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Linear Programming.

In a linear programming problem, we are given a set of
variables, an objective function a set of linear constrains and
want to assign real values to the variables as to:

satisfy the set of linear equations,

maximize or minimize the objective function.

LP is of special interest because many combinatorial
optimization problems can be reduced to LP: Max-Flow;
Assignment problems; Matchings; Shortest paths; MinST; . . .
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Example.

A company produces 2 products P1, and P2, and wishes to
maximize the profits.

Each day, the company can produce x1 units of P1 and x2 units
of P2.
The company makes a profit of 1 for each unit of P1; and a
profit of 6 for each unit of P2.

Due to supply limitations and labor constrains we have the
following additional constrains: x1 ≤ 200, x2 ≤ 300 and
x1 + x2 ≤ 400.

What are the best levels of production?
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We express this problem as a linear program:

Objective function: max(x1 + 6x2)

subject to the constraints: x1 ≤ 200

x2 ≤ 300

x1 + x2 ≤ 400

x1, x2 ≥ 0.

Recall a linear equation in x1 and x2 defines a line in R2. A
linear inequality defines a half-space.
The feasible region of this LP are the (x1, x2) in the convex
polygon defined by the linear constrains.
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In a linear program the optimum is achieved at a vertex of the
feasible region.

A LP is infeasible if

The constrains are so tight that there are impossible to
satisfy all of them. For ex. x ≥ 2 and x ≤ 1,

The constrains are so loose that the feasible region is
unbounded. For ex. max(x1 + x2) with x1, x2 ≥ 0
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Higher dimensions.

max(x1+6x2 + 13x3)

x1 ≤ 200

x2 ≤ 300

x1 + x2 + x3 ≤ 400

x2 + 3x3 ≤ 600

x1, x2, x3 ≥ 0.
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Standard form of a Linear Program.

INPUT: Given real numbers (ci )
n
i=1, (aji )1≤j≤m&1≤i≤n(bj)

m
j=1

OUTPUT: real values for variables (xi )
n
i=1 such that

the objective function
∑n

i=1 cixj is minimized under the
values verifying,

for 1 ≤ j ≤ m,
∑

i ajixi ≥ bj

A linear programming problem is the problem or maximizing
(minimizing) a linear function the objective function subject to
a finite set of linear constraints

A LP is in standard form if the following are true:

We want to minimize the objective function.

Non-negative constraints for all variables.

All remaining constraints are expressed as ≥ constraints.
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Equivalent formulations of LP.

In principle LP has many degrees of freedom:

1 It can be a maximization or a minimization problem.

2 Its constrains could be equalities or inequalities.

3 The variables are often restricted to be non-negative, but
they also could be unrestricted.

Most of the ”real life” constrains are given as inequalities.
The main reason to convert a LP into standard form is because
the solvers for LP starts with a LP in standard form.
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Transformation rules

To convert inequality
∑n

i=1 aixi ≤ b into equality:

introduce a slack variable s ≥ 0 and replace inequality by∑n
i=1 aixi + s = b.

The slack variable si measures the amount of “non-used
resource.”

Ex: x1 + x2 + x3 ≤ 40 is replaced by s ≥ 0 and
x1 + x2 + x3 + s = 40
So that, s = 40− (x1 + x2 + x3)

To convert inequality
∑n

i=1 aixi ≥ −b into equality:
introduce a surplus variable s ≥ 0 and

∑n
i=1 aixi − s = b.

The surplus variable s ≥ 0 measures the extra amount of
used resource.
Ex: −x1 + x2 − x3 ≥ 4 ⇒ −x1 + x2 − x3 − s1 = 4
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Transformations among LP forms (cont.)

To to deal with an unrestricted variable x (i.e. x can be
positive or negative):

introduce x+, x− ≥ 0, and replace
all occurrences of x by x+ − x−.
Ex: x unconstrained ⇒ x = x+ − x− with x+ ≥ 0 and
x− ≥ 0.

To turn max. problem into min. problem: multiply the
coefficients of the objective function by -1.
Ex: max(10x1 + 60x2 + 140x3) is equivalent to
min(−10x1 − 60x2 − 140x3).

Applying these transformations, we can rewrite any LP into
standard form, in which variables are all non-negative, the
constrains are equalities, and the objective function is to be
minimized.
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Algebraic representation of LP

Let c = (c1, . . . , cn) x = (x1, . . . , xn), b = (b1, . . . , bm) and let
A = (aji ) be the m × n matrix of the coefficients involved in
the constrains.

