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Selection

From 9.3 in CLRS
Selection Problem: Given an array A of n unordered distinct
keys, and i ∈ {1, . . . , n}, select the ith-smallest element in A,
that is the key that is larger than exactly i − 1 other keys in A.

We use the term rank for the position that occupies an element
after sorting A.
Notice that i can be any rank value, in particular when:

1 i = 1, the MINIMUM element

2 i = n, the MAXIMUM element

3 i = ⌊n+1
2 ⌋, the MEDIAN

4 i = ⌊0.25 n⌋ ⇒ order statistics
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A first algorithm

Sort A in (O(n lg n)) steps, then the i-th smallest key is A[i ].

Can we do it faster? in linear time?

Yes, selection is easier than sorting



The problem

Algorithm
idea

Computing a
good split
element

The algorithm

The cost

The algorithm: High level

Chose a split element x .

Let k be the rank of x , if k = i , we found the i-th element.
Otherwise,

Use x to determine a partition of A, smaller than x to the
left and larger to the right.

Compute recursively the i-th element in the left part,
when i < k , or the i − k-th element in the right part,
when i > k .

The algorithm is correct, independently of the rule used to
determine x , as x ’s rank is correctly computed.

The time depends on the quality of the splitting element to
divide fairly the elements
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Selection: Finding a splitting element

If n ≤ 5 return their median.

Otherwise, divide the n elements in ⌈n/5⌉ groups, each with 5
elements except one group that might have < 5 elements).
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Selection: Finding a splitting element

Sort the elements in each group and find its median.
(Each sort needs ≤ 25 comparisons, i.e. Θ(1)).
Call xj the median of the j-th group.
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The splitting element x is the median of the set of medians,
{xj | 1 ≤ j ≤ ⌈n/5⌉}.
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The algorithm

Select(A, i)
Divide A into m = ⌈n/5⌉ groups, all but at most one with 5
elements
X [j ] = median of group j , j = 1, . . . ,m
x = Select(X , ⌊(m + 1)/2⌋) i.e. the median of X
Let k be the rank of x in A
if i = k then

return x
else

L = the elements of A smaller than x (left)
R = the elements of A bigger than x (right)
if i < k then

return Select(L, i)
else

return Select(R, i − k)
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Example: Find the median

Let n = 15, we want to get the 5-th element on the following
input:

3 13 9 4 5A = 1 15 12 10 2 6 14 8 17 11
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An example

Let n = 15, we want to get the 5-th element on the following
input:

3 13 9 4 5A = 1 15 12 10 2 6 14 8 17 11

3 1 6
4 2 8
5 10 11
9 12 14
13 15 17

The median of X = (5, 10, 11) is 10 which has rank 9
As 5 < 9, recursively ask for the 5-th element in the left part
with respect to x = 10, i.e., (3, 9, 4, 5, 1, 2, 6, 8)
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Example: Find the median

In the next call n = 8, we look for the 5-th element in the
following input:

3 9 4 5 1A = 2 6 8
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An example

In the next call n = 8, we look for the 5-th element in the
following input:

3 9 4 5 1A = 2 6 8

1
3 2
4 6
5 8
9

The median of X = (4, 6) is 4 which has rank 4.
As 5 > 4 the algorithm looks for the 1st element in the right
part (5, 6, 8, 9), which is 5.
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Selection algorithm: Cost

Select(A, i)
Divide A into m = ⌈n/5⌉ groups, all but at most one with 5
elements O(n)
X [j ] = median of group j , j = 1, . . . ,m O(n)
x = Select(X , ⌊(m + 1)/2⌋) i.e. the median of X T (n/5)
Let k be the rank of x in A
if i = k then

return x
else

L = the elements of A smaller than x O(n)
R = the elements of A bigger than x O(n)
if i < k then

return Select(L, i) T (?)
else

return Select(R, i − k) T (?)
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Selection algorithm: elements smaller than x

At least 3(12(⌈n/5⌉ − 2)) ≥ 3n
10 − 6 of the elements are < x .
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Selection algorithm: elements bigger than x

Al least 3(12(⌈n/5⌉ − 2)) ≥ 3n
10 − 6 of the elements are > x .
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Selection algorithm: the recurrence

As at least ≥ 3n
10 − 6 of the elements are > x (< x), at

most n − (3n10 − 6) = 6 + 7n/10 elements are ≤ x (≥ x).

In the worst case, Select recursively calls on a vector with
size ≤ 6 + 7n/10. So, step 5 takes time ≤ T (6 + 7n/10).

Therefore, selecting 50 as the size to stop the recursion, we
have

T (n) =

{
Θ(1) if n ≤ 50,

T (⌈n/5⌉) + T (6 + 7n/10) + Θ(n) if n > 50.

Solving we get T (n) = Θ(n) How?
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Solving the recurrence

Use substitution.

Assume that T (n) ≤ c n, for some constant c and n ≤ 50.
Note that 6 + 7n/10 < n, for n > 12.

Prove that T (n) ≤ c n by induction. As usual we replace a
Θ(n) term by d n, for an adequate constant d .

T (n) ≤ T (⌈n/5⌉) + T (6 + 7n/10) + d n

≤ c⌈n/5⌉+ c(6 + 7n/10) + d n

≤ c(n/5 + 1) + c(6 + 7n/10) + d n

≤ 9 c n/10 + 7c + d n ≤ cn

Taking c = 10d , for large n, the inequality holds.
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Remarks on the cardinality of the groups

Notice:

If we make groups of 7, the number of elements ≥ x is 2n
7 ,

which yield T (n) ≤ T (n/7) + T (5n/7) + O(n) with
solution T (n) = O(n).

However, if we make groups of 3, then
T (n) ≤ T (n/3) + T (2n/3) + O(n), which has a solution
T (n) = O(n ln n).
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