Divide-and-conquer: Selection

The problem
Algorithm
idea
Computing a good split element

The algorithm
The cost

Selection

The problem

From 9.3 in CLRS

Selection Problem: Given an array A of n unordered distinct keys, and $i \in\{1, \ldots, n\}$, select the i th-smallest element in A, that is the key that is larger than exactly $i-1$ other keys in A.

Selection

From 9.3 in CLRS

Selection Problem: Given an array A of n unordered distinct keys, and $i \in\{1, \ldots, n\}$, select the i th-smallest element in A, that is the key that is larger than exactly $i-1$ other keys in A.

We use the term rank for the position that occupies an element after sorting A.

Selection

From 9.3 in CLRS

Selection Problem: Given an array A of n unordered distinct keys, and $i \in\{1, \ldots, n\}$, select the i th-smallest element in A, that is the key that is larger than exactly $i-1$ other keys in A.

We use the term rank for the position that occupies an element after sorting A.
Notice that i can be any rank value, in particular when:
$1 i=1$, the MINIMUM element
$2 i=n$, the MAXIMUM element
$3 i=\left\lfloor\frac{n+1}{2}\right\rfloor$, the MEDIAN
$4 i=\lfloor 0.25 n\rfloor \Rightarrow$ order statistics

A first algorithm

Sort A in $(O(n \lg n))$ steps, then the i-th smallest key is $A[i]$.

The problem
Algorithm idea

Computing a
good split
element
The algerithm The cost

Can we do it faster? in linear time?

A first algorithm

The problem
Algorithm idea

Computing a
good split
element
The aigorithm The cost

Sort A in $(O(n \lg n))$ steps, then the i-th smallest key is $A[i]$.
Can we do it faster? in linear time?
Yes, selection is easier than sorting

The algorithm: High level

- Chose a split element x.

■ Let k be the rank of x, if $k=i$, we found the i-th element. Otherwise,

■ Use x to determine a partition of A, smaller than x to the left and larger to the right.
■ Compute recursively the i-th element in the left part, when $i<k$, or the $i-k$-th element in the right part, when $i>k$.

The algorithm: High level

- Chose a split element x.

■ Let k be the rank of x, if $k=i$, we found the i-th element. Otherwise,
■ Use x to determine a partition of A, smaller than x to the left and larger to the right.
■ Compute recursively the i-th element in the left part, when $i<k$, or the $i-k$-th element in the right part, when $i>k$.

The algorithm is correct, independently of the rule used to determine x, as x 's rank is correctly computed.

The algorithm: High level

- Chose a split element x.

■ Let k be the rank of x, if $k=i$, we found the i-th element. Otherwise,
■ Use x to determine a partition of A, smaller than x to the left and larger to the right.
■ Compute recursively the i-th element in the left part, when $i<k$, or the $i-k$-th element in the right part, when $i>k$.

The algorithm is correct, independently of the rule used to determine x, as x 's rank is correctly computed.

The time depends on the quality of the splitting element to divide fairly the elements

Selection: Finding a splitting element

If $n \leq 5$ return their median.

The problem
Algorithm
idea
Computing a good split element

The algorithm
The cost

Selection: Finding a splitting element

If $n \leq 5$ return their median.

The problem
Algorithm idea

Computing a good split element

The algorithm The cost

Otherwise, divide the n elements in $\lceil n / 5\rceil$ groups, each with 5 elements except one group that might have <5 elements).

Selection: Finding a splitting element

If $n \leq 5$ return their median.

The problem

Algorithm idea

Computing a good split element

The algorithm The cost

Otherwise, divide the n elements in $\lceil n / 5\rceil$ groups, each with 5 elements except one group that might have <5 elements).

Selection: Finding a splitting element

Sort the elements in each group and find its median. (Each sort needs ≤ 25 comparisons, i.e. $\Theta(1)$).
Call x_{j} the median of the j-th group.

