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Myriad of applications

Finding the shortest paths between 2 locations (Google
maps, etc.)
Internet router protocols: OSPF (Open Shortest Path
First) is used to find a shortest path to interchange
packages between servers (IP)
Traffic information systems
Routing in VSLI
etc . . .
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Distance between two points

Distance is usually though as a pure geometric notion, often
the Euclidean distance L2
We use measures of distance that are not geometric: energy
consumption, traveling time, payments, costs, etc..



Distances and
shortest paths

Applications

Definitions

Properties

SP problems

Single source

Dijkstra’s

Bellman-Ford

DAGs

All pairs

Floyd-Warshall

Johnson’s

Paths and weights

Given a digraph G = (V ,E ) with edge’s weights w : E → R.

A path is a sequence of vertices p = (v0, . . . , vk) so that
(vi , vi+1) ∈ E , for 0 ≤ i < k.

A path p = (v0, . . . , vk) has length ℓ(p) = k and weight
w(p) =

∑k−1
i=0 w(vi , vi+1).

v0 v1 v2 v3 v4
2 −1 −5 3

This path has length 4 and weight -1.

For a path path p = {u, . . . , v}, we write u ⇝p v to say
that it starts at u and ends at v .

Note that the definition of path allows repeated vertices
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Distance

We want to associate a distance value δ(u, v) to each pair
of vertices u, v in a weighted digraph (G ,w), measuring
the minimum weight over the weights of the paths going
from u to v .

We have two cases:

{p|u ⇝p v} = ∅, i.e., there is no path from u to v , in such
a case we define δ(u, v) = +∞.
{p|u ⇝p v} ≠ ∅. In this case, if min{w(p)|u ⇝p v} exists,
we define the distance as

δ(u, v) = min
p
{w(p)|u ⇝p v}

otherwise, the distance cannot be defined.
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{p|u ⇝p v} ≠ ∅. In this case, if min{w(p)|u ⇝p v} exists,
we define the distance as

δ(u, v) = min
p
{w(p)|u ⇝p v}

otherwise, the distance cannot be defined.



Distances and
shortest paths

Applications

Definitions

Properties

SP problems

Single source

Dijkstra’s

Bellman-Ford

DAGs

All pairs

Floyd-Warshall

Johnson’s

Distance

We want to associate a distance value δ(u, v) to each pair
of vertices u, v in a weighted digraph (G ,w), measuring
the minimum weight over the weights of the paths going
from u to v .

We have two cases:

{p|u ⇝p v} = ∅, i.e., there is no path from u to v , in such
a case we define δ(u, v) = +∞.
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Distances: examples

v0 v1 v2 v3 v4 v7

v5 v6

v9

2 −1

−2

24

−1

2

−5 3 3

δ(v4, v7) =

3 δ(v4, v3) = +∞ δ(v3, v2) = 5 δ(v0, v4) = -1
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Distances: examples

v0 v1 v2 v3 v4 v7

v5 v6

v9

2 −1

−2

−24

−1

2

−5 3 3

δ(v4, v7)

= 3 δ(v4, v3) = +∞ δ(v3, v2) cannot be defined
w(v3, v9, v1, v2) = 1 w(v3, v9, v1, v2, v3, v9, v1, v2) = −3
w(v3, v9, v1, v2, v3, v9, v1, v2, v3, v9, v1, v2) = −7
w(v3, v9, v1, v2, v3, v9, v1, v2, v3, v9, v1, v2, v3, v9, v1, v2) = −11
. . .
The cycle v1, v2, v3, v9, v1 has weight -4!



Distances and
shortest paths

Applications

Definitions

Properties

SP problems

Single source

Dijkstra’s

Bellman-Ford

DAGs

All pairs

Floyd-Warshall

Johnson’s

Distances: examples

v0 v1 v2 v3 v4 v7

v5 v6

v9

2 −1

−2

−24

−1

2

−5 3 3

δ(v4, v7) = 3

δ(v4, v3) = +∞ δ(v3, v2) cannot be defined
w(v3, v9, v1, v2) = 1 w(v3, v9, v1, v2, v3, v9, v1, v2) = −3
w(v3, v9, v1, v2, v3, v9, v1, v2, v3, v9, v1, v2) = −7
w(v3, v9, v1, v2, v3, v9, v1, v2, v3, v9, v1, v2, v3, v9, v1, v2) = −11
. . .
The cycle v1, v2, v3, v9, v1 has weight -4!



Distances and
shortest paths

Applications

Definitions

Properties

SP problems

Single source

Dijkstra’s

Bellman-Ford

DAGs

All pairs

Floyd-Warshall

Johnson’s

Distances: examples

v0 v1 v2 v3 v4 v7

v5 v6

v9

2 −1

−2

−24

−1

2

−5 3 3

δ(v4, v7) = 3 δ(v4, v3)

= +∞ δ(v3, v2) cannot be defined
w(v3, v9, v1, v2) = 1 w(v3, v9, v1, v2, v3, v9, v1, v2) = −3
w(v3, v9, v1, v2, v3, v9, v1, v2, v3, v9, v1, v2) = −7
w(v3, v9, v1, v2, v3, v9, v1, v2, v3, v9, v1, v2, v3, v9, v1, v2) = −11
. . .
The cycle v1, v2, v3, v9, v1 has weight -4!



