
Counting sort

Radix sort

Bucket sort

Lower bounds

Fast Sorting Algorithms

Counting sort

Radix sort

Bucket sort

Lower bounds

Sorting algorithms on values in a known range

CLRS Ch.8

Counting sort

Radix sort

Bucket sort

Lower bounds for general sorting

The algorithms will sort an array A[n]
of non-negative integers in the range [0, r].

The complexity of the algorithms depends on both n and r .

For some values of r , the algorithms have cost O(n) or
o(n log n).

Counting sort

Radix sort

Bucket sort

Lower bounds

Sorting algorithms on values in a known range

CLRS Ch.8

Counting sort

Radix sort

Bucket sort

Lower bounds for general sorting

The algorithms will sort an array A[n]
of non-negative integers in the range [0, r].

The complexity of the algorithms depends on both n and r .

For some values of r , the algorithms have cost O(n) or
o(n log n).

Counting sort

Radix sort

Bucket sort

Lower bounds

Sorting algorithms on values in a known range

CLRS Ch.8

Counting sort

Radix sort

Bucket sort

Lower bounds for general sorting

The algorithms will sort an array A[n]
of non-negative integers in the range [0, r].

The complexity of the algorithms depends on both n and r .

For some values of r , the algorithms have cost O(n) or
o(n log n).

Counting sort

Radix sort

Bucket sort

Lower bounds

Counting sort

The counting sort algorithm,

consider all possible values i ∈ [0, r].

For each of them, count how many elements in A are
smaller or equal to i .

Use this information to place the elements in the right
order.

The input A[n], is an array of integers in the range [0, r].

Uses: B[n] (output) and C [r + 1] (internal).

Counting sort

Radix sort

Bucket sort

Lower bounds

Counting sort

The counting sort algorithm,

consider all possible values i ∈ [0, r].

For each of them, count how many elements in A are
smaller or equal to i .

Use this information to place the elements in the right
order.

The input A[n], is an array of integers in the range [0, r].

Uses: B[n] (output) and C [r + 1] (internal).

Counting sort

Radix sort

Bucket sort

Lower bounds

Counting sort

The counting sort algorithm,

consider all possible values i ∈ [0, r].

For each of them, count how many elements in A are
smaller or equal to i .

Use this information to place the elements in the right
order.

The input A[n], is an array of integers in the range [0, r].

Uses: B[n] (output) and C [r + 1] (internal).

Counting sort

Radix sort

Bucket sort

Lower bounds

Counting sort

The counting sort algorithm,

consider all possible values i ∈ [0, r].

For each of them, count how many elements in A are
smaller or equal to i .

Use this information to place the elements in the right
order.

The input A[n], is an array of integers in the range [0, r].

Uses: B[n] (output) and C [r + 1] (internal).

Counting sort

Radix sort

Bucket sort

Lower bounds

Counting sort

The counting sort algorithm,

consider all possible values i ∈ [0, r].

For each of them, count how many elements in A are
smaller or equal to i .

Use this information to place the elements in the right
order.

The input A[n], is an array of integers in the range [0, r].

Uses: B[n] (output) and C [r + 1] (internal).

Counting sort

Radix sort

Bucket sort

Lower bounds

Counting sort: Algorithm

CountingSort (A, r)
for i = 0 to r do

C [i] = 0
for i = 0 to n − 1 do

C [A[i]] = C [A[i]] + 1 {C [j] = |{i | A[i] = j}|}
for i = 1 to r do

C [i] = C [i] + C [i − 1] {C [j] = |{i | A[i] ≤ j}|}
for i = n − 1 downto 0 do

B[C [A[i]]] = A[i];
C [A[i]] = C [A[i]]− 1 {C holds the sorted elements}

Counting sort

Radix sort

Bucket sort

Lower bounds

Counting sort: Cost

CountingSort (A, r)
for i = 0 to r do

C [i] = 0 {O(r)}
for i = 0 to n − 1 do

C [A[i]] = C [A[i]] + 1 {O(n)}
for i = 0 to r do

do C [i] = C [i] + C [i − 1] {O(r)}
for i = n − 1 downto 0 do

B[C [A[i]]− 1] = A[i];
C [A[i]] = C [A[i]]− 1 {O(n)}

T (n) = O(n + r),

for r = O(n), T (n) = O(n).