Selection：Finding a splitting element

The problem

Algorithm

 ideaComputing a good split element

The algorithm The cost

Sort the elements in each group and find its median． （Each sort needs ≤ 25 comparisons，i．e．$\Theta(1)$ ）．
Call x_{j} the median of the j－th group．

The splitting element x is the median of the set of medians， $\left\{x_{j} \mid 1 \leq j \leq\lceil n / 5\rceil\right\}$ ．

The problem
Algorithm
idea
Computing a good split element

The algorithm
The cost

The algorithm

```
Select(A, i)
Divide A into m=\lceiln/5\rceil groups, all but at most one with 5
elements
X[j] = median of group j,j=1,\ldots,m
x = Select(X,\lfloor(m+1)/2\rfloor) i.e. the median of X
Let }k\mathrm{ be the rank of }x\mathrm{ in A
if }i=k\mathrm{ then
    return x
else
    L = the elements of A smaller than x (left)
    R= the elements of A bigger than x (right)
    if i<k then
        return Select(L,i)
    else
            return Select(R,i-k)
```


Example: Find the median

Let $n=15$, we want to get the 5 -th element on the following input:

The problem
Algorithm
idea

$$
A=3139451151210261481711
$$

An example

Let $n=15$, we want to get the 5 -th element on the following input:

$$
A=\begin{array}{|l|l|l|l|}
\hline 313945 & 11512102 & 61481711 \\
\hline
\end{array}
$$

An example

Let $n=15$, we want to get the 5 -th element on the following input:

$$
A=\begin{array}{|l|l|l|l|}
\hline 313945 & 11512102 & 61481711 \\
\hline
\end{array}
$$

3	1	6
4	2	8
5	10	11
9	12	14
13	15	17

An example

Let $n=15$, we want to get the 5 -th element on the following input:

$$
A=\begin{array}{|l|l|l|l|}
\hline 313945 & 11512102 & 61481711 \\
\hline
\end{array}
$$

3	1	6
4	2	8
5	10	11
9	12	14
13	15	17

The median of $X=(5,10,11)$ is 10 which has rank 9

An example

Let $n=15$, we want to get the 5 -th element on the following input:

$$
A=\begin{array}{|l|l|l|l|}
\hline 313945 & 11512102 & 61481711 \\
\hline
\end{array}
$$

3	1	6
4	2	8
5	10	11
9	12	14
13	15	17

The median of $X=(5,10,11)$ is 10 which has rank 9 As $5<9$, recursively ask for the 5 -th element in the left part with respect to $x=10$, i.e., $(3,9,4,5,1,2,6,8)$

Example: Find the median

In the next call $n=8$, we look for the 5 -th element in the following input:

$$
A=39451268
$$

An example

In the next call $n=8$, we look for the 5 -th element in the following input:

$$
A=\begin{array}{|c|}
\hline 39451 \\
268 \\
\hline
\end{array}
$$

An example

In the next call $n=8$, we look for the 5 -th element in the following input:

The problem

The algorithm

The cost

$$
A=39451268
$$

1	
3	2
4	6
5	8
9	

An example

In the next call $n=8$, we look for the 5 -th element in the following input:

$$
A=39451268
$$

1	
3	2
4	6
5	8
9	

The median of $X=(4,6)$ is 4 which has rank 4.

An example

In the next call $n=8$, we look for the 5 -th element in the following input:

$$
A=39451268
$$

1	
3	2
4	6
5	8
9	

The median of $X=(4,6)$ is 4 which has rank 4 . As $5>4$ the algorithm looks for the 1st element in the right part $(5,6,8,9)$, which is 5 .

Selection algorithm: Cost

The problem

Algorithm

idea

Computing a
good split
element
The algorithm
The cost

```
Select \((A, i)\)
Divide \(A\) into \(m=\lceil n / 5\rceil\) groups, all but at most one with 5
elements \(O(n)\)
\(X[j]=\) median of group \(j, j=1, \ldots, m O(n)\)
\(x=\operatorname{Select}(X,\lfloor(m+1) / 2\rfloor)\) i.e. the median of \(X T(n / 5)\)
Let \(k\) be the rank of \(x\) in \(A\)
if \(i=k\) then
    return \(x\)
else
    \(L=\) the elements of \(A\) smaller than \(\times O(n)\)
    \(R=\) the elements of \(A\) bigger than \(\times O(n)\)
    if \(i<k\) then
        return Select \((L, i) T(?)\)
    else
        return Select \((R, i-k) T(?)\)
```


Selection algorithm: elements smaller than x

The problem
Algorithm idea

Computing a
good split
element
The algorithm
The cost

At least $3\left(\frac{1}{2}(\lceil n / 5\rceil-2)\right) \geq \frac{3 n}{10}-6$ of the elements are $<x$.