Distances and
shortest paths

Applications

Definitions

Properties

SP problems

Single source

Dijkstra’s

Bellman-Ford

DAGs

All pairs

Floyd-Warshall

Johnson’s

Distances: examples

v0 v1 v2 v3 v4 v7

v5 v6

v9

2 −1

−2

−24

−1

2

−5 3 3

δ(v4, v7) = 3 δ(v4, v3) = +∞

δ(v3, v2) cannot be defined
w(v3, v9, v1, v2) = 1 w(v3, v9, v1, v2, v3, v9, v1, v2) = −3
w(v3, v9, v1, v2, v3, v9, v1, v2, v3, v9, v1, v2) = −7
w(v3, v9, v1, v2, v3, v9, v1, v2, v3, v9, v1, v2, v3, v9, v1, v2) = −11
. . .
The cycle v1, v2, v3, v9, v1 has weight -4!



Distances and
shortest paths

Applications

Definitions

Properties

SP problems

Single source

Dijkstra’s

Bellman-Ford

DAGs

All pairs

Floyd-Warshall

Johnson’s

Distances: examples

v0 v1 v2 v3 v4 v7

v5 v6

v9

2 −1

−2

−24

−1

2

−5 3 3

δ(v4, v7) = 3 δ(v4, v3) = +∞ δ(v3, v2)

cannot be defined
w(v3, v9, v1, v2) = 1 w(v3, v9, v1, v2, v3, v9, v1, v2) = −3
w(v3, v9, v1, v2, v3, v9, v1, v2, v3, v9, v1, v2) = −7
w(v3, v9, v1, v2, v3, v9, v1, v2, v3, v9, v1, v2, v3, v9, v1, v2) = −11
. . .
The cycle v1, v2, v3, v9, v1 has weight -4!



Distances and
shortest paths

Applications

Definitions

Properties

SP problems

Single source

Dijkstra’s

Bellman-Ford

DAGs

All pairs

Floyd-Warshall

Johnson’s

Distances: examples

v0 v1 v2 v3 v4 v7

v5 v6

v9

2 −1

−2

−24

−1

2

−5 3 3

δ(v4, v7) = 3 δ(v4, v3) = +∞ δ(v3, v2) cannot be defined

w(v3, v9, v1, v2) = 1 w(v3, v9, v1, v2, v3, v9, v1, v2) = −3
w(v3, v9, v1, v2, v3, v9, v1, v2, v3, v9, v1, v2) = −7
w(v3, v9, v1, v2, v3, v9, v1, v2, v3, v9, v1, v2, v3, v9, v1, v2) = −11
. . .
The cycle v1, v2, v3, v9, v1 has weight -4!



Distances and
shortest paths

Applications

Definitions

Properties

SP problems

Single source

Dijkstra’s

Bellman-Ford

DAGs

All pairs

Floyd-Warshall

Johnson’s

Distances: examples

v0 v1 v2 v3 v4 v7

v5 v6

v9

2 −1

−2

−24

−1

2

−5 3 3

δ(v4, v7) = 3 δ(v4, v3) = +∞ δ(v3, v2) cannot be defined
w(v3, v9, v1, v2) = 1

w(v3, v9, v1, v2, v3, v9, v1, v2) = −3
w(v3, v9, v1, v2, v3, v9, v1, v2, v3, v9, v1, v2) = −7
w(v3, v9, v1, v2, v3, v9, v1, v2, v3, v9, v1, v2, v3, v9, v1, v2) = −11
. . .
The cycle v1, v2, v3, v9, v1 has weight -4!



Distances and
shortest paths

Applications

Definitions

Properties

SP problems

Single source

Dijkstra’s

Bellman-Ford

DAGs

All pairs

Floyd-Warshall

Johnson’s

Distances: examples

v0 v1 v2 v3 v4 v7

v5 v6

v9

2 −1

−2

−24

−1

2

−5 3 3

δ(v4, v7) = 3 δ(v4, v3) = +∞ δ(v3, v2) cannot be defined
w(v3, v9, v1, v2) = 1 w(v3, v9, v1, v2, v3, v9, v1, v2) = −3

w(v3, v9, v1, v2, v3, v9, v1, v2, v3, v9, v1, v2) = −7
w(v3, v9, v1, v2, v3, v9, v1, v2, v3, v9, v1, v2, v3, v9, v1, v2) = −11
. . .
The cycle v1, v2, v3, v9, v1 has weight -4!



Distances and
shortest paths

Applications

Definitions

Properties

SP problems

Single source

Dijkstra’s

Bellman-Ford

DAGs

All pairs

Floyd-Warshall

Johnson’s

Distances: examples

v0 v1 v2 v3 v4 v7

v5 v6

v9

2 −1

−2

−24

−1

2

−5 3 3

δ(v4, v7) = 3 δ(v4, v3) = +∞ δ(v3, v2) cannot be defined
w(v3, v9, v1, v2) = 1 w(v3, v9, v1, v2, v3, v9, v1, v2) = −3
w(v3, v9, v1, v2, v3, v9, v1, v2, v3, v9, v1, v2) = −7

w(v3, v9, v1, v2, v3, v9, v1, v2, v3, v9, v1, v2, v3, v9, v1, v2) = −11
. . .
The cycle v1, v2, v3, v9, v1 has weight -4!



