Max-flow and min-cut problems

Max Flow and Min Cut

Properties of flows and cuts

Residual graph

Augmenting path

MaxFlow MinCut Thm

Ford
Fulkerson alg
Maximum matching in Bip graphs

Disjoint paths problem

1 Max Flow and Min Cut

Max Flow and

 Min Cut Properties of flows and cutsResidual graph

Augmenting path

MaxFlow MinCut Thm

Fulkerson alg
Maximum matching in Bip graphs

Disjoint paths problem
2. Properties of flows and cuts

3 Residual graph
4 Augmenting path
5 MaxFlow MinCut Thm
6 Ford Fulkerson alg
7 Maximum matching in Bip graphs

Flow Network

Max Flow and Min Cut

Properties of

flows and cuts

Residual
graph
Augmenting path

MaxFlow MinCut Thm

Ford
Fulkerson alg
Maximum matching in Bip graphs

Disjoint paths problem

A network $\mathcal{N}=(V, E, c, s, t)$ is formed by

■ a digraph $G=(V, E)$,

- a source vertex $s \in V$

■ a sink vertex $t \in V$,
■ and edge capacities $c: E \rightarrow \mathbb{R}^{+}$

A flow in a network

Max Flow and Min Cut

Properties of
flows and cuts
Residual
graph
Augmenting
path
MaxFlow
MinCut Thm
Ford
Fulkerson alg
Maximum
matching in Bip graphs

Disjoint paths problem

Given a network $\mathcal{N}=(V, E, c, s, t)$
A Flow is an assignment $f: E \rightarrow \mathbb{R}^{+} \cup\{0\}$ that follows the Kirchoff's laws:

■ $\forall(u, v) \in E, 0 \leq f(u, v) \leq c(u, v)$,

- (Flow conservation) $\forall v \in V-\{s, t\}$, $\sum_{u \in V} f(u, v)=\sum_{z \in V} f(v, z)$

The value of a flow f is

$$
|f|=\sum_{v \in V} f(s, v)=f(s, V)=f(V, t)
$$

$$
f(e) / c(e)
$$

with value 3.

A flow in a network

Max Flow and Min Cut

Properties of
flows and cuts
Residual graph

Augmenting path

MaxFlow
MinCut Thm
Ford
Fulkerson alg
Maximum
matching in Bip graphs

Disjoint paths problem

Given a network $\mathcal{N}=(V, E, c, s, t)$
A Flow is an assignment $f: E \rightarrow \mathbb{R}^{+} \cup\{0\}$ that follows the Kirchoff's laws:

■ $\forall(u, v) \in E, 0 \leq f(u, v) \leq c(u, v)$,

- (Flow conservation) $\forall v \in V-\{s, t\}$, $\sum_{u \in V} f(u, v)=\sum_{z \in V} f(v, z)$

The value of a flow f is

$$
|f|=\sum_{v \in V} f(s, v)=f(s, V)=f(V, t)
$$

saturated

The Maximum flow problem

Max Flow and Min Cut

Properties of

flows and cuts

Residual graph

Augmenting path

MaxFlow
MinCut Thm
Ford
Fulkerson alg
Maximum
matching in
Bip graphs
Disjoint paths problem

INPUT: A network $\mathcal{N}=(V, E, c, s, t$, QUESTION: Find a flow of maximum value on \mathcal{N}.

The value of the flow is $7=4+1+2=5+2$.
As t cannot receive more flow, this flow is a maximum flow.

The (s, t)-cuts

Max Flow and Min Cut

Properties of

flows and cuts

Residual graph

Augmenting path

MaxFlow
MinCut Thm

Ford

Fulkerson alg
Maximum matching in Bip graphs

Disjoint paths problem

Given $\mathcal{N}=(V, E, c, s, t)$ a (s, t)-cut is a partition of $V=S \cup T(S \cap T=\emptyset)$, with $s \in S$ and $t \in T$.

The capacity of a cut (S, T) is the sum of weights leaving S, i.e.,

$$
c(S, T)=\sum_{u \in S} \sum_{v \in T} c(u, v)
$$

$$
\begin{aligned}
& S=\{\mathrm{s}, \mathrm{c}, \mathrm{~d}\} \\
& T=\{a, b, e, t\} \\
& c(S, T)=19 \\
& (4+5)+5+(3+2)
\end{aligned}
$$

The (s, t)-cuts

Max Flow and Min Cut

Properties of

flows and cuts

Residual graph

Augmenting path

MaxFlow MinCut Thm

Ford

Fulkerson alg
Maximum
matching in
Bip graphs
Disjoint paths problem

Given $\mathcal{N}=(V, E, c, s, t)$ a (s, t)-cut is a partition of $V=S \cup T(S \cap T=\emptyset)$, with $s \in S$ and $t \in T$.