A LP can be represented using matrix and vectors:

min
n∑

i=1

cixj min
n∑

i=1

cT x

subject to ⇒ subject to
n∑

i=1

ajixi ≥ bj , 1 ≤ j ≤ m Ax ≥ b

xi ≥ 0, 1 ≤ i ≤ n x ≥ 0
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Given a LP

min cT x
subject to
Ax ≥ b
x ≥ 0

Any x that satisfies the constraints is a feasible solution.
A LP is feasible if there exists a feasible solution. Otherwise is
said to be infeasible.
A feasible solution x∗ is an optimal solution if

cT x∗ = min{cT x |Ax ≥ b, x ≥ 0}
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The Geometry of LP

Consider P:

max 2x+5y

3x + y ≤9

y ≤3

x + y ≤4

x , y ≥ 0

P: 2x+5y=c

MAX

Theorem

If there exists an optimal solution to P, x , then there exists one
that is a vertex of the polytope.
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vertex, move in a non-decreasing
direction until reach a boundary.
Repeat, following the boundary. x

x *

c= (2,5)
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The Simplex algorithm

LP can be solved efficiently: George Dantzing (1947)

It uses hill-climbing: Start in a vertex of the feasible polytope
and look for an adjacent vertex of better objective value. Until
reaching a vertex that has no neighbor with better objective
function.

x2

x1

x3

x2

x1

x3
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Complexity of LP:

Input to LP: The number n of variables in the LP.

Simplex could be exponential on n: there exists specific input
(the Klee-Minty cube [1970]) where the usual versions of the
simplex algorithm may actually ”cycle” in the path to the
optimal. (see Ch.6 in Papadimitriou-Steiglitz, Comb. Optimization:

Algorithms and Complexity)

In practice, the simplex algorithm is quite efficient and can find
the global optimum (if certain precautions against cycling are
taken).

It is known that simplex solves ”typical” (random) problems in
O(n3) steps.
Simplex is the main choice to solve LP, among engineers.

But some software packages use interior-points algorithms,
which guarantee poly-time termination.



Linear
Programming

Duality

Integer LP

1 Linear Programming

2 Duality

3 Integer LP



Linear
Programming

Duality

Integer LP

Primal, Dual and Weak Duality

Consider a LP in n variables x = (x1, . . . , xn) with m
constraints represented by matrix A, independent terms b, and
objective function b.

Primal

min cT x

s.t. Ax ≥ b

x ≥ 0

The dual is an effort to construct the best lower bound for the
primal objective function.
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Searching for a lower bound: The best one?

LP (PRIMAL)

min cT x

s.t. Ax ≥ b

x ≥ 0

if x∗ opt, yTAx is a
general linear com-
bination of equa-
tions, if we can se-
lect y so that
yTAx∗ = cT x∗,
cT x∗ ≥ yTb

The best lower
bound, for any x?

max bT y

s.t. AT y = c

y ≥ 0

But as we are
maximizing this is
equivalent to

max bT y

s.t. AT y ≤ c DUAL

y ≥ 0
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Primal - Dual: an example

Working from the dual trying to get the best lower bound
we come back to the primal.
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Primal - Dual: an example

Let G = (V ,E ) be a graph.

LP primal

min
n∑

i=1

xi

s.t. xi + xj ≥ 1 e = (i , j) ∈ E

xi ≥ 0 i ∈ V

LP dual

max
∑
e∈E

ze

s.t.
∑
i∈e

ze ≤ 1 for all i ∈ V

ze ≥ 0 for all e ∈ E
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Example: The Max-Flow problem

2

s

a

b

t1

13

3

max fsa + fsb

fsa ≤ 3

fsb ≤ 2

fab ≤ 1

fat ≤ 1

fbt ≤ 3

fsa − fab − fat = 0

fsb + fab − fbt = 0

fsa, fsb, fab, fat , fbt ≥ 0.
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The Min Cut problem

min 3ysa + 2ysb + yab + yat + ybt

ysa + ua ≥ 1

ysb + ub ≥ 1

yab − ua + ub ≥ 0

yat − ua ≤ 1

ybt − ub ≤ 3

ysa, ysb, yab, yat , ybt , ua, ub ≥ 0.

This D - LP defines the min-cut problem where for x ∈ {a, b},
ux = 1 iff vertex x ∈ S , and yxz = 1 iff (x , z) ∈ cut (S ,T ).
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Strong and Weak duality theorem

There are additional conditions for a pair (x , y) of primal-dual
optimal/feasible solutions.