Distances and
shortest paths

Applications

Definitions

Properties

SP problems

Single source

Dijkstra’s

Bellman-Ford

DAGs

All pairs

Floyd-Warshall

Johnson’s

Distances: examples

v0 v1 v2 v3 v4 v7

v5 v6

v9

2 −1

−2

−24

−1

2

−5 3 3

δ(v4, v7) = 3 δ(v4, v3) = +∞ δ(v3, v2) cannot be defined
w(v3, v9, v1, v2) = 1 w(v3, v9, v1, v2, v3, v9, v1, v2) = −3
w(v3, v9, v1, v2, v3, v9, v1, v2, v3, v9, v1, v2) = −7
w(v3, v9, v1, v2, v3, v9, v1, v2, v3, v9, v1, v2, v3, v9, v1, v2) = −11
. . .

The cycle v1, v2, v3, v9, v1 has weight -4!



Distances and
shortest paths

Applications

Definitions

Properties

SP problems

Single source

Dijkstra’s

Bellman-Ford

DAGs

All pairs

Floyd-Warshall

Johnson’s

Distances: examples

v0 v1 v2 v3 v4 v7

v5 v6

v9

2 −1

−2

−24

−1

2

−5 3 3

δ(v4, v7) = 3 δ(v4, v3) = +∞ δ(v3, v2) cannot be defined
w(v3, v9, v1, v2) = 1 w(v3, v9, v1, v2, v3, v9, v1, v2) = −3
w(v3, v9, v1, v2, v3, v9, v1, v2, v3, v9, v1, v2) = −7
w(v3, v9, v1, v2, v3, v9, v1, v2, v3, v9, v1, v2, v3, v9, v1, v2) = −11
. . .
The cycle v1, v2, v3, v9, v1 has weight -4!



Distances and
shortest paths

Applications

Definitions

Properties

SP problems

Single source

Dijkstra’s

Bellman-Ford

DAGs

All pairs

Floyd-Warshall

Johnson’s

When the distance cannot be defined?

A cycle is a path that starts and ends at the same vertex.
A negative weight cycle is a cycle c having w(c) < 0

Theorem

Let G = (V ,E ,w) be a weighted digraph.
A distance among all pairs of vertices u, v ∈ V (G ) can be
defined iff G has no negative weight cycles.

Proof

If δ(u, v) can be defined, for every u ∈ V , δ(u, u) ≥ 0, so
any cycle has non negative weight.

If G has a negative weight cycle C , the distance among
pairs of vertices in C cannot be defined.
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A cycle is a path that starts and ends at the same vertex.
A negative weight cycle is a cycle c having w(c) < 0

Theorem

Let G = (V ,E ,w) be a weighted digraph.
A distance among all pairs of vertices u, v ∈ V (G ) can be
defined iff G has no negative weight cycles.

Proof

If δ(u, v) can be defined, for every u ∈ V , δ(u, u) ≥ 0, so
any cycle has non negative weight.

If G has a negative weight cycle C , the distance among
pairs of vertices in C cannot be defined.
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When the distance cannot be defined?

The previous theorem states conditions under which a
distance measure for all pairs cannot be defined.

It might be possible to have a digraph with a negative
weight cycle, but that distances among some pairs of
vertices can be defined, even if not for all pairs.
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Shortest paths

For u, v ∈ V , such that δ(u, v) is defined and
δ(u, v) < +∞,

a shortest path from u to v is a path p, starting at u and
ending at v , having w(p) = δ(u, v).

v0 v1 v2 v3 v4

v5 v6

v9

2 −1

−2

24

−1

2

−5 3

δ(v0, v4) = −1
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Shortest paths

For u, v ∈ V , such that δ(u, v) is defined and
δ(u, v) < +∞,

a shortest path from u to v is a path p, starting at u and
ending at v , having w(p) = δ(u, v).

v0 v1 v2 v3 v4

v5 v6

v9

2 −1

−2

24

−1

2

−5 3

δ(v0, v4) = −1

There are infinite shortest paths v0 ⇝ v4
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Undirected graphs and unweighted graphs

If G is undirected, we consider every edge as doubly
directed and assign the same weight to both directions.

If the graph or digraph is unweighted, we assign to each
edge a weight of 1.
In this case the weight of a path coincides with its length.
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Undirected graphs and unweighted graphs

If G is undirected, we consider every edge as doubly
directed and assign the same weight to both directions.

If the graph or digraph is unweighted, we assign to each
edge a weight of 1.
In this case the weight of a path coincides with its length.
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Optimal substructure of shortest path

Given G = (V ,E ,w), for any shortest path p : u ⇝ v and any
pair of vertices i , j in p, the sub-path p′ = i ⇝ j of p is a
shortest path, i.e., w(p′) = δ(i , j).

u v

i j
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Triangle Inequality

δ(u, v) is the shortest distance from u to v , i.e., the shortest
path u ⇝ v has weight ≤ that the weight of any other path
from u and v .,

Theorem

Let G = (V ,E ,w) be such that, for each u, v ∈ V , δ(u, v) can
be defined. For u, v , z ∈ V (G ), δ(u, v) ≤ δ(u, z) + δ(z , v).

u v

z

u ⇝ z ⇝ v is a path from u to v .