The flow across the cut:
$f(S, T)=\sum_{u \in S} \sum_{v \in T} f(u, v)-\sum_{v \in T} \sum_{u \in S} f(v, u)$.

Due to the capacity constrain: $f(S, T) \leq c(S, T)$

Another (s, t)-cut

Max Flow and Min Cut

Properties of

flows and cuts

Residual graph

Augmenting path

MaxFlow MinCut Thm

Ford

Fulkerson alg
Maximum
matching in Bip graphs

Disjoint paths problem

Given $\mathcal{N}=(V, E, c, s, t)$ a (s, t)-cut is a partition of $V=S \cup T(S \cap T=\emptyset)$, with $s \in S$ and $t \in T$.

The flow across the cut:
$f(S, T)=\sum_{u \in S} \sum_{v \in T} f(u, v)-\sum_{v \in T} \sum_{u \in S} f(v, u)$.

The Minimum Cut problem

Max Flow and Min Cut

Properties of

flows and cuts

Residual graph

Augmenting path

MaxFlow MinCut Thm

Ford

Fulkerson alg
Maximum
matching in Bip graphs

Disjoint paths problem

INPUT: A network $\mathcal{N}=(V, E, c, s, t$,
QUESTION: Find a (s, t)-cut of minimum capacity in \mathcal{N}.

$$
\begin{aligned}
& \text { MinCut } \\
& \mathrm{S}=\{\mathrm{s}, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}\} \\
& T=\{t\} \\
& c(S, T)=7
\end{aligned}
$$

Changing weights effect on min cuts

Max Flow and Min Cut

flows and cuts

Residual graph

Augmenting path

MaxFlow MinCut Thm

Ford
Fulkerson alg
Maximum matching in Bip graphs

Given a network $\mathcal{N}=(V, E, s, t, c)$ assume that (S, T) is a $\min (s, t)$-cut.

If we change the input by adding $c>0$ to the capacity of every edge, then it may happen that (S, T) is not longer a min (s, t)-cut.

Changing weights effect on Min-Cut and Max-Flow

Max Flow and Min Cut

Properties of

flows and cuts

Residual graph

Augmenting path

MaxFlow MinCut Thm

Ford
Fulkerson alg
Maximum
matching in Bip graphs

Given a network $\mathcal{N}=(V, E, s, t, c)$.
If we change the network by multiplying by $c>$ the capacity of every edge, the capacity of any (s, t)-cut in the new network is c times its capacity in the original network.

1 Max Flow and Min Cut

Max Flow and Min Cut

Properties of flows and cuts

Residual graph

Augmenting path

MaxFlow MinCut Thm

Ford
Fulkerson alg
Maximum matching in Bip graphs

Disjoint paths problem

2 Properties of flows and cuts

3 Residual graph

4 Augmenting path

5 MaxFlow MinCut Thm

6 Ford Fulkerson alg

7 Maximum matching in Bip graphs

Notation

Max Flow and Min Cut

Properties of
flows and cuts
Residual graph

Augmenting path

MaxFlow MinCut Thm

Ford

Fulkerson alg
Maximum
matching in
Bip graphs

Let $\mathcal{N}=(V, E, s, t, c)$ and f a flow in \mathcal{N}
For $v \in V, U \subseteq V$ and $v \notin U$.

- $f(v, U)$ flow $v \rightarrow U$ i.e. $f(v, U)=\sum_{u \in U} f(v, u)$,
$\square f(U, v)$ flow $U \rightarrow v$ i.e. $f(U, v)=\sum_{u \in U} f(u, v)$,
For a (s, t)-cut (S, T) and $v \in S$
$■ S^{\prime}=S \backslash\{v\}$ and $T^{\prime}=T \cup\{v\}$
■ $f_{-v}(S, T)=\sum_{u \in S^{\prime}} \sum_{w \in T} f(u, w)-\sum_{w \in T} \sum_{u \in S^{\prime}} f(w, u)$ i.e, the contribution to $f(S, T)$ from edges not incident with v.

