4. GREEDY ALGORITHMS I

» min-cost arborescences

SECTION 4.9

Arborescences

Def. Given a digraph G=(V,E) and a root r €V, an arborescence (rooted at r)
is a subgraph T=(V, F) such that

* Tis a spanning tree of G if we ignore the direction of edges.

* There is a directed path in T from r to each other node v € V.

Warmup. Given a digraph G, find an arborescence rooted at r (if one exists).
Algorithm. BFS or DFS from r is an arborescence (iff all nodes reachable).

49

Arborescences

Def. Given a digraph G=(V,E) and a root r €V, an arborescence (rooted at r)
is a subgraph T=(V, F) such that

* Tis a spanning tree of G if we ignore the direction of edges.

* There is a directed path in T from r to each other node v € V.

Proposition. A subgraph T=(V,F) of G is an arborescence rooted at r iff

T has no directed cycles and each node v #r has exactly one entering edge.

Pf.

= If Tis an arborescence, then no (directed) cycles and every node v = r
has exactly one entering edge—the last edge on the unique r~v path.

< Suppose T has no cycles and each node v #r has one entering edge.
* To construct an r~v path, start at v and repeatedly follow edges in the
backward direction.
* Since T has no directed cycles, the process must terminate.
* It must terminate at r since ris the only node with no entering edge. =

50

Min-cost arborescence problem

Problem. Given a digraph G with a root node r and with a nonnegative cost
ce =0 on each edge ¢, compute an arborescence rooted at r of minimum cost.

@—z—»{f—6—>©
5] 3 8 9
04—4—é—7—>©

Assumption 1. G has an arborescence rooted at r.
Assumption 2. No edge enters r (safe to delete since they won't help).

51

Simple greedy approaches do not work

Observations. A min-cost arborescence need not:
* Be a shortest-paths tree.
* Include the cheapest edge (in some cut).
* Exclude the most expensive edge (in some cycle).

52

A sufficient optimality condition

Property. For each node v #r, choose one cheapest edge entering v
and let F* denote this set of n—1 edges. If (V, F*) is an arborescence,
then it is @ min-cost arborescence.

Pf. An arborescence needs exactly one edge entering each node v =r
and (V, F*) is the cheapest way to make these choices. =

@—1—»{f—6—>©
5 2 3 8 9
04—4—é—7—>©

53

A sufficient optimality condition

Property. For each node v #r, choose one cheapest edge entering v
and let F* denote this set of n—1 edges. If (V, F*) is an arborescence,
then it is @ min-cost arborescence.

Note. F* may not be an arborescence (since it may have directed cycles).

54

Reduced costs

Def. For each v=r, let y(v) denote the min cost of any edge entering v.
The reduced cost of an edge (u,v) is c'(u,v) =c(u,v) —y(v) =0.

Observation. T is a min-cost arborescence in G using costs c iff
T is a min-cost arborescence in G using reduced costs c'.
Pf. Each arborescence has exactly one edge entering v.

costs C reduced costs c'
1
(O—2 9 —>© (O —>T—
7] 3

Oe— ¢ Q<——é

4 3 «—— Yy(v)
55

Edmonds branching algorithm: intuition

Intuition. Recall F* = set of cheapest edges entering v for each vz r.
* Now, all edges in F* have 0 cost with respect to costs c'(u, v).

If F* does not contain a cycle, then it is a min-cost arborescence.

If F* contains a cycle C, can afford to use as many edges in C as desired.

Contract nodes in C to a supernode.

Recursively solve problem in contracted network G' with costs ¢'(u, v).

™ 4 ’-o-}T 0 O
|
0 4 0 1
S

O

56

Edmonds branching algorithm: intuition

Intuition. Recall F* = set of cheapest edges entering v for each vz r.
* Now, all edges in F* have 0 cost with respect to costs c'(u, v).

If F* does not contain a cycle, then it is a min-cost arborescence.

If F* contains a cycle C, can afford to use as many edges in C as desired.

Contract nodes in C to a supernode (removing any self-loops).

Recursively solve problem in contracted network G' with costs ¢'(u, v).

57

Edmonds branching algorithm

EDMONDSBRANCHING(G, 7, ¢)

FOREACH Vv #r
y(v) <« min cost of an edge entering v.
c'(u,v) «— c'(u,v)— y(v) for each edge (u, v) entering v.