Distances and
shortest paths

Applications

Definitions

Properties

SP problems

Single source

Dijkstra’s

Bellman-Ford

DAGs

All pairs

Floyd-Warshall

Johnson’s

Triangle Inequality

δ(u, v) is the shortest distance from u to v , i.e., the shortest
path u ⇝ v has weight ≤ that the weight of any other path
from u and v .,

Theorem

Let G = (V ,E ,w) be such that, for each u, v ∈ V , δ(u, v) can
be defined. For u, v , z ∈ V (G ), δ(u, v) ≤ δ(u, z) + δ(z , v).

u v

z

u ⇝ z ⇝ v is a path from u to v .
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Triangle Inequality

δ(u, v) is the shortest distance from u to v , i.e., the shortest
path u ⇝ v has weight ≤ that the weight of any other path
from u and v .,

Theorem

Let G = (V ,E ,w) be such that, for each u, v ∈ V , δ(u, v) can
be defined. For u, v , z ∈ V (G ), δ(u, v) ≤ δ(u, z) + δ(z , v).

u v

z

u ⇝ z ⇝ v is a path from u to v .
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Shortest Path Tree

Given G = (V ,E ,w) and a distinguished s ∈ V , a shortest
path tree is a directed sub-tree, Ts = (V ′,E

′
), of G , s.t.

Ts is rooted at s,

V ′ is the set of vertices in G reachable from s,

For v ∈ V ′ the path s ⇝ v in Ts has weight δ(s, v).

s

a b

d c

f

−1

1

2
3 1

2

−2

3

2

2

1
s

a b

d c

f

−1

1

2
3 1

2

−2

3

2

2

1
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Shortest paths problems

Single source shortest path: Given G = (V ,E ,w) and s ∈ V ,
find a shortest path from s to each other vertex in G , if it
exists.
To solve this problem we present two algorithms strategies,

Dijkstra’s algorithm: a very efficient greedy algorithm
which only works for positive weights. You should know it.

Bellman-Ford algorithm, devised by several independent
teams Bellman, Ford, Moore, Shimbel. It works for general
weights and detects whether the distance can be defined.

Both algorithms assume that the input graph is given by
adjacency lists.
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Shortest paths problems

All pairs shortest paths: Given G = (V ,E ,w) without negative
weight cycles, for each u, v ∈ V (G ), find a shortest path from
u to v if it exists.

To solve this problem we present two algorithms strategies,

Floyd-Warshall algorithm, devised by several independent
teams Roy, Floyd, Warshall. Uses dynamic programming
and takes as input the weighted adjacency matrix of G .

Johnson’s algorithm: an efficient algorithm for sparse
graphs.



Distances and
shortest paths

Applications

Definitions

Properties

SP problems

Single source

Dijkstra’s

Bellman-Ford

DAGs

All pairs

Floyd-Warshall

Johnson’s

1 Distances and shortest paths

2 Single source

3 All pairs
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Single source shortest path (SSSP)

Given G = (V ,E ,w) and s ∈ V , compute δ(s, v), for
v ∈ V − {s}.

The algorithms maintains, for v ∈ V , an overestimate d [v ]
of δ(s, v) and a candidate predecessor p[v ] on a shortest
path from s to v .

Initially, d [v ] = +∞, for v ∈ V − {s}, d [s] = 0 and
p[v ] = v .

Repeatedly improve estimates towards the goal
d [v ] = δ(s, v)

On selected (u, v) ∈ E apply the Relax operation
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Relaxing and edge

Relax(u, v)
if d [v ] > d [u] + w(u, v)
then

d [v ] = d [u] + w(u, v)
p[v ] = u

v

w(u,v)s

d[v]

d[u] u
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Relaxing and edge

Relax: invariant

d [v ] ≥ δ(s, v) and, if d [v ] < +∞, p[v ] is the predecessor of v
in a path from s to v with weight d [v ], .

Let d be the values before executing Relax and d ′ the ones
after executing it.

δ(s, v) ≤ δ(s, u) + w(u, v) ≤ d [u] + w(u, v)

δ(s, v) ≤ d [v ]

d ′[v ] = min{d [v ], d [u] + w(u, v)} ≥ δ(s, v).
The second part also follows from this formula.
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Relaxing and edge

Relax: invariant

d [v ] ≥ δ(s, v) and, if d [v ] < +∞, p[v ] is the predecessor of v
in a path from s to v with weight d [v ], .

Let d be the values before executing Relax and d ′ the ones
after executing it.

δ(s, v) ≤ δ(s, u) + w(u, v) ≤ d [u] + w(u, v)

δ(s, v) ≤ d [v ]

d ′[v ] = min{d [v ], d [u] + w(u, v)} ≥ δ(s, v).
The second part also follows from this formula.
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SSSP: Dijkstra

Edsger .W.Dijkstra, ”A note on two
problems in connexion with graphs”. Num.
Mathematik 1, (1959)

Works only when w(e) ≥ 0.