Flow conservation on (s, t)-cuts

Max Flow and Min Cut

Properties of
flows and cuts
Residual graph

Augmenting
path
MaxFlow
MinCut Thm
Ford
Fulkerson alg
Maximum
matching in
Bip graphs
Disjoint paths problem

Theorem

Let $\mathcal{N}=(V, E, s, t, c)$ and f a flow in \mathcal{N}. For any (s, t)-cut $(S, T), f(S, T)=|f|$.

Proof (Induction on $|S|$)

- If $S=\{s\}$ then, by definition, $f(S, T)=|f|$.
- Assume it is true for $S^{\prime}=S-\{v\}$ and $T^{\prime}=T \cup\{v\}$, i.e. $f\left(S^{\prime}, T^{\prime}\right)=|f|$.

Flow conservation on (s, t)-cuts

Proof (cont.) (Induction on $|S|$)

Max Flow and Min Cut

Properties of
flows and cuts
Residual graph

Augmenting path

MaxFlow
MinCut Thm
Ford
Fulkerson alg
Maximum
matching in
Bip graphs
Disjoint paths problem

- IH: $f\left(S^{\prime}, T^{\prime}\right)=|f|$.
- Then, $f(S, T)=f_{-v}(S, T)+f(v, T)-f(T, v)$.

■ But, $f\left(S^{\prime}, T^{\prime}\right)=f_{-v}(S, T)+f\left(S^{\prime}, v\right)-f\left(v, S^{\prime}\right)$ as $v \in T^{\prime}$

- By flow conservation,
$f\left(S^{\prime}, v\right)+f(T, v)=f\left(v, S^{\prime}\right)+f(v, T)$
- So, $f\left(S^{\prime}, v\right)-f\left(v, S^{\prime}\right)=f(v, T)-f(T, v)$
- Therefore, $f\left(S^{\prime}, T^{\prime}\right)=f(S, T)=|f|$

1 Max Flow and Min Cut

Max Flow and Min Cut

Properties of flows and cuts

Residual
graph
Augmenting path

MaxFlow MinCut Thm

Ford
Fulkerson alg
Maximum matching in Bip graphs

Disjoint paths problem

2 Properties of flows and cuts

3 Residual graph

4 Augmenting path

5 MaxFlow MinCut Thm

6 Ford Fulkerson alg

7 Maximum matching in Bip graphs

Residual graph

Max Flow and Min Cut

Properties of

flows and cuts

Residual graph

Augmenting path

MaxFlow MinCut Thm

Ford
Fulkerson alg
Maximum
matching in
Bip graphs
Disjoint paths problem

Given a network $\mathcal{N}=(V, E, s, t, c)$ together with a flow f. The residual graph, $\left(G_{f}=\left(V, E_{f}, c_{f}\right)\right.$ is a weighted digraph on the same vertex set and with edge set:

■ if $c(u, v)-f(u, v)>0$, then $(u, v) \in E_{f}$ and $c_{f}(u, v)=c(u, v)-f(u, v)>0$ (forward edges)

Residual graph

Max Flow and Min Cut

Properties of

flows and cuts

Residual graph

Augmenting path

MaxFlow MinCut Thm

Ford

Fulkerson alg
Maximum
matching in
Bip graphs
Disjoint paths problem

Given a network $\mathcal{N}=(V, E, s, t, c)$ together with a flow f on it, the residual graph, $\left(G_{f}=\left(V, E_{f}, c_{f}\right)\right.$ is a weighted digraph on the same vertex set and with edge set:

■ if $f(u, v)>0$, then $(v, u) \in E_{f}$ and $c_{f}(v, u)=f(u, v)$ (backward edges).

G_{f} backward edges

Residual graph

Max Flow and Min Cut

Properties of
flows and cuts
Residual graph

Augmenting path

MaxFlow
MinCut Thm
Ford
Fulkerson alg
Maximum
matching in
Bip graphs
Disjoint paths problem

Given a network $\mathcal{N}=(V, E, s, t, c)$ together with a flow f on it, the residual graph, $\left(G_{f}=\left(V, E_{f}, c_{f}\right)\right.$ is a weighted digraph on the same vertex set and with edge set:

■ if $c(u, v)-f(u, v)>0$, then $(u, v) \in E_{f}$ and $c_{f}(u, v)=c(u, v)-f(u, v)>0$ (forward edges)

- if $f(u, v)>0$, then $(v, u) \in E_{f}$ and $c_{f}(v, u)=f(u, v)$ (backward edges).