Counting sort

Radix sort

Bucket sort

Lower bounds

Counting sort: Cost

CountingSort (A, r)
for i = 0 to r do

C [i] = 0 {O(r)}
for i = 0 to n − 1 do

C [A[i]] = C [A[i]] + 1 {O(n)}
for i = 0 to r do

do C [i] = C [i] + C [i − 1] {O(r)}
for i = n − 1 downto 0 do

B[C [A[i]]− 1] = A[i];
C [A[i]] = C [A[i]]− 1 {O(n)}

T (n) = O(n + r), for r = O(n), T (n) = O(n).

Counting sort

Radix sort

Bucket sort

Lower bounds

Counting sort: stability

An important property of counting sort is that it is stable:
numbers with the same value appear in the output in the same
order as they do in the input.

Counting sort

Radix sort

Bucket sort

Lower bounds

Radix sort: What does radix mean?

Radix means the base in which we express an integer
Radix 10=Decimal; Radix 2= Binary; Radix 16=Hexadecimal;
Radix 20 (The Maya numerical system)

Counting sort

Radix sort

Bucket sort

Lower bounds

Radix Change: Example

To convert an integer from binary to decimal:
1011 = 1× 23 + 0× 22 + 1× 21 + 1× 20 = 11

To convert an integer from decimal to binary:
Repeatedly dividing the enter by 2, will give a result plus a
remainder:
19 ⇒ 19/2︸︷︷︸

1

9/2︸︷︷︸
1

4/2︸︷︷︸
0

2/2︸︷︷︸
01

= 10011

To transform an integer radix 16 to decimal:
(4CF5)16 = (4×163+12×162+15×161+5×160) = 19701

Counting sort

Radix sort

Bucket sort

Lower bounds

To convert (4CF5)16 into binary you have to expand each
digit to its binary representation.
In the above example, (4CF5)16 in binary is
0011110011110101

To convert an integer in binary to radix 16:
Make groups of 4 from left to right and replace by the
corresponding digit
110101001010001000010110111110100 in HEX is
1A9442DF4

Counting sort

Radix sort

Bucket sort

Lower bounds

RADIX LSD algorithm

Given an array A with n numbers, each one with d digits in
base b the Radix Least Significant Digit, algorithm is

RADIX LSD (A, d , b)
for i = 1 to d do

Use a stable sorting algorithm to sort A according to the
i-th digit values.

The values to sort are in the range [0, bd).

Counting sort

Radix sort

Bucket sort

Lower bounds

Example: b = 10 and d = 3

329
475
657
839
436
720
355

Counting sort

Radix sort

Bucket sort

Lower bounds

Example: b = 10 and d = 3

329 720
475 475
657 355
839 ⇒ 436
436 657
720 329
355 839

Counting sort

Radix sort

Bucket sort

Lower bounds

Example: b = 10 and d = 3

329 720 720
475 475 329
657 355 436
839 ⇒ 436 ⇒ 839
436 657 355
720 329 657
355 839 475

Counting sort

Radix sort

Bucket sort

Lower bounds

Example: b = 10 and d = 3

329 720 720 329
475 475 329 355
657 355 436 436
839 ⇒ 436 ⇒ 839 ⇒ 475
436 657 355 657
720 329 657 720
355 839 475 839

Counting sort

Radix sort

Bucket sort

Lower bounds

Correctness

Theorem

RADIX LSD sorts correctly the n given numbers.

Induction on d .