Selection algorithm: elements smaller than x

The problem

Algorithm

 ideaComputing a good split element

The algorithm The cost

Right of x

Selection algorithm：elements bigger than x

The problem
Algorithm
idea
Computing a
good split
element
The algorithm
The cost

Al least $3\left(\frac{1}{2}(\lceil n / 5\rceil-2)\right) \geq \frac{3 n}{10}-6$ of the elements are $>x$ ．

Selection algorithm: elements bigger than x

The problem

Algorithm

idea

Computing a good split element

The algorithm The cost

Right of x

Selection algorithm: the recurrence

- As at least $\geq \frac{3 n}{10}-6$ of the elements are $>x(<x)$, at most $n-\left(\frac{3 n}{10}-6\right)=6+7 n / 10$ elements are $\leq x(\geq x)$.
■ In the worst case, Select recursively calls on a vector with size $\leq 6+7 n / 10$. So, step 5 takes time $\leq T(6+7 n / 10)$.
Therefore, selecting 50 as the size to stop the recursion, we have

$$
T(n)= \begin{cases}\Theta(1) & \text { if } n \leq 50 \\ T(\lceil n / 5\rceil)+T(6+7 n / 10)+\Theta(n) & \text { if } n>50\end{cases}
$$

Solving we get $T(n)=\Theta(n)$

Selection algorithm: the recurrence

- As at least $\geq \frac{3 n}{10}-6$ of the elements are $>x(<x)$, at most $n-\left(\frac{3 n}{10}-6\right)=6+7 n / 10$ elements are $\leq x(\geq x)$.
■ In the worst case, Select recursively calls on a vector with size $\leq 6+7 n / 10$. So, step 5 takes time $\leq T(6+7 n / 10)$.
Therefore, selecting 50 as the size to stop the recursion, we have

$$
T(n)= \begin{cases}\Theta(1) & \text { if } n \leq 50 \\ T(\lceil n / 5\rceil)+T(6+7 n / 10)+\Theta(n) & \text { if } n>50\end{cases}
$$

Solving we get $T(n)=\Theta(n)$ How?

Solving the recurrence

- Use substitution.

The problem
Algorithm
idea
Computing a
good split
element
The algorithm
The cost

Solving the recurrence

- Use substitution.

■ Assume that $T(n) \leq c n$, for some constant c and $n \leq 50$. Note that $6+7 n / 10<n$, for $n>12$.

Solving the recurrence

- Use substitution.
- Assume that $T(n) \leq c n$, for some constant c and $n \leq 50$. Note that $6+7 n / 10<n$, for $n>12$.
- Prove that $T(n) \leq c n$ by induction. As usual we replace a $\Theta(n)$ term by $d n$, for an adequate constant d.

$$
\begin{aligned}
T(n) & \leq T(\lceil n / 5\rceil)+T(6+7 n / 10)+d n \\
& \leq c\lceil n / 5\rceil+c(6+7 n / 10)+d n \\
& \leq c(n / 5+1)+c(6+7 n / 10)+d n \\
& \leq 9 c n / 10+7 c+d n \leq c n
\end{aligned}
$$

Taking $c=10 d$, for large n, the inequality holds.

Remarks on the cardinality of the groups

Notice:

Algorithm idea

Computing a good split element

The algorithm The cost

- If we make groups of 7 , the number of elements $\geq x$ is $\frac{2 n}{7}$, which yield $T(n) \leq T(n / 7)+T(5 n / 7)+O(n)$ with solution $T(n)=O(n)$.
■ However, if we make groups of 3 , then

$$
\begin{aligned}
& T(n) \leq T(n / 3)+T(2 n / 3)+O(n), \text { which has a solution } \\
& T(n)=O(n \ln n)
\end{aligned}
$$