FOREACH v # r: choose one 0-cost edge entering v and let F™*
be the resulting set of edges.

IF F* forms an arborescence, RETURN 7T = (V, F'*).

ELSE
C « directed cycle in F*.
Contract C to a single supernode, yielding G' = (V', E").
T' <— EDMONDSBRANCHING(G", 7, ¢

Extend 7" to an arborescence 7 in G by adding all but one edge of C.

RETURN T.

58

Edmonds branching algorithm

Q. What could go wrong?
A.
* Min-cost arborescence in G' has exactly one edge entering a node in C
(since C is contracted to a single node)
* But min-cost arborescence in G might have more edges entering C.

min-cost arborescence in G

59

Edmonds branching algorithm: key lemma

Lemma. Let C be a cycle in G consisting of 0-cost edges. There exists a min-
cost arborescence rooted at r that has exactly one edge entering C.

Pf. Let T be a min-cost arborescence rooted at r.
Case 0. T has no edges entering C.
Since T is an arborescence, there is an r~v path fore each node v =

at least one edge enters C.

Case 1. T has exactly one edge entering C.
T satisfies the lemma.

Case 2. T has more than one edge that enters C.
We construct another min-cost arborescence T' that has exactly one edge

entering C.

60

Edmonds branching algorithm: key lemma

Case 2 construction of 7.
* Let (a,b) be an edge in T entering C that lies on a shortest path from r.
* We delete all edges of T that enter a node in C except (a, b). \
* We add in all edges of C except the one that enters b. path from r to C uses

only one node in C

61

Edmonds branching algorithm: key lemma

Case 2 construction of 7.

* Let (a,b) be an edge in T entering C that lies on a shortest path from r.

* We delete all edges of T that enter a node in C except (a, b). \

* We add in all edges of C except the one that enters b. pimyffnrz ;;Z(SIESSS
Claim. T'is a min-cost arborescence.

* The cost of 7" is at most that of T since we add only 0-cost edges.

* T'has exactly one edge entering each node v =z r.
<«— T is an arborescence rooted at r

* T'has no directed cycles.
(T had no cycles before; no cycles within C; now only (a, b) enters C)

\

and the only path in T' to
T cycle C a is the path from r to a
e 0 (since any path must
follow unique entering
edge back tor)

Oe—O«—O

62

Edmonds branching algorithm: analysis

Theorem. [Chu-Liu 1965, Edmonds 1967] The greedy algorithm finds a

min-cost arborescence.
Pf. [by induction on number of nodes in G]

* |f the edges of F* form an arborescence, then min-cost arborescence.

* Otherwise, we use reduced costs, which is equivalent.
* After contracting a 0-cost cycle C to obtain a smaller graph G',

the algorithm finds a min-cost arborescence 7" in G' (by induction).
* Key lemma: there exists a min-cost arborescence T in G that

corresponds to 7. =

Theorem. The greedy algorithm can be implemented in O(mn) time.

Pf.
* At most n contractions (since each reduces the number of nodes).

* Finding and contracting the cycle C takes O(m) time.
* Transforming T' into T takes O(m) time. =

63

Min-cost arborescence

Theorem. [Gabow-Galil-Spencer-Tarjan 1985] There exists an O(m + n logn)
time algorithm to compute a min-cost arborescence.

COMBINATORICA 6 (2) (1986) 109—122

EFFICIENT ALGORITHMS FOR FINDING
MINIMUM SPANNING TREES IN UNDIRECTED
AND DIRECTED GRAPHS

H. N. GABOW*, Z. GALIL**, T. SPENCER*** and R. E. TARJAN

Received 23 January 1985
Revised 1 December 1985

Recently, Fredman and Tarjan invented a new, especially efficient form of heap (priority
queue). Their data structure, the Fibonacci heap (or F-heap) supports arbitrary deletion in O(log n)
amortized time and other heap operations in O(1) amortized time. In this paper we use F-heaps to
obtain fast algorithms for finding minimum spanning trees in undirected and directed graphs. For
an undirected graph containing n vertices and m edges, our minimum spanning tree algorithm runs
in O(m log B(m, n)) time, improved from O (mB(m, n)) time, where B(m, n)=min {i|log® n=m/n}.
Our minimum spanning tree algorithm for directed graphs runs in O(nlog n+m) time, improved
from O(nlog n+m log 102 108, n+271). Both algorithms can be extended to allow a degree constra-
int at one vertex.

64