Base: If d = 1 the stable sorting algorithm sorts correctly.
IH: Assume that it is true for d − 1 digits.
Looking at the the d-th digit, we have

if ad < bd , a < b and the algorithm places a before b,

if ad = bd , as we are using a stable sorting, a and b
remain in the same order as in the previous step.
By IH, they are already the correct one.

Counting sort

Radix sort

Bucket sort

Lower bounds

Correctness

Theorem

RADIX LSD sorts correctly the n given numbers.

Induction on d .

Base: If d = 1 the stable sorting algorithm sorts correctly.
IH: Assume that it is true for d − 1 digits.
Looking at the the d-th digit, we have

if ad < bd , a < b and the algorithm places a before b,

if ad = bd , as we are using a stable sorting, a and b
remain in the same order as in the previous step.
By IH, they are already the correct one.

Counting sort

Radix sort

Bucket sort

Lower bounds

Correctness

Theorem

RADIX LSD sorts correctly the n given numbers.

Induction on d .

Base: If d = 1 the stable sorting algorithm sorts correctly.

IH: Assume that it is true for d − 1 digits.
Looking at the the d-th digit, we have

if ad < bd , a < b and the algorithm places a before b,

if ad = bd , as we are using a stable sorting, a and b
remain in the same order as in the previous step.
By IH, they are already the correct one.

Counting sort

Radix sort

Bucket sort

Lower bounds

Correctness

Theorem

RADIX LSD sorts correctly the n given numbers.

Induction on d .

Base: If d = 1 the stable sorting algorithm sorts correctly.
IH: Assume that it is true for d − 1 digits.
Looking at the the d-th digit, we have

if ad < bd , a < b and the algorithm places a before b,

if ad = bd , as we are using a stable sorting, a and b
remain in the same order as in the previous step.
By IH, they are already the correct one.

Counting sort

Radix sort

Bucket sort

Lower bounds

Correctness

Theorem

RADIX LSD sorts correctly the n given numbers.

Induction on d .

Base: If d = 1 the stable sorting algorithm sorts correctly.
IH: Assume that it is true for d − 1 digits.
Looking at the the d-th digit, we have

if ad < bd , a < b and the algorithm places a before b,

if ad = bd , as we are using a stable sorting, a and b
remain in the same order as in the previous step.
By IH, they are already the correct one.

Counting sort

Radix sort

Bucket sort

Lower bounds

Correctness

Theorem

RADIX LSD sorts correctly the n given numbers.

Induction on d .

Base: If d = 1 the stable sorting algorithm sorts correctly.
IH: Assume that it is true for d − 1 digits.
Looking at the the d-th digit, we have

if ad < bd , a < b and the algorithm places a before b,

if ad = bd , as we are using a stable sorting, a and b
remain in the same order as in the previous step.
By IH, they are already the correct one.

Counting sort

Radix sort

Bucket sort

Lower bounds

Time complexity

Given n numbers, each number with at most d digits, and each
digit in the range 0 to b, if we use counting sorting at each
round of RADIX LSD:

T (n, d , b) = Θ(d(n + b)).

Consider that each number has a value up to f (n).

Then the number of digits in base b is d ≤ ⌈logb f (n)⌉, so
T (n, b) = Θ(logb f (n)(n + b)).

If logb f (n) = ω(1), T (n) = ω(n) and RADIX is not linear.

Note that we could select a basis b = b(n) such that
b(n) = O(n).

Counting sort

Radix sort

Bucket sort

Lower bounds

Time complexity

Given n numbers, each number with at most d digits, and each
digit in the range 0 to b, if we use counting sorting at each
round of RADIX LSD:

T (n, d , b) = Θ(d(n + b)).

Consider that each number has a value up to f (n).

Then the number of digits in base b is d ≤ ⌈logb f (n)⌉, so
T (n, b) = Θ(logb f (n)(n + b)).

If logb f (n) = ω(1), T (n) = ω(n) and RADIX is not linear.

Note that we could select a basis b = b(n) such that
b(n) = O(n).

