Divide-and-conquer: Selection
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Selection

From 9.3 in CLRS
Selection Problem: Given an array A of n unordered distinct

keys, and i € {1,...,n}, select the ith-smallest element in A,
that is the key that is larger than exactly i — 1 other keys in A.

The problem

We use the term rank for the position that occupies an element
after sorting A.
Notice that / can be any rank value, in particular when:

i =1, the MINIMUM element
i = n, the MAXIMUM element
i =|2tt], the MEDIAN

i = 10.25 n| = order statistics

BNE




A first algorithm

Sort A in (O(nlgn)) steps, then the i-th smallest key is A[/].
The problem Can we do it faster? in linear time?

Yes, selection is easier than sorting




The algorithm: High level

m Chose a split element x.

m Let k be the rank of x, if k = i, we found the /-th element.
Algorithm Otherwise,

idea

m Use x to determine a partition of A, smaller than x to the
left and larger to the right.

m Compute recursively the i-th element in the left part,
when i < k, or the i — k-th element in the right part,
when | > k.

The algorithm is correct, independently of the rule used to
determine x, as x's rank is correctly computed.

The time depends on the quality of the splitting element to
divide fairly the elements




Selection: Finding a splitting element

If n <5 return their median.

Otherwise, divide the n elements in [n/5] groups, each with 5
elements except one group that might have < 5 elements).
Computing a

good split
element




Selection: Finding a splitting element

Sort the elements in each group and find its median.
(Each sort needs < 25 comparisons, i.e. ©(1)).
Call x; the median of the j-th group.

Computing a
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The splitting element x is the median of the set of medians,
{xi|1<j<[n/5]}.



Computing a
good split
element




The algorithm

Select(A, /)
Divide A into m = [n/5] groups, all but at most one with 5
elements

X[j] = median of group j, j=1,...,m

x = Select(X, [(m+1)/2]) i.e. the median of X

Let k be the rank of x in A

if i = k then
return x
The algorithm else

L = the elements of A smaller than x (left)
R = the elements of A bigger than x (right)
if i < k then

return Select(L, /)
else
return Select(R, i — k)




Example: Find the median

Let n = 15, we want to get the 5-th element on the following
input:

A= 313945 11512102 61481711

The algorithm




An example

Let n = 15, we want to get the 5-th element on the following
input:

A=[313045]11512102]614817 11

3116
The algorithm 4 2 8
511011
9 |12 | 14
13 | 15 | 17

The median of X = (5,10, 11) is 10 which has rank 9
As 5 < 9, recursively ask for the 5-th element in the left part
with respect to x = 10, i.e, (3,9,4,5,1,2,6,8)



Example: Find the median

In the next call n = 8, we look for the 5-th element in the
following input:

A= 39451 268

The algorithm




An example

In the next call n = 8, we look for the 5-th element in the
following input:

A=139451]26 8]

The algorithm
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The median of X = (4,6) is 4 which has rank 4.
As 5 > 4 the algorithm looks for the 1st element in the right
part (5,6,8,9), which is 5.



Selection algorithm: Cost

Select(A, /)
Divide A into m = [n/5] groups, all but at most one with 5
elements O(n)
X[j] = median of group j, j=1,...,m O(n)
x = Select(X, |(m+ 1)/2]) i.e. the median of X T(n/5)
Let k be the rank of x in A
if i = k then

return x
else
The cost L = the elements of A smaller than x O(n)
R = the elements of A bigger than x O(n)
if i < k then

return Select(L,i) T(?)
else
return Select(R,i — k) T(?)
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Right of x

— 6 of the elements are > x.
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Selection algorithm: the recurrence

m As at least > %’ — 6 of the elements are > x (< x), at

most n — (%’ —6) =6+ 7n/10 elements are < x (> x).

m In the worst case, Select recursively calls on a vector with
size <6+ 7n/10. So, step 5 takes time < T(6 + 7n/10).

Therefore, selecting 50 as the size to stop the recursion, we
have

The cos () = o(1) if n < 50,
Y=\ T([n/5]) + T(6 +7n/10) + ©(n) if n> 50.

Solving we get T(n) = ©(n) How?



Solving the recurrence

m Use substitution.

m Assume that T(n) < cn, for some constant ¢ and n < 50.
Note that 6 + 7n/10 < n, for n > 12.

m Prove that T(n) < ¢ n by induction. As usual we replace a
©(n) term by d n, for an adequate constant d.

The cost

T(n) < T([n/5])+ T(6+7n/10) +dn
<c[n/5] 4+ c(6+7n/10)+ dn
<c(n/5+1)+c(6+7n/10)+dn
<9cn/10+7c+dn<cn

Taking ¢ = 10d, for large n, the inequality holds.



Remarks on the cardinality of the groups

Notice:

m If we make groups of 7, the number of elements > x is 22

which yield T(n) < T(n/7) + T(5n/7) + O(n) with !
solution T(n) = O(n).
m However, if we make groups of 3, then
T(n) < T(n/3)+ T(2n/3) 4+ O(n), which has a solution
T(n) = O(nlnn).

The cost
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