. A subgraph $T=(V, F)$ of $G$ is an arborescence rooted at $r$ iff $T$ has no directed cycles and each node $v \neq r$ has exactly one entering edge. Pf.
$\Rightarrow$ If $T$ is an arborescence, then no (directed) cycles and every node $v \neq r$ has exactly one entering edge-the last edge on the unique $r \rightarrow v$ path.
$\Leftarrow$ Suppose $T$ has no cycles and each node $v \neq r$ has one entering edge.

- To construct an $r \rightarrow v$ path, start at $v$ and repeatedly follow edges in the backward direction.
- Since $T$ has no directed cycles, the process must terminate.
- It must terminate at $r$ since $r$ is the only node with no entering edge.

Min-cost arborescence problem

Problem. Given a digraph $G$ with a root node $r$ and with a nonnegative cost $c_{e} \geq 0$ on each edge $e$, compute an arborescence rooted at $r$ of minimum cost.


Assumption 1. $G$ has an arborescence rooted at $r$.
Assumption 2. No edge enters $r$ (safe to delete since they won't help).

Simple greedy approaches do not work

Observations. A min-cost arborescence need not:

- Be a shortest-paths tree.
- Include the cheapest edge (in some cut).
- Exclude the most expensive edge (in some cycle).



## A sufficient optimality condition

Property. For each node $v \neq r$, choose one cheapest edge entering $v$ and let $F^{*}$ denote this set of $n-1$ edges. If $\left(V, F^{*}\right)$ is an arborescence, then it is a min-cost arborescence.

Pf. An arborescence needs exactly one edge entering each node $v \neq r$ and $\left(V, F^{*}\right)$ is the cheapest way to make these choices.


## A sufficient optimality condition

Property. For each node $v \neq r$, choose one cheapest edge entering $v$ and let $F^{*}$ denote this set of $n-1$ edges. If $\left(V, F^{*}\right)$ is an arborescence, then it is a min-cost arborescence.

Note. $F^{*}$ may not be an arborescence (since it may have directed cycles).


## Reduced costs

Def. For each $v \neq r$, let $y(v)$ denote the min cost of any edge entering $v$. The reduced cost of an edge $(u, v)$ is $c^{\prime}(u, v)=c(u, v)-y(v) \geq 0$.

Observation. $T$ is a min-cost arborescence in $G$ using costs $c$ iff $T$ is a min-cost arborescence in $G$ using reduced costs $c^{\prime}$.
Pf. Each arborescence has exactly one edge entering $v$.

reduced costs $c^{\prime}$


Edmonds branching algorithm: intuition

Intuition. Recall $F^{*}=$ set of cheapest edges entering $v$ for each $v \neq r$.

- Now, all edges in $F^{*}$ have 0 cost with respect to costs $c^{\prime}(u, v)$.
- If $F^{*}$ does not contain a cycle, then it is a min-cost arborescence.
- If $F^{*}$ contains a cycle $C$, can afford to use as many edges in $C$ as desired.
- Contract nodes in $C$ to a supernode.
- Recursively solve problem in contracted network $G^{\prime}$ with costs $c^{\prime}(u, v)$.


Edmonds branching algorithm: intuition

Intuition. Recall $F^{*}=$ set of cheapest edges entering $v$ for each $v \neq r$.

- Now, all edges in $F^{*}$ have 0 cost with respect to costs $c^{\prime}(u, v)$.
- If $F^{*}$ does not contain a cycle, then it is a min-cost arborescence.
- If $F^{*}$ contains a cycle $C$, can afford to use as many edges in $C$ as desired.
- Contract nodes in $C$ to a supernode (removing any self-loops).
- Recursively solve problem in contracted network $G^{\prime}$ with costs $c^{\prime}(u, v)$.



## Edmonds branching algorithm

EdmondsBranching $(G, r, c)$
FOREACH $v \neq r$
$y(v) \leftarrow \min$ cost of an edge entering $v$.
$c^{\prime}(u, v) \leftarrow c^{\prime}(u, v)-y(v)$ for each edge $(u, v)$ entering $v$.
FOREACH $v \neq r$ : choose one 0 -cost edge entering $v$ and let $F^{*}$ be the resulting set of edges.
IF $F^{*}$ forms an arborescence, Return $T=\left(V, F^{*}\right)$.
ELSE
$C \leftarrow$ directed cycle in $F^{*}$.
Contract $C$ to a single supernode, yielding $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$.
$T^{\prime} \leftarrow \operatorname{EDMONDSBRANChING}\left(G^{\prime}, r, c^{\prime}\right)$
Extend $T^{\prime}$ to an arborescence $T$ in $G$ by adding all but one edge of $C$.
Return $T$.