Counting sort

Radix sort

Bucket sort

Lower bounds

Time complexity

Given n numbers, each number with at most d digits, and each
digit in the range 0 to b, if we use counting sorting at each
round of RADIX LSD:

T (n, d , b) = Θ(d(n + b)).

Consider that each number has a value up to f (n).

Then the number of digits in base b is d ≤ ⌈logb f (n)⌉, so
T (n, b) = Θ(logb f (n)(n + b)).

If logb f (n) = ω(1), T (n) = ω(n) and RADIX is not linear.

Note that we could select a basis b = b(n) such that
b(n) = O(n).

Counting sort

Radix sort

Bucket sort

Lower bounds

RADIX: selecting the base

Can we tune the parameters?

Yes, in some cases, we can select the best radix to express
the input values.

For numbers in binary, we can select as new radix b̂ a
power of 2. This simplifies the computation as we have
only to look to pieces of bits to change from one
representation to anoter.

For ex., if we have numbers of d = 64 bits (b = 2), and
take the new radix to be b̂ = 28, we have d̂ = 4 new digits
per number.

1 1 0 0 1 0 1 0 0 0 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 0 1 0 0 0

Counting sort

Radix sort

Bucket sort

Lower bounds

RADIX: selecting the base

Given n, d(n)-bits integers, we want to choose c(n),
1 < c(n) < d(n) to use as new radix b̂ = 2c(n).

In the new radix, the number of digits is
d̂(n) = ⌈d(n)/c(n)⌉ digits,

Running RADIX LSD with base 2c(n) has cost

T (n) = Θ(d̂(n)(n + 2c(n))) = Θ((d(n)/c(n)(n + 2c(n))).

The highest choice for c is roughly ⌈lg n⌉.
Then, 2c(n) = O(n).
So, the cost is, O(d

lg nn).

Which provides, linear cost if d(n)
lg n = O(1).

Counting sort

Radix sort

Bucket sort

Lower bounds

Bucket sort

Suppose the values to sort are in the range [0 . . .m − 1].

The algorithm starts with an array of m empty buckets
numbered 0 to m − 1.

Scan the list and place element A[i] in bucket A[i].

Output the buckets in order.

It needs an array of buckets.

The values in the list to be sorted are the indexes to the
buckets.

No comparisons are done.

Counting sort

Radix sort

Bucket sort

Lower bounds

Bucket sort

Suppose the values to sort are in the range [0 . . .m − 1].

The algorithm starts with an array of m empty buckets
numbered 0 to m − 1.

Scan the list and place element A[i] in bucket A[i].

Output the buckets in order.

It needs an array of buckets.

The values in the list to be sorted are the indexes to the
buckets.

No comparisons are done.

Counting sort

Radix sort

Bucket sort

Lower bounds

4 2 1 2 0 4 1 2 2 3 4 1 0

Counting sort

Radix sort

Bucket sort

Lower bounds

4 2 1 2 0 4 1 2 2 3 4 1 0

Counting sort

Radix sort

Bucket sort

Lower bounds

4 2 1 2 0 4 1 2 2 3 4 1 0

4

Counting sort

Radix sort

Bucket sort

Lower bounds

4 2 1 2 0 4 1 2 2 3 4 1 0

2 4

Counting sort

Radix sort

Bucket sort

Lower bounds

4 2 1 2 0 4 1 2 2 3 4 1 0

1 2 4

Counting sort

Radix sort

Bucket sort

Lower bounds

4 2 1 2 0 4 1 2 2 3 4 1 0

0 1 2 4

Counting sort

Radix sort

Bucket sort

Lower bounds

4 2 1 2 0 4 1 2 2 3 4 1 0

4
0 1 2 4

Counting sort

Radix sort

Bucket sort

Lower bounds

4 2 1 2 0 4 1 2 2 3 4 1 0

2
1 2 4

0 1 2 4
0 1 2 3 4

0 0 1 1 1 2 2 2 2 3 4 4 4

Counting sort

Radix sort

Bucket sort

Lower bounds

4 2 1 2 0 4 1 2 2 3 4 1 0

2
1 2 4

0 1 2 4
0 1 2 3 4

0 0 1 1 1 2 2 2 2 3 4 4 4

Counting sort

Radix sort

Bucket sort

Lower bounds

4 2 1 2 0 4 1 2 2 3 4 1 0

2
1 2 4

0 1 2 4
0 1 2 3 4

0 0 1 1 1 2 2 2 2 3 4 4 4

Counting sort

Radix sort

Bucket sort

Lower bounds

Bucket sort: values or keys?