Greedy algorithm, at each step for a vertex v , d [v ]
becames δ(s, v) with correct distance

Relax edges out of the actual vertex.

Uses a priority queue Q
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Recall: Dijkstra SSSP

Dijkstra(G ,w , s)
Set d [u] = +∞ and p[u] = u, u ∈ V .
d [s] = 0
S = ∅, Insert all the vertices in Q with key d
while Q ̸= ∅ do
u =EXT-MIN(Q)
S = S ∪ {u}
for all v ∈ Adj [u] and v /∈ S do
Relax(u, v)
change, if needed, the key of v in Q



Distances and
shortest paths

Applications

Definitions

Properties

SP problems

Single source

Dijkstra’s

Bellman-Ford

DAGs

All pairs

Floyd-Warshall

Johnson’s

Recall: Dijkstra SSSP

Theorem

Consider the set S at any point in the algorithm execution. For
each u ∈ S , d [u] = δ(s, u)

Proof
The proof is by induction on the size of |S |.
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Recall: Dijkstra SSSP (correctness)

For |S | = 1, S = {s} and d [s] = 0 = δ(s, s).

Assume that the statement is true for |S | = k and that
the next vertex selected by the algorithm in the
ExtractMin is v .

Consider a s, v shortest path P, let y be the first vertex in
P that does not belong to S and let x ∈ S be the node
just before y in P.
By induction hypothesis d [x ] = δ(s, x)
As P is a shortest path, the edge (x , y) has been relaxed
with d [x ] = δ(s, x), and w ≥ 0, we get
δ(s, y) = d [y ] = d [x ] + w(x , y) ≤ δ(s, v).
As the algorithm selected v , d [v ] ≤ d [y ], therefore
d [v ] = δ(s, v).
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Recall: Dijkstra SSSP

Theorem

Using a priority queue Dijkstra’s algorithm can be implemented
on a graph with n nodes and m edges to run in O(m) time plus
the time for n ExtractMin and m ChangeKey operations.

Q implementation Worst-time complexity

Heap O(m lg n)

Fibonacci heap O(m + n lg n)
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SSSP: Bellman-Ford

Richard E. Bellman
(1958)
Lester R. Ford Jr.
(1956)
Edward F. Moore
(1957)
Alfonso Shimbel (1955)
(Shimbel matrices)

The BF algorithm works for graphs with general weights.

It detects the existence of negative cycles.
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Bellman Ford Algorithm (BF)

BF (G ,w , s)
For v ∈ V , d [v ] = +∞, p[v ] = v
d [s] = 0
for i = 1 to n − 1 do

for all (u, v) ∈ E do
Relax(u, v)

for all (u, v) ∈ E do
if d [v ] > d [u] + w(u, v) then

return Negative-weight cycle
return d , p
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BF Algorithm: Example

s

a

b

c

−1 2

−1−1

s a b c
0 0 +∞ +∞ +∞

1 0 −1 +∞ +∞
2 0 −1 1 +∞
3 0 −1 1 0

d [s] = 0 but d [c] + w(c , s) = −1
BF reports Negative cycle
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s a b c
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2 0 −1 1 +∞
3 0 −1 1 0

d [s] = 0 but d [c] + w(c , s) = −1
BF reports Negative cycle
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BF Algorithm: Example

s

a b

cd

−1

8
−2

3

−3

3

s a b c d
0 0 +∞ +∞ +∞ +∞

1 0 −1 +∞ +∞ 8
2 0 −1 +∞ 11 −3
3 0 −1 8 0 −3
4 0 −1 −3 0 −3

d verifies the triangle inequality
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−3

3
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2 0 −1 +∞ 11 −3
3 0 −1 8 0 −3
4 0 −1 −3 0 −3
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Complexity of BF

BF (G ,w , s)
Initialize ∀v ̸= s, d [v ] = ∞, p[v ] = v
Initialize d [s] = 0
for i = 1 to n − 1 do

for all (u, v) ∈ E do
Relax(u, v)

for all (u, v) ∈ E do
if d [v ] > d [u] + w(u, v) then

return Negative-weight cycle
return d , p

O(nm)
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Correctness of BF

Lemma

Consider the vector d computed by BF at the end of the i-th
iteration. For v ∈ V , d [v ] ≤ w(P) for every path P such that
s ⇝P v and ℓ(P) ≤ i .

Proof (Induction on i)
Before the i-th iteration, d [v ] ≤ min{w(p)} over all paths p
with at most i − 1 edges.

The i-th iteration considers all paths
with ≤ i edges reaching v , when
relaxing the last edge in such paths.

2

edges

s v

at most i−1
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Correctness of BF

Lemma

Consider the vector d computed by BF at the end of the i-th
iteration. For v ∈ V , d [v ] ≤ w(P) for every path P such that
s ⇝P v and ℓ(P) ≤ i .

Proof (Induction on i)
Before the i-th iteration, d [v ] ≤ min{w(p)} over all paths p
with at most i − 1 edges.

