

Multiplying a Sequence of Matrices

(This example is from Section 15.2 in CormenLRS’ book.)
MULTIPLICATION OF n MATRICES Given as input a sequence
of n matrices (A1 X Ay X -+ X Ap). Minimize the number of
operation in the computation A; X Ay x --- X A,

Multiplying a Sequence of Matrices

(This example is from Section 15.2 in CormenLRS’ book.)
MULTIPLICATION OF n MATRICES Given as input a sequence
of n matrices (A1 X Ay X -+ X Ap). Minimize the number of
operation in the computation A; X Ay x --- X A,

Recall that Given matrices A, Ay with dim(A;) = pp X p1 and
dim(Az) = p1 X p2, the basic algorithm to A; x A, takes time
at most pop1p2.

Example:

2 3 13 18 23
3 4| x [:_23 z g] = |18 25 32
4 5 23 32 41

MULTIPLYING A SEQUENCE OF MATRICES

m Matrix multiplication is NOT commutative, so we can not
permute the order of the matrices without changing the
result.

m It is associative, so we can put parenthesis as we wish.

m How to multiply is equivalent to the problem of how to
parenthesize.
m We want to find the way to put parenthesis so that the

product requires the minimum total number of operations.
And use it to compute the product.

Example Consider A; x Ay x