When sorting values, each bucket can be just a counter.

When sorting entries according to keys, a bucket is a
queue.

Counting sort

Radix sort

Bucket sort

Lower bounds

Bucket sort: complexity

Bucket initialization: O(m)

From array to buckets: O(n)

From buckets to array: O(m + n)

Total cost is O(n +m)

When m is small compared to n, Bucket sort is O(n)

Counting sort

Radix sort

Bucket sort

Lower bounds

Bucket sort: extensions

In the presented algorithm each bucket contains elements
with the same key.

The algorithm can be implemented in such a way that
buckets hold elements with different keys.

In such a case we have to take care of the additional cost
of sorting the elements in each bucket.

A typical implementation assumes that the input is drawn
from a uniform distribution on [0, 1), divides the range of
values, from lowest to highest key value, into n equal sized
ranks. In the worst case the algorithm has cost O(n lg n)
and average cost O(n).

Counting sort

Radix sort

Bucket sort

Lower bounds

Bucket sort: extensions

In the presented algorithm each bucket contains elements
with the same key.

The algorithm can be implemented in such a way that
buckets hold elements with different keys.

In such a case we have to take care of the additional cost
of sorting the elements in each bucket.

A typical implementation assumes that the input is drawn
from a uniform distribution on [0, 1), divides the range of
values, from lowest to highest key value, into n equal sized
ranks. In the worst case the algorithm has cost O(n lg n)
and average cost O(n).

Counting sort

Radix sort

Bucket sort

Lower bounds

A bit of history

LSD Radix and counting sort ideas are due
to Herman Hollerith.
In 1890 he invented the card sorter that,
for ex., allowed to process the US census in
5 weeks, using punching cards.

https://www.cs.cornell.edu/courses/JavaAndDS/files/sort6RadixHistory.pdf

Counting sort

Radix sort

Bucket sort

Lower bounds

A bit of history

Counting/Radix sort
H. H Seward
Enhanced Generic Key-Address Mapping
Sort Algorithm
MIT 1954.

Bucket sort
E. J. Isaac and R. C. Singleton
Sorting by Address Calculation
JACM 1956

https://dl.acm.org/doi/10.1145/320831.320834

Counting sort

Radix sort

Bucket sort

Lower bounds

Upper and lower bounds on time complexity of a
problem.

A problem has a time upper bound T (n) if there is an
algorithm A such that, for any input x of size n,
A(x) gives the correct answer in ≤ T (n) steps.

A problem has a time lower bound L(n) if there is NO
algorithm which solves the problem in time < L(n), for
any input e of size n.

Lower bounds are hard to prove, as we have to consider
every possible algorithm.

Counting sort

Radix sort

Bucket sort

Lower bounds

Upper and lower bounds on time complexity of a
problem.

A problem has a time upper bound T (n) if there is an
algorithm A such that, for any input x of size n,
A(x) gives the correct answer in ≤ T (n) steps.

A problem has a time lower bound L(n) if there is NO
algorithm which solves the problem in time < L(n), for
any input e of size n.

Lower bounds are hard to prove, as we have to consider
every possible algorithm.

Counting sort

Radix sort

Bucket sort

Lower bounds

Upper and lower bounds on time complexity of a
problem.

A problem has a time upper bound T (n) if there is an
algorithm A such that, for any input x of size n,
A(x) gives the correct answer in ≤ T (n) steps.