The i-th iteration considers all paths
with ≤ i edges reaching v , when
relaxing the last edge in such paths.

2

edges

s v

at most i−1
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Correctness of BF

Theorem

If (G ,w) has no negative weight cycles, BF computes correctly
δ(s, v).

Proof

Without negative-weight cycles, shortest paths are always
simple (no repeated vertices), i.e., at most n vertices and
n − 1 edges.

By the previous lemma, the n − 1 iterations yield
d [v ] ≤ δ(s, v).

By the invariant of the relaxation algorithm d [v ] ≥ δ(s, v).
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Correctness of BF

Theorem

If (G ,w) has no negative weight cycles, BF computes correctly
δ(s, v).

Proof

Without negative-weight cycles, shortest paths are always
simple (no repeated vertices), i.e., at most n vertices and
n − 1 edges.

By the previous lemma, the n − 1 iterations yield
d [v ] ≤ δ(s, v).

By the invariant of the relaxation algorithm d [v ] ≥ δ(s, v).
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Correctness of BF

Theorem

BF reports “negative-weight cycle” iff there exists a negative
weight cycle in G reachable from s.

Proof

Without negative-weight cycles in G , the previous theorem
implies d [v ] = δ(s, v), and by triangle inequality
d [v ] ≤ δ(s, u) + w(u, v), so BF won’t report a negative
cycle if it doesn’t exists.

If there is a negative-weight cycle, then one of its edges
can be relaxed, so BF will report correctly.
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Correctness of BF

Theorem

BF reports “negative-weight cycle” iff there exists a negative
weight cycle in G reachable from s.

Proof

Without negative-weight cycles in G , the previous theorem
implies d [v ] = δ(s, v), and by triangle inequality
d [v ] ≤ δ(s, u) + w(u, v), so BF won’t report a negative
cycle if it doesn’t exists.

If there is a negative-weight cycle, then one of its edges
can be relaxed, so BF will report correctly.
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SSSP in a direct acyclic graphs (dags).

SSSP in DAG
Given an edge weighted dag G = (V ,E ,w) and s ∈ V , find a
shortest path from s to each other vertex in G , if it exists.

s

a b

dc

e

2

1

6

−1

−1
2

3

3
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SSSP in a direct acyclic graphs (dags).

A DAG has no cycles, so a distance can be defined among
any pair of vertices.

In particular there are shortest paths from s to any vertex
v reachable from s.

To obtain a faster algorithm we look for a good ordering
of the edges: topological sort.

s

a b

dc

e

2

1

6

−1

−1
2

3

3

s, c , a, b, d , e
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SSSP in a direct acyclic graphs (dags).

Let Pre(v) = {u ∈ V | (u, v) ∈ E}

SSSP-DAG(G ,w)
Sort V in topologica order
For v ∈ V set d [v ] = ∞ and p[v ] = v
d [s] = 0.
for all v ∈ V − {s} in order do
d [v ] = minu∈Pre(v){d [u] + wuv}
p[v ] = argminu∈Pre[v ]{d [u] + wuv}

Complexity? T (n) = O(n +m)

Correctness? d [u] = δ(s, u), for u ∈ Pre(v)
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Let Pre(v) = {u ∈ V | (u, v) ∈ E}

SSSP-DAG(G ,w)
Sort V in topologica order
For v ∈ V set d [v ] = ∞ and p[v ] = v
d [s] = 0.
for all v ∈ V − {s} in order do
d [v ] = minu∈Pre(v){d [u] + wuv}
p[v ] = argminu∈Pre[v ]{d [u] + wuv}

Complexity?

T (n) = O(n +m)

Correctness? d [u] = δ(s, u), for u ∈ Pre(v)



Distances and
shortest paths

Applications

Definitions

Properties

SP problems

Single source

Dijkstra’s

Bellman-Ford

DAGs

All pairs

Floyd-Warshall

Johnson’s

SSSP in a direct acyclic graphs (dags).

Let Pre(v) = {u ∈ V | (u, v) ∈ E}

SSSP-DAG(G ,w)
Sort V in topologica order
For v ∈ V set d [v ] = ∞ and p[v ] = v
d [s] = 0.
for all v ∈ V − {s} in order do
d [v ] = minu∈Pre(v){d [u] + wuv}
p[v ] = argminu∈Pre[v ]{d [u] + wuv}

Complexity? T (n) = O(n +m)

Correctness? d [u] = δ(s, u), for u ∈ Pre(v)



Distances and
shortest paths

Applications

Definitions

Properties

SP problems

Single source

Dijkstra’s

Bellman-Ford

DAGs

All pairs

Floyd-Warshall

Johnson’s

SSSP in a direct acyclic graphs (dags).

Let Pre(v) = {u ∈ V | (u, v) ∈ E}

SSSP-DAG(G ,w)
Sort V in topologica order
For v ∈ V set d [v ] = ∞ and p[v ] = v
d [s] = 0.
for all v ∈ V − {s} in order do
d [v ] = minu∈Pre(v){d [u] + wuv}
p[v ] = argminu∈Pre[v ]{d [u] + wuv}

Complexity? T (n) = O(n +m)

Correctness?

d [u] = δ(s, u), for u ∈ Pre(v)
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SSSP in a direct acyclic graphs (dags).