Theorem (Strong duality)

If the primal has an optimal solution x∗ then the dual has an
optimal solution y∗ such that cT x∗ = bT y∗

Theorem (Weak Duality)

For every feasible solution x to the primal and every solution z
to the dual,

n∑
i=1

cixi ≥
m∑
j=1

bjzj
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Conditions for optimality: Complementary
slackness

Let x be a feasible solution to the primal and let z be a feasible
solution to the dual.

Primal complementary slackness

If xi > 0, then
∑m

j=1 aijzj = ci .

Dual complementary slackness

If zj > 0, then
∑n

i=1 aijxi = bj .
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Conditions for optimality: Complementary
slackness

Theorem

If (x , y) satisfies complementary slackness, then x and y are
optimal solutions for primal and dual problems, respectively.

Proof.

n∑
i=1

cixi =
n∑

i=1

(
m∑
j=1

aijzj)xi =
m∑
j=1

(
n∑

i=1

aijxi )zj =
m∑
j=1

bjzj
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Max Flow and LP

Min Cost Max Flow: Given a flow network and a valuation of
the cost of transporting a unit of flow along each edge. Find a
maximum flow with minimum cost.

Max-Flow Min Cut theorem follows from strong duality

It is easy to adapt the LP for MaxFlow to ensure that the
flow value is F and incorporate the cost in the objective
function.
Add the equation f (s,V ) = F
Objective function: minimize

∑
e∈E ce fe

This approach provides a polynomial time algorithm for
the Min Cost Max Flow problem.
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Integer Linear Programming (ILP)

Consider the Min Vertex Cover problem: Given an undirected
G = (V ,E ) with |V | = n and |E | = m, want to find S ⊆ V
with minimal cardinality s.t.. it covers all edges e ∈ E .

This problem can be expressed as a linear program on
{0, 1} variables, interpreting a solution as
Let x ∈ {0, 1}n be seen as a set S , in the usual way, for
i ∈ V :

xi =

{
1 if i ∈ S

0 otherwise

Under this interpretation we the constraints ∀(i , j) ∈ E
xi + xj ≥ 1 are equivalent to say that S is a vertex cover.
The constraints give Ax ≥ 1.



Linear
Programming

Duality

Integer LP

Integer Linear Programming (ILP)

Consider the Min Vertex Cover problem: Given an undirected
G = (V ,E ) with |V | = n and |E | = m, want to find S ⊆ V
with minimal cardinality s.t.. it covers all edges e ∈ E .

This problem can be expressed as a linear program on
{0, 1} variables, interpreting a solution as
Let x ∈ {0, 1}n be seen as a set S , in the usual way, for
i ∈ V :

xi =

{
1 if i ∈ S

0 otherwise

Under this interpretation we the constraints ∀(i , j) ∈ E
xi + xj ≥ 1 are equivalent to say that S is a vertex cover.
The constraints give Ax ≥ 1.



Linear
Programming

Duality

Integer LP

Integer Linear Programming (ILP)

Consider the Min Vertex Cover problem: Given an undirected
G = (V ,E ) with |V | = n and |E | = m, want to find S ⊆ V
with minimal cardinality s.t.. it covers all edges e ∈ E .

This problem can be expressed as a linear program on
{0, 1} variables, interpreting a solution as
Let x ∈ {0, 1}n be seen as a set S , in the usual way, for
i ∈ V :

xi =

{
1 if i ∈ S

0 otherwise

Under this interpretation we the constraints ∀(i , j) ∈ E
xi + xj ≥ 1 are equivalent to say that S is a vertex cover.
The constraints give Ax ≥ 1.
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We can express the min VC problem as:

min
∑

i∈V xi
subject to
xi + xj ≥, (i , j) ∈ E
xi ∈ {0, 1}, i ∈ V

where we have a new constrain, we require the solution to be
0,1. This can be replaced by requiring the variables to be
positive integers (as we are minimizing).

Asking for the best possible integral solution for a LP is known
as the Integer Linear Programming:
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The ILP problem is defined:
Given A ∈ Zn×m together with b ∈ Zn and c ∈ Zm, find a x
that max (min) cT subject to:

min cT x
subject to
Ax ≥ 1
x ∈ Zm,

Big difference between LP and ILP:
Ellipsoidal/Interior point methods solve LP in polynomial time
but ILP is NP-hard.
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Solvers for LP

Due to the importance of LP and ILP as models to solve
optimization problem, there is a very active research going on
to design new algorithms and heuristics to improve the running
time for solving LP (algorithms) IPL (heuristics).

There are a myriad of solvers packages:

CPLEX:
http://ampl.com/products/solvers/solvers-we-sell/cplex/

GUROBI Optimizer:
http://www.gurobi.com/products/gurobi-optimizer
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