A problem has a time lower bound L(n) if there is NO
algorithm which solves the problem in time < L(n), for
any input e of size n.

Lower bounds are hard to prove, as we have to consider
every possible algorithm.

Counting sort

Radix sort

Bucket sort

Lower bounds

Upper and lower bounds on time complexity of a
problem.

Upper bound: ∃A, ∀x tA(x) ≤ T (|x |),
Lower bound: ∀A,∃x tA(x) ≥ L(|x |),

To prove an upper bound: produce an A so that the bound
holds for any input x (n = |x |).

To prove a lower bound , show that for any possible algorithm,
the time on one input is greater than or equal to the lower
bound.

Counting sort

Radix sort

Bucket sort

Lower bounds

Upper and lower bounds on time complexity of a
problem.

Upper bound: ∃A, ∀x tA(x) ≤ T (|x |),
Lower bound: ∀A,∃x tA(x) ≥ L(|x |),

To prove an upper bound: produce an A so that the bound
holds for any input x (n = |x |).

To prove a lower bound , show that for any possible algorithm,
the time on one input is greater than or equal to the lower
bound.

Counting sort

Radix sort

Bucket sort

Lower bounds

Upper and lower bounds on time complexity of a
problem.

Upper bound: ∃A, ∀x tA(x) ≤ T (|x |),
Lower bound: ∀A,∃x tA(x) ≥ L(|x |),

To prove an upper bound: produce an A so that the bound
holds for any input x (n = |x |).

To prove a lower bound , show that for any possible algorithm,
the time on one input is greater than or equal to the lower
bound.

Counting sort

Radix sort

Bucket sort

Lower bounds

Lower bound for comparison based sorting
algorithm.

To prove the lower bound, we consider binary decision trees a
way to represent the comparisons made by a sorting algorithm
to distinguish the possible inputs of size n.

each leaf represents one of the n! possible permutations
(aπ(1), aπ(2), . . . , aπ(n)). The tree has exactly n! leaves as
the algorithm has to sort correctly all possible
permutations.

In a particular example, each internal node can be labeled
by a comparison ai : aj , the leaves in the left subtree verify
ai < aj and the ones in the right subtree verify ai ≥ aj .

Counting sort

Radix sort

Bucket sort

Lower bounds

An example of binary decision tree for n = 3

1:2

2:3

1:3

1:3

2:3

9 4 6

< >=

>=

>=

<

< <

<>=

>=

1 2 3

123

132 312

213

231

469

321

Counting sort

Radix sort

Bucket sort

Lower bounds

Theorem

For any comparison sort algorithm that sorts n elements, there
is an input in which it has to perform Ω(n lg n) comparisons.

Proof.

Equivalent to prove: Any decision tree that sorts n
elements must have height Ω(n lg n).

Let h the height of a decision tree with n! leaves,

n! ≤ 2h ⇒ h ≥ lg(n!) > lg(
n

e
)n = Ω(n lg n).

Counting sort

Radix sort

Bucket sort

Lower bounds

Theorem

For any comparison sort algorithm that sorts n elements, there
is an input in which it has to perform Ω(n lg n) comparisons.

Proof.

Equivalent to prove: Any decision tree that sorts n
elements must have height Ω(n lg n).

Let h the height of a decision tree with n! leaves,

n! ≤ 2h ⇒ h ≥ lg(n!) > lg(
n

e
)n = Ω(n lg n).

Counting sort

Radix sort

Bucket sort

Lower bounds

Theorem

For any comparison sort algorithm that sorts n elements, there
is an input in which it has to perform Ω(n lg n) comparisons.

Proof.

Equivalent to prove: Any decision tree that sorts n
elements must have height Ω(n lg n).

Let h the height of a decision tree with n! leaves,

n! ≤ 2h ⇒ h ≥ lg(n!) > lg(
n

e
)n = Ω(n lg n).

	Counting sort
	Radix sort
	Bucket sort
	Lower bounds