Let Pre(v) = {u ∈ V | (u, v) ∈ E}

SSSP-DAG(G ,w)
Sort V in topologica order
For v ∈ V set d [v ] = ∞ and p[v ] = v
d [s] = 0.
for all v ∈ V − {s} in order do
d [v ] = minu∈Pre(v){d [u] + wuv}
p[v ] = argminu∈Pre[v ]{d [u] + wuv}

Complexity? T (n) = O(n +m)

Correctness? d [u] = δ(s, u), for u ∈ Pre(v)
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All pairs shortest paths (APSP)

Given G = (V ,E ,w), |V | = n, |E | = m, we want to
determine ∀u, v ∈ V , δ(u, v).

We assume that G does not contain negative cycles.

Naive idea: We apply n times BF or Dijkstra (if there are
not negative weights)

Repetition of BF: O(n2m)

Repetition of Dijkstra: O(nm lg n) (if Q is implemented by
a heap)
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All pairs shortest paths: APSP

Unlike in the SSSP algorithm that assumed adjacency-list
representation of G , for the APSP algorithm we consider
the adjacency matrix representation of G .

For convenience V = {1, 2, . . . n}. The n × n adjacency
matrix W = (w(i , j)) of G ,w :

wij =


0 if i = j

wij if (i , j) ∈ E

+∞ if i ̸= j and (i , j) ̸∈ E
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All pairs shortest paths: APSP

The input is a n × n adjacency matrix W = (wij)

4

4 1
2

0

1
1

−1

2

3

W =


0 1 ∞ ∞
∞ 0 1 ∞
2 4 0 0
−1 ∞ ∞ 0


The output is a n× n matrix D, where D[i , j ] = δ(i , j) and
a n × n matrix P where P[i , j ] is the predecessor of j in a
shortest path from i to j
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Floyd-Warshall Algorithm

Bernard Roy: Transitivité et connexité C.R.Aca. Sci. 1959
Robert Floyd: Algorithm 97: Shortest Path. CACM 1962
Stephen Warshall: A theorem on Boolean matrices. JACM,
1962

The FW Algorithm is a dynamic programming algorithm that
exploits the recursive structure of shortest paths.
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Optimal substructure of APSP

Recall: any subpath of a shortest path is a shortest path

Let p = p1, p2, . . . , pr−1︸ ︷︷ ︸
intermediate v.

, pr and

Let d
(k)
ij be the minimum weight of a path i ⇝ j s.t. the

intermediate vertices are in {1, . . . , k}.
When k = 0, d

(0)
ij = wij (no intermediate vertices).
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The recurrence

Let p a path i ⇝ j with intermediate vertices in {1, . . . , k} and

weight d
(k)
ij

If k is not an intermediate vertex of p, then d
(k)
ij = d

(k−1)
ij .

If k is an intermediate vertex of p, then p = i ⇝p1 k ⇝p2 j

p1 and p2 are shortest paths with intermediate vertices in
{1, . . . , k − 1} .

Therefore d
(k)
ij =

{
wij if k = 0

min{d (k−1)
ij , d

(k−1)
ik + d

(k−1)
kj } if k ≥ 1
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FW-algorithm

BFW (W )
d (0) = W
for k = 1 to n do

for i = 1 to n do
for j = 1 to n do

d
(k)
ij = min{d (k−1)

ij , d
(k−1)
ik + d

(k−1)
kj }

return d (n)

Time complexity: T (n) = O(n3), S(n) = O(n3)

Correctness follows from the recurrence argument.



Distances and
shortest paths

Applications

Definitions

Properties

SP problems

Single source

Dijkstra’s

Bellman-Ford

DAGs

All pairs

Floyd-Warshall

Johnson’s

FW: Example

4

4 1
2

0

1
1

−1

2

3

D(0) =


0 1 ∞ ∞
∞ 0 1 ∞
2 4 0 0
−1 ∞ ∞ 0

 D(1) =


0 1 ∞ ∞
∞ 0 1 ∞
2 3 0 0
−1 0 ∞ 0



D(2) =


0 1 2 ∞
∞ 0 1 ∞
2 3 0 0
−1 0 1 0

 D(3) =


0 1 2 2
3 0 1 1
2 3 0 0
−1 0 1 0

 D(4) =


0 1 2 2
0 0 1 1
−1 0 0 0
−1 0 1 0



d2
3,2 = 3, 3 → 1 → 2 (interm vertices in {1, 2})

d4
3,2 = 0, 3 → 4 → 1 → 2 (interm vertices in {1, 2, 3, 4})
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FW: Constructing shortest paths

To construct the matrix P, where
pi ,j is the predecessor of j in a shortest path i ⇝ j ,

we define a sequence of matrices P(0), . . . ,P(n).
pki ,j is the predecessor in a shortest path i ⇝ j , which uses
only vertices in {1, . . . , k}.

p
(0)
i ,j =

{
NIL if i = j or wij = +∞,

i if i ̸= j and wij ̸= +∞.