Residual graph

Max Flow and Min Cut

Properties of

flows and cuts

Residual graph

Augmenting
path

MaxFlow

Ford

Fulkerson alg
Maximum
matching in
Bip graphs
Disjoint paths problem

Residual graph

Max Flow and Min Cut

Properties of

flows and cuts

Residual graph

Augmenting path

MaxFlow

- forward edges: There remains capacity to push more flow through this edge.
- backward edges: there are units of flow that can be redirected through other links.

1 Max Flow and Min Cut

Max Flow and Min Cut

Properties of flows and cuts

Residual graph

Augmenting path

MaxFlow MinCut Thm

Ford
Fulkerson alg
Maximum matching in Bip graphs

Disjoint paths problem

2 Properties of flows and cuts

3 Residual graph

4 Augmenting path

5 MaxFlow MinCut Thm

6 Ford Fulkerson alg

7 Maximum matching in Bip graphs

Augmenting paths

Let $\mathcal{N}=(V, E, c, s, t)$ and let f be a flow in \mathcal{N},

Max Flow and Min Cut

Properties of

flows and cuts

Residual graph

Augmenting path

MaxFlow
MinCut Thm
Ford
Fulkerson alg

- An augmenting path P is any simple path P in G_{f} from s to $t P$ might have forward and backward edges.
Maximum

Augmenting paths: increasing the flow

Augment (P, f)
$\mathrm{b}=$ bottleneck (P)
for each $(u, v) \in P$ do
if (u, v) is a forward edge then Increase $f(u, v)$ by b else Decrease $f(v, u)$ by b

Max Flow and Min Cut

Properties of

flows and cuts

Residual graph

Augmenting path

MaxFlow MinCut Thm

Ford

Fulkerson alg
Maximum
matching in
Bip graphis
Disjoint paths problem

return f

Augmenting paths: increasing the flow

Max Flow and Min Cut

Lemma

Let $f^{\prime}=$ Augment (P, f), then f^{\prime} is a flow in G.
Proof: We have to prove the two flow properties.

- Capacity law

■ Forward edges $(u, v) \in P$, we increase $f(u, v)$ by b, as $b \leq c(u, v)-f(u, v)$ then $f^{\prime}(u, v)=f(u, v)+b \leq c(u, v)$.

- Backward edges $(u, v) \in P$ we decrease $f(v, u)$ by b, as $b \leq f(v, u), f^{\prime}(v, u)=f(u, v)-b \geq 0$.

Augmenting paths: increasing the flow

Max Flow and Min Cut

Properties of flows and cuts

Residual graph

Augmenting path

MaxFlow MinCut Thm

Ford
Fulkerson alg
Maximum matching in
Bip graphis
Disjoint paths problem

Lemma

Let $f^{\prime}=\operatorname{Augment}(P, f)$, then f^{\prime} is a flow in G.
Proof: We have to prove the two flow properties.
■ Conservation law, $\forall v \in P \backslash\{s, t\}$ let u be the predecessor of v in P and let w be its successor.

- As the path is simple only the alterations due to (u, v) and (v, w) can change the flow that goes trough v. We have four cases:
- (u, v) and ($v, w)$ are backward edges, the flow in (v, u) and (w, v) is decremented by b. As one is incoming and the other outgoing the total balance is 0 .
- (u, v) and (v, w) are forward edges, the flow in (u, v) and (v, w) is incremented by b. As one is incoming and the other outgoing the total balance is 0 .

Augmenting paths: increasing the flow

Max Flow and Min Cut

Properties of flows and cuts

Residual graph

Augmenting path

MaxFlow MinCut Thm

Ford
Fulkerson alg
Maximum matching in
Bip graphis
Disjoint paths problem

Lemma

Let $f^{\prime}=\operatorname{Augment}(P, f)$, then f^{\prime} is a flow in G.
Proof: We have to prove the two flow properties.
■ Conservation law, $\forall v \in P \backslash\{s, t\}$ let u be the predecessor of v in P and let w be its successor.

- As the path is simple only the alterations due to (u, v) and (v, w) can change the flow that goes trough v. We have three cases:
- (u,v) is forward and (v, w) is backward, the flow in (u, v) is incremented by b and the flow in (w, v) is decremented by b. As both are incoming, the total balance is 0 .
- (u, v) is backward and (v, w) is forward, the flow in (v, w) is incremented by b and the flow in (v, u) is decremented by b. As both are outgoing, the total balance is 0 .

