
SECTION 4.9

4. GREEDY ALGORITHMS II

Dijkstra's algorithm

minimum spanning trees

Prim, Kruskal, Boruvka

single-link clustering

min-cost arborescences

49

Def. Given a digraph G = (V, E) and a root r ∈ V, an arborescence (rooted at r)

is a subgraph T = (V, F) such that

・T is a spanning tree of G if we ignore the direction of edges.

・There is a directed path in T from r to each other node v ∈ V.

Warmup. Given a digraph G, find an arborescence rooted at r (if one exists).

Algorithm. BFS or DFS from r is an arborescence (iff all nodes reachable).

Arborescences

r

50

Def. Given a digraph G = (V, E) and a root r ∈ V, an arborescence (rooted at r)

is a subgraph T = (V, F) such that

・T is a spanning tree of G if we ignore the direction of edges.

・There is a directed path in T from r to each other node v ∈ V.

Proposition. A subgraph T = (V, F) of G is an arborescence rooted at r iff

T has no directed cycles and each node v ≠ r has exactly one entering edge.

Pf.

⇒ If T is an arborescence, then no (directed) cycles and every node v ≠ r

 has exactly one entering edge—the last edge on the unique r v path.

⇐ Suppose T has no cycles and each node v ≠ r has one entering edge.

・To construct an r v path, start at v and repeatedly follow edges in the

backward direction.

・Since T has no directed cycles, the process must terminate.

・It must terminate at r since r is the only node with no entering edge. ▪

Arborescences

51

Problem. Given a digraph G with a root node r and with a nonnegative cost

ce ≥ 0 on each edge e, compute an arborescence rooted at r of minimum cost.

Assumption 1. G has an arborescence rooted at r.

Assumption 2. No edge enters r (safe to delete since they won't help).

Min-cost arborescence problem

r

4

1

2

35

6

9

7

8

52

Observations. A min-cost arborescence need not:

・Be a shortest-paths tree.

・Include the cheapest edge (in some cut).

・Exclude the most expensive edge (in some cycle).

Simple greedy approaches do not work

r

4

1

2

35

6

53

Property. For each node v ≠ r, choose one cheapest edge entering v

and let F* denote this set of n – 1 edges. If (V, F*) is an arborescence,

then it is a min-cost arborescence.

Pf. An arborescence needs exactly one edge entering each node v ≠ r

and (V, F*) is the cheapest way to make these choices. ▪

A sufficient optimality condition

r

4

2

1

35

6

9

7

8

54

Property. For each node v ≠ r, choose one cheapest edge entering v

and let F* denote this set of n – 1 edges. If (V, F*) is an arborescence,

then it is a min-cost arborescence.

Note. F* may not be an arborescence (since it may have directed cycles).

A sufficient optimality condition

r

4

1

2

35

6

9

7

8

55

Def. For each v ≠ r, let y(v) denote the min cost of any edge entering v.

The reduced cost of an edge (u, v) is c'(u, v) = c(u, v) – y(v) ≥ 0.

Observation. T is a min-cost arborescence in G using costs c iff

T is a min-cost arborescence in G using reduced costs c'.

Pf. Each arborescence has exactly one edge entering v.

Reduced costs

r

4

1

2

37

9 r

0

0

1

03

0

costs c reduced costs c'
1 9

4 3 y(v)

56

Intuition. Recall F* = set of cheapest edges entering v for each v ≠ r.

・Now, all edges in F* have 0 cost with respect to costs c'(u, v).

・If F* does not contain a cycle, then it is a min-cost arborescence.

・If F* contains a cycle C, can afford to use as many edges in C as desired.

・Contract nodes in C to a supernode.

・Recursively solve problem in contracted network G' with costs c'(u, v).

Edmonds branching algorithm: intuition

r

0

3

4

01

0

0

0

4 0

0

7

1

57

Intuition. Recall F* = set of cheapest edges entering v for each v ≠ r.