For k ≥ 1 we get the recurrence:

p
(k)
i ,j =

{
p
(k−1)
i ,j if d

(k−1)
ij ≤ d

(k−1)
ik + d

(k−1)
kj ,

p
(k−1)
k,j otherwise.



Distances and
shortest paths

Applications

Definitions

Properties

SP problems

Single source

Dijkstra’s

Bellman-Ford

DAGs

All pairs

Floyd-Warshall

Johnson’s

BFW with paths

BFW W
d (0) = W
Initialize p(0)

for k = 1 to n do
for i = 1 to n do

for j = 1 to n do
if d

(k)
ij ≤ d

(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj then

d
(k)
ij = d

(k−1)
ij

p
(k)
ij = p

(k−1)
ij

else
d
(k)
ij = d

(k−1)
ik + d

(k−1)
kj

p
(k)
ij = p

(k−1)
kj

return d (n)

Complexity: T (n) = O(n3)
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APSP: Johnson’s algorithm

A faster algorithm for sparse graphs, i.e., m = o(n2)

The graph is given by adjacency list and we assume that it
has no negative weight cycles. In fact the algorithm
detects its existence.
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Johnson’s algorithm

Donald B. Johnson: Efficient algorithms
for shortest paths in sparse networks,
JACM 1977

The algorithm uses BF to reduce the problems to one with
positive weights.

Then it runs n times Dijkstra’s algorithm.
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Weight modification that preserve path weight

Lemma

Let G = (V ,E ,w) be a weighted digraph. Let f : V → R and,
for (u, v) ∈ E , let w ′(u, v) = w(u, v) + f (u)− f (v). Let p be
a path u ⇝p v in G . Then w ′(p) = w(p) + f (u)− f (v).

Proof

As an intermediate vertex w in the path is the end of one edge
and the start of another the contribution of f (w) cancels.
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The weight modification

Let G = (V ,E ,w) be a weighted digraph with no negative
weight cycle.

Construct a graph G ′ = (V ′,E ′,w ′) by adding to G a new
vertex s and edges (s, u), for u ∈ V . Define w ′(e) = w(e)
if e ∈ E ′ ∩ E and 0 otherwise.

Let d be the output of the BF algorithm on input
(V ′,E ′,w ′, s).

As G has no negative weight cycles, G ′ has no negative
weight cycles, so BF computes d : V → R. Furthermore,
for u ∈ V , d(u) = δG ′(s, u).
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The weight modification

Lemma

Let G = (V ,E ,w) be a weighted digraph with no negative
weight cycles. Let d : V → R be the function computed by the
BF algorithm on G ′ described before. Let Gd = (V ,E ,w ′)
where w ′(u, v) = w(u, v) + d(u)− d(v).
If p is a shortest path u ⇝p v in G , p is a shortest path in Gd .
Furthermore, δGd

(u, v) = δG (u, v) + d(u)− d(v).

Proof

For any path p, u ⇝p v , w ′(p) = w(p) + d(u)− d(v). As the
last term depends only on u and v , the claim follows.



Distances and
shortest paths

Applications

Definitions

Properties

SP problems

Single source

Dijkstra’s

Bellman-Ford

DAGs

All pairs

Floyd-Warshall

Johnson’s

The weight modification

Lemma

Let G = (V ,E ,w) be a weighted digraph with no negative
weight cycles. Let d : V → R be the function computed by the
BF algorithm on G ′ described before. Let Gd = (V ,E ,w ′)
where w ′(u, v) = w(u, v) + d(u)− d(v).
For (u, v) ∈ E , w ′(u, v) ≥ 0.

Proof

By triangle inequality, for a path p, u ⇝p v ,
δG ′(s, v) ≤ δG ′(s, u) + w(p),

i.e., 0 ≤ w(p) + δG ′(s, u)− δG ′(s, v)

Therefore w ′(p) = w(p) + d(u)− d(v) ≥ 0.
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Johnson’s algorithm

Johnson (V ,E ,W )
Compute G ′

f = BF (G ′, s)
Compute Gf

for all v ∈ V do
d [v ] = Dijkstra(Gf , v)

for all u, v ∈ V do
d [u][v ] = d [u][v ] + f [v ]− f [u]

return d

Time complexity: O(nm)+ the cost of n calls to Dijkstra

Correctness follows from the previous lemmas.
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Conclusions

SSSP no negative weight cycles accessible form s.

Dijkstra BF

w ≥ 0 O(m + n lg n) O(nm)

w ∈ Z NO O(nm)

APSP no negative weight cycles.

Dijkstra BF FW Johnson

w ≥ 0 O(nm + n2 lg n) O(n2m) O(n3) O(nm + n2 lg n)

w ∈ R NO O(n2m) O(n3) O(nm + n2 lg n)
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Conclusions: Remarks for APSP algorithms

For sparse graphs with m = ω(n) m = o(n2), Johnson is
the most efficient.

For dense graphs with m = Θ(n2), FW has the best
complexity.

For unweighted and undirected graphs, there is an
algorithm by R.Seidel that works in O(nω lg n), where nω

is the complexity of multiplying two n × n matrices, which
of as today is ω ∼ 2.3.

For further reading on shortest paths, see chapters 24 and
25 of CLRS or 4.4 and 6.8–6.10 of KT.
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