## Edmonds branching algorithm

Q. What could go wrong?
A.

- Min-cost arborescence in $G^{\prime}$ has exactly one edge entering a node in $C$ (since $C$ is contracted to a single node)
- But min-cost arborescence in $G$ might have more edges entering $C$.
min-cost arborescence in G


Edmonds branching algorithm: key lemma

Lemma. Let $C$ be a cycle in $G$ consisting of 0 -cost edges. There exists a mincost arborescence rooted at $r$ that has exactly one edge entering $C$.

Pf. Let $T$ be a min-cost arborescence rooted at $r$.

Case 0. $T$ has no edges entering $C$.
Since $T$ is an arborescence, there is an $r \rightarrow v$ path fore each node $v \Rightarrow$ at least one edge enters $C$.

Case 1. $T$ has exactly one edge entering $C$.
$T$ satisfies the lemma.

Case 2. $T$ has more than one edge that enters $C$.
We construct another min-cost arborescence $T^{\prime}$ that has exactly one edge entering $C$.

Edmonds branching algorithm: key lemma

Case 2 construction of $T^{\prime}$.

- Let $(a, b)$ be an edge in $T$ entering $C$ that lies on a shortest path from $r$.
- We delete all edges of $T$ that enter a node in $C$ except $(a, b)$.
- We add in all edges of $C$ except the one that enters $b$.


Edmonds branching algorithm: key lemma

Case 2 construction of $T^{\prime}$.

- Let $(a, b)$ be an edge in $T$ entering $C$ that lies on a shortest path from $r$.
- We delete all edges of $T$ that enter a node in $C$ except $(a, b)$.
- We add in all edges of $C$ except the one that enters $b$.
path from r to C uses only one node in C

Claim. $T^{\prime}$ is a min-cost arborescence.

- The cost of $T^{\prime}$ is at most that of $T$ since we add only 0 -cost edges.
- $T^{\prime}$ has exactly one edge entering each node $v \neq r$.
- $T^{\prime}$ has no directed cycles.
( $T$ had no cycles before; no cycles within $C$; now only $(a, b)$ enters $C$ )



## Edmonds branching algorithm: analysis

Theorem. [Chu-Liu 1965, Edmonds 1967] The greedy algorithm finds a min-cost arborescence.
Pf. [by induction on number of nodes in $G$ ]

- If the edges of $F^{*}$ form an arborescence, then min-cost arborescence.
- Otherwise, we use reduced costs, which is equivalent.
- After contracting a 0 -cost cycle $C$ to obtain a smaller graph $G^{\prime}$, the algorithm finds a min-cost arborescence $T^{\prime}$ in $G^{\prime}$ (by induction).
- Key lemma: there exists a min-cost arborescence $T$ in $G$ that corresponds to $T^{\prime}$. -

Theorem. The greedy algorithm can be implemented in $O(m n)$ time. Pf.

- At most $n$ contractions (since each reduces the number of nodes).
- Finding and contracting the cycle $C$ takes $O(m)$ time.
- Transforming $T^{\prime}$ into $T$ takes $O(m)$ time. -


## Min-cost arborescence

# Theorem. [Gabow-Galil-Spencer-Tarjan 1985] There exists an $O(m+n \log n)$ time algorithm to compute a min-cost arborescence. 

## Combinatorica 6 (2) (1986) 109-122

## EFFICIENT ALGORITHMS FOR FINDING MINIMUM SPANNING TREES IN UNDIRECTED AND DIRECTED GRAPHS

H. N. GABOW*, Z. GALIL**, T. SPENCER*** and R. E. TARJAN

Received 23 January 1985
Revised 1 December 1985

Recently, Fredman and Tarjan invented a new, especially efficient form of heap (priority queue). Their data structure, the Fibonacci heap (or F-heap) supports arbitrary deletion in $O(\log n)$ amortized time and other heap operations in $O(1)$ amortized time. In this paper we use $F$-heaps to obtain fast algorithms for finding minimum spanning trees in undirected and directed graphs. For an undirected graph containing $n$ vertices and $m$ edges, our minimum spanning tree algorithm runs in $O(m \log \beta(m, n))$ time, improved from $O(m \beta(m, n))$ time, where $\beta(m, n)=\min \left\{i \mid \log ^{(1)} n \leqq m / n\right\}$. Our minimum spanning tree algorithm for directed graphs runs in $O(n \log n+m)$ time, improved from $O\left(n \log n+m \log \log \log _{(m / n+2)} n\right)$. Both algorithms can be extended to allow a degree constraint at one vertex.