Augmenting paths: incrementing the flow

Lemma

Consider $f^{\prime}=\operatorname{Augment}(P, f)$, then $\left|f^{\prime}\right|>|f|$.
Proof: Let P be the augmenting path in G_{f}. The first edge $e \in P$ leaves s, and as G has no incoming edges to s, e is a forward edge. Moreover P is simple \Rightarrow never returns to s. Therefore, the value of the flow increases in edge e by b units.

1 Max Flow and Min Cut

Max Flow and Min Cut

Properties of flows and cuts

Residual graph

Augmenting path

MaxFlow MinCut Thm

Ford
Fulkerson alg
Maximum matching in Bip graphs

Disjoint paths problem

2 Properties of flows and cuts

3 Residual graph

4 Augmenting path

5 MaxFlow MinCut Thm

6 Ford Fulkerson alg

7 Maximum matching in Bip graphs

Max-Flow Min-Cut theorem

Ford and Fulkerson (1954); Peter Elias, Amiel Feinstein and Claude Shannon (1956) (in framework of information-theory).

Theorem

For any $\mathcal{N}(G, s, t, c)$, the maximum of the flow value is equal to the minimum of the (S, T)-cut capacities.

$$
\max _{f}\{|f|\}=\min _{(S, T)}\{c(S, T)\} .
$$

Max-Flow Min-Cut theorem:Proof

Proof:

Max Flow and Min Cut

Properties of
flows and cuts
Residual graph

Augmenting path

MaxFlow
MinCut Thm
Ford
Fulkerson alg
Maximum matching in Bip graphs

■ Let f^{*} be a flow with maximum value, $\left|f^{*}\right|=\max _{f}\{|f|\}$

- For any (s, t)-cut $(S, T), f^{*}(S, T) \leq c(S, T)$.

■ $G_{f *}$ has no augmenting path. So, if $S_{s}=\left\{v \in V \mid \exists s \leadsto v\right.$ in $\left.G_{f *}\right\}$, then $\left(S_{s}, V-\left\{S_{s}\right\}\right)$ is a (s, t)-cut.

- For $e=(u, v) \in E$ with $u \in S_{s}$ and $v \notin S_{s}$, $(u, v) \notin E\left(G_{f^{*}}\right.$, therefore $f^{*}(u, v)=c(u, v)$,
- Then, $c\left(S_{s}, V-\left\{S_{s}\right\}\right)=f^{*}\left(S_{s}, V-\left\{S_{s}\right\}\right)=\left|f^{*}\right|$
- $\left(S_{s}, V-\left\{S_{s}\right\}\right)$ is a minimum capacity (s, t)-cut in G.

1 Max Flow and Min Cut

Max Flow and Min Cut

Properties of flows and cuts

Residual graph

Augmenting path

MaxFlow
MinCut Thm
Ford
Fulkerson alg
Maximum matching in Bip graphs

Disjoint paths problem

2 Properties of flows and cuts

3 Residual graph

4 Augmenting path

5 MaxFlow MinCut Thm

6 Ford Fulkerson alg

7 Maximum matching in Bip graphs

Ford-Fulkerson algorithm

Max Flow and Min Cut

flows and cuts

Residual graph

Augmenting path

MaxFlow MinCut Thm

Ford
Fulkerson alg
Maximum matching in Bip graphs

Disjoint paths problem
L.R. Ford, D.R. Fulkerson:

Maximal flow through a network. Canadian J. of Math. 1956.

Ford-Fulkerson(G, s, t, c)
for all $(u, v) \in E$ set $f(u, v)=0$
$G_{f}=G$
while there is an (s, t) path P in G_{f} do
$f=\operatorname{Augment}\left(P, G_{f}\right)$
Compute G_{f}
return f

FF algorithm example

Max Flow and Min Cut

Properties of flows and cuts
Residual graph

Augmenting path

MaxFlow MinCut Thm

Ford

Fulkerson alg
Maximum matching in Bip graphs

Disjoint paths problem

FF example

Max Flow and

 Min CutProperties of

flows and cuts

Residual graph

Augmenting path

MaxFlow MinCut Thm

Ford

Fulkerson alg
Maximum matching in Bip graphs

Disjoint paths

FF example

Max Flow and

 Min CutProperties of

flows and cuts

Residual graph

Augmenting path

MaxFlow MinCut Thm

Ford

Fulkerson alg
Maximum matching in Bip graphs

Disjoint paths

FF example

Max Flow and Min Cut

Properties of flows and cuts

Residual graph

Augmenting path

MaxFlow MinCut Thm

Ford

Fulkerson alg
Maximum matching in Bip graphs

Disjoint paths problem

Flow with max value

$\{s\},\{a, b, t\}$ is a $\min (s, t)$-cut

Correctness of Ford-Fulkerson

Max Flow and
Min Cut

Fulkerson alg
Maximum matching in Bip graphs

Consequence of the Max-flow min-cut theorem.

Theorem

The flow returned by Ford-Fulkerson is the max-flow.

Networks with integer capacities

Max Flow and Min Cut

Properties of flows and cuts

Residual graph

Augmenting path

MaxFlow
MinCut Thm
Ford
Fulkerson alg
Maximum matching in
Bip graphs
Disjoint paths problem

Lemma (Integrality invariant)

Let $\mathcal{N}=(V, E, c, s, t)$ where $c: E \rightarrow \mathbb{Z}^{+}$. At every iteration of the Ford-Fulkerson algorithm, the flow values $f(e)$ are integers.

Proof: (induction)

- The statement is true for the initial flow (all zeroes).

■ Inductive Hypothesis: The statement is true after j iterations.

- At iteration $j+1$: As all residual capacities in G_{f} are integers, then bottleneck $(P, f) \in \mathbb{Z}$, for the augmenting path found in iteration $j+1$.
- Thus the augmented flow values are integers.

Networks with integer capacities

Max Flow and Min Cut

Properties of

flows and cuts

Residual graph

Augmenting path

MaxFlow
MinCut Thm
Ford
Fulkerson alg
Maximum matching in Bip graphs

Theorem (Integrality theorem)

Let $\mathcal{N}=(V, E, c, s, t)$ where $c: E \rightarrow \mathbb{Z}^{+}$. There exists a max-flow f^{*} such that $f^{*}(e)$ is an integer, for any $e \in E$.

Proof:
Since the algorithm terminates, the theorem follows from the integrality invariant lemma.

Networks with integer capacities: FF running time

Fulkerson alg

Lemma

Let C be the min cut capacity (=max. flow value), Ford-Fulkerson terminates after finding at most C augmenting paths.

Proof: The value of the flow increases by ≥ 1 after each augmentation.

Networks with integer capacities: FF running time

- The number of iterations is $\leq C$. At each iteration:

■ Constructing G_{f}, with $E\left(G_{f}\right) \leq 2 m$, takes $O(m)$ time.
■ $O(n+m)$ time to find an augmenting path, or deciding that it does not exist.

- Total running time is $O(C(n+m))=O(C m)$

■ Is that polynomic? No, only pseudopolynomic

Networks with integer capacities: FF running time

The number of iterations of Ford-Fulkerson could be $\Theta(C)$

Max Flow and Min Cut

Properties of

flows and cuts

Residual graph

Augmenting path

MaxFlow
MinCut Thm
Ford
Fulkerson alg

Ford-Fulkerson can alternate between the two long paths, and require $2 M$ iterations. Taking $M=10^{10}$, FF on a graph with 4 vertices can take time 210^{10}.

1 Max Flow and Min Cut

Max Flow and Min Cut

Properties of flows and cuts

Residual graph

Augmenting path

MaxFlow MinCut Thm

Ford
Fulkerson alg
Maximum matching in Bip graphs

Disjoint paths problem

2 Properties of flows and cuts

3 Residual graph

4 Augmenting path

5 MaxFlow MinCut Thm

6 Ford Fulkerson alg

7 Maximum matching in Bip graphs

Maximum Matching problem

Given an undirected graph $G=(V, E)$ a subset of edges

Max Flow and Min Cut

Properties of

flows and cuts

Residual graph

Augmenting path

MaxFlow MinCut Thm

Ford
Fulkerson alg
Maximum matching in Bip graphs $M \subseteq E$ is a matching if each node appears at most in one edge in M (a node may not appear at all).

Maximum Matching problem:
Given a graph G, find a matching with maximum cardinality.

Maximum matching in bipartite graphs

Max Flow and Min Cut

Properties of

flows and cuts

Residual graph

Augmenting path

MaxFlow MinCut Thm

Ford

Fulkerson alg
Maximum matching in Bip graphs

A graph $G=(V, E)$ is bipartite if there is a partition of V in L and $R,(L \cup R=V$ and $L \cap R=\emptyset)$, such that every $e \in E$ connects a vertex in L with a vertex in R.