・Now, all edges in F* have 0 cost with respect to costs c'(u, v).

・If F* does not contain a cycle, then it is a min-cost arborescence.

・If F* contains a cycle C, can afford to use as many edges in C as desired.

・Contract nodes in C to a supernode (removing any self-loops).

・Recursively solve problem in contracted network G' with costs c'(u, v).

Edmonds branching algorithm: intuition

r

3

4

0

1

0

7

1

0

58

Edmonds branching algorithm

EDMONDSBRANCHING(G, r , c)

FOREACH v ≠ r
y(v) ← min cost of an edge entering v.
c'(u, v) ← c'(u, v) – y(v) for each edge (u, v) entering v.

FOREACH v ≠ r: choose one 0-cost edge entering v and let F*
be the resulting set of edges.
IF F* forms an arborescence, RETURN T = (V, F*).
ELSE

C ← directed cycle in F*.
Contract C to a single supernode, yielding G' = (V', E').
T' ← EDMONDSBRANCHING(G', r , c')
Extend T' to an arborescence T in G by adding all but one edge of C.
RETURN T.

59

Q. What could go wrong?

A.

・Min-cost arborescence in G' has exactly one edge entering a node in C

(since C is contracted to a single node)

・But min-cost arborescence in G might have more edges entering C.

Edmonds branching algorithm

ba

r

cycle C

min-cost arborescence in G

60

Lemma. Let C be a cycle in G consisting of 0-cost edges. There exists a min-

cost arborescence rooted at r that has exactly one edge entering C.

Pf. Let T be a min-cost arborescence rooted at r.

Case 0. T has no edges entering C.

Since T is an arborescence, there is an r v path fore each node v ⇒

at least one edge enters C.

Case 1. T has exactly one edge entering C.

T satisfies the lemma.

Case 2. T has more than one edge that enters C.

We construct another min-cost arborescence T' that has exactly one edge

entering C.

Edmonds branching algorithm: key lemma

Case 2 construction of T'.

・Let (a, b) be an edge in T entering C that lies on a shortest path from r.

・We delete all edges of T that enter a node in C except (a, b).

・We add in all edges of C except the one that enters b.

b

61

Edmonds branching algorithm: key lemma

a

r

cycle CT

path from r to C uses
only one node in C

T

Case 2 construction of T'.

・Let (a, b) be an edge in T entering C that lies on a shortest path from r.

・We delete all edges of T that enter a node in C except (a, b).

・We add in all edges of C except the one that enters b.

Claim. T' is a min-cost arborescence.

・The cost of T' is at most that of T since we add only 0-cost edges.

・T' has exactly one edge entering each node v ≠ r.

・T' has no directed cycles.

(T had no cycles before; no cycles within C; now only (a, b) enters C)

b

62

Edmonds branching algorithm: key lemma

ba

T is an arborescence rooted at r

r

cycle CT'

path from r to C uses
only one node in C

and the only path in T' to
a is the path from r to a

(since any path must
follow unique entering

edge back to r)

Theorem. [Chu-Liu 1965, Edmonds 1967] The greedy algorithm finds a

min-cost arborescence.

Pf. [by induction on number of nodes in G]

・If the edges of F* form an arborescence, then min-cost arborescence.

・Otherwise, we use reduced costs, which is equivalent.

・After contracting a 0-cost cycle C to obtain a smaller graph G',

the algorithm finds a min-cost arborescence T' in G' (by induction).

・Key lemma: there exists a min-cost arborescence T in G that

corresponds to T'. ▪

Theorem. The greedy algorithm can be implemented in O(m n) time.

Pf.

・At most n contractions (since each reduces the number of nodes).

・Finding and contracting the cycle C takes O(m) time.

・Transforming T' into T takes O(m) time. ▪
63

Edmonds branching algorithm: analysis

Theorem. [Gabow-Galil-Spencer-Tarjan 1985] There exists an O(m + n log n)

time algorithm to compute a min-cost arborescence.

64

Min-cost arborescence