We want to solve the Maximum Matching problem on bipartite graphs

Maximum Matching: Network formulation

From $G=(L \cup R, E)$ construct $\mathcal{N}=(\hat{V}, \hat{E}, c, s, t)$:

- Add vertices s and $t: \hat{V}=L \cup R \cup\{s, t\}$.

■ Add directed edges $s \rightarrow L$ with capacity 1 . Add directed edges $R \rightarrow t$ with capacity 1 .

- Direct the edges E from L to R, and give them capacity ∞.
- $\hat{E}=\{s \rightarrow L\} \cup E \cup\{R \rightarrow t\}$.

Maximum matching algorithm: Analysis

Max Flow and Min Cut

Properties of

flows and cuts

Residual graph

Augmenting path

MaxFlow MinCut Thm

Ford

Fulkerson alg
Maximum matching in Bip graphs

Theorem

Max flow in $\mathcal{N}=$ Max bipartite matching in G.
Proof Matching as flows
Let M be a matching in G with k-edges, consider the flow f that sends 1 unit along each one of the k paths,

$$
s \rightarrow u \rightarrow v \rightarrow t, \text { for }(u, v) \in M
$$

As M is a matching all these paths are disjoint, so f is a flow and has value k.

Maximum matching algorithm: Analysis

Flows as matchings

- Consider an integral flow f in \hat{G}. Therefore, for any edge e, the flow is either 0 or 1 .
- Consider the cut $C=(\{s\} \cup L, R \cup\{t\})$ in \hat{G}.
- Let M be the set of edges in the cut C with flow $=1$, then $|M|=|f|$.
■ Each node in L is in at most one $e \in M$ and every node in R is in at most one head of an $e \in F$
- Therefore, M is a matching in G with $|M| \leq|f|$

Ford

Fulkerson alg
Maximum matching in Bip graphs

Maximum matching algorithm: Analysis

As \mathcal{N} has integer capacities there is an integral maximum flow f^{*}, the associated matching is a maximum matching.

Max Flow and
Min Cut
Properties of
flows and cuts
Residual
graph
Augmenting
path
MaxFlow
MinCut Thm
Ford
Fulkerson alg

Maximum matching in Bip graphs

Maximum matching algorithm: Analysis

Max Flow and Min Cut

Properties of

flows and cuts

Residual graph

Augmenting path

MaxFlow
MinCut Thm
Ford
Fulkerson alg
Maximum matching in Bip graphs

What is the cost of the algorithm?
■ The bipartite graph, has n vertices and m edges. The capacities are integers. We need an integral solution.

- The algorithm: (1) constructs \mathcal{N}, (2) runs FF on \mathcal{N} to obtain a maxflow f, (3) from f obtain a maximum matching M.
■ \mathcal{N} has $n+2$ vertices and $m+2 n$ edge, (1) takes $O(n+m)$
- The maximum value of a flow in \mathcal{N} is at most n, (2) takes time $O(|f|(n+m))=O(n(n+m))$
■ (3) can be done in time $O(n+m)$.
So, the cost is $O(n(n+m))$.

1 Max Flow and Min Cut

Max Flow and Min Cut

Properties of flows and cuts

Residual graph

Augmenting path

MaxFlow MinCut Thm

Ford
Fulkerson alg
Maximum matching in Bip graphs

Disjoint paths problem

2 Properties of flows and cuts

3 Residual graph

4 Augmenting path

5 MaxFlow MinCut Thm

6 Ford Fulkerson alg

7 Maximum matching in Bip graphs

Disjoint Path problem

flows and cuts

Residual graph

Augmenting path

MaxFlow MinCut Thm

Ford
Fulkerson alg
Maximum matching in Bip graphs

Given a digraph $G=(V, E)$ and two vertices $s, t \in V$, a set of paths is edge-disjoint if their edges are disjoint (although they might share some vertex)

Disjoint Path problem: Given a digraph $G=(V, E)$ and two vertices $s, t \in V$, find a set of $s \rightsquigarrow t$ edge-disjoint paths of maximum cardinality

Disjoint Path: Max flow formulation

Max Flow and Min Cut

Properties of flows and cuts

Residual graph

Augmenting path

MaxFlow MinCut Thm

Ford

Fulkerson alg
Maximum matching in Bip graphs

Disjoint paths problem

Thinking in terms of flow a path from s to t can be seen as a way of transporting a unit of flow.
We construct a network \mathcal{N} assigning unit capacity to every edge.

Disjoint Path: Max flow formulation

Max Flow and Min Cut

Properties of

flows and cuts

Residual graph

Augmenting path

MaxFlow MinCut Thm

Ford

Fulkerson alg
Maximum
matching in
Bip graphis
Disjoint paths problem

Thinking in terms of flow a path from s to t can be seen as a way of transporting a unit of flow.
We construct a network \mathcal{N} assigning unit capacity to every edge
We solve MaxFlow for \mathcal{N}.

Disjoint Path: Max flow formulation

Thinking in terms of flow a path from s to t can be seen as a way of transporting a unit of flow.
We construct a network \mathcal{N} assigning unit capacity to every edge

Theorem

The max number of edge disjoint paths $s \leadsto t$ is equal to the max flow value

Disjoint Path: Proof of the Theorem

Proof.

Max Flow and Min Cut

Properties of

flows and cuts

Residual graph

Augmenting path

MaxFlow MinCut Thm

Ford
Fulkerson alg
Maximum matching in Bip graphis

Disjoint paths problem

Number of disjoints paths \leq max flow
If we have k edge-disjoints paths $s \leadsto t$ in G then making $f(e)=1$ for each e in a path, we get a flow with $|f|=k$

Disjoint Path: Proof of the Theorem

Max Flow and Min Cut

Properties of flows and cuts

Residual
graph
Augmenting path

MaxFlow MinCut Thm

Ford
Fulkerson alg
Maximum matching in Bip graphis

Disjoint paths problem

Number of disjoints paths \geq max flow
■ If the max flow value is k, there exists a 0-1 flow f^{*} with value k.

- Consider the graph $G^{*}=\left(V, E^{\prime}\right)$ where E^{\prime} is formed by all edges e with $f(e)=1$.
■ We repeatedly compute a $s \rightsquigarrow t$ simple path in G^{*}, and remove its edges from G^{*}.
- Each time that we remove a path, the value of the flow in the network is reduced by one, so we can apply the process k times.
- None of the paths share an edge, so we get k disjoint paths.

End Proof

Disjoint Path: Max flow + path extraction algorithm

Algorithm

Max Flow and Min Cut

Properties of

flows and cuts

Residual graph

Augmenting path

MaxFlow MinCut Thm

Ford

Fulkerson alg
Maximum
matching in
Bip graphis
Disjoint paths problem

1 Construct the network \mathcal{N} assigning unit capacity to every edge
2 Solve MaxFlow for \mathcal{N}
3 Extract the set of disjoint paths on the graph restricted to edges with flow >0

Disjoint Path: Max flow + path extraction algorithm

Algorithm

1 Construct the network \mathcal{N} assigning unit capacity to every edge

2 Solve MaxFlow for \mathcal{N}
3 Extract the set of disjoint paths on the graph restricted to edges with flow >0

Disjoint paths algorithm: Analysis

What is the cost of the algorithm?

Max Flow and Min Cut

Properties of flows and cuts

Residual graph

Augmenting path

MaxFlow MinCut Thm

Ford
Fulkerson alg
Maximum matching in Bip graphis

Disjoint paths problem

- The graph, has n vertices and m edges. The capacities are integers. We need an integral solution.
■ The algorithm: (1) constructs \mathcal{N}, (2) runs FF on \mathcal{N} to obtain a max flow f, (3) from f obtains $|f|$ edge disjoint paths.
■ \mathcal{N} has n vertices and m edges, (1) takes $O(n+m)$
- The maximum value of a flow in \mathcal{N} is at most n, (2) takes time $O(|f|(n+m))=O(n(n+m))$
- (3) can be done in time $O(n+m)$ per path, i.e., $O(|f|(n+m))$.
So the cost is $O(n(n+m))$.

VERTEX DISJOINT PATHS

Can we do something similar to get the maximum number of vertex disjoint paths?

Max Flow and

Min Cut

Properties of

flows and cuts

Residual
graph
Augmenting path

MaxFlow MinCut Thm

Ford
Fulkerson alg
Maximum
matching in
Bip graphs
Disjoint paths problem

The case of undirected graphs

If we have an undirected graph, with two distinguised nodes u, v, how would you apply the max flow formulation to solve the problem of finding the max number of disjoint paths between u and v ?

The case of undirected graphs

Max Flow and Min Cut

Properties of
flows and cuts
Residual
graph
Augmenting
path
MaxFlow
MinCut Thm
Ford
Fulkerson alg
Maximum
matching in
Bip graphs
Disjoint paths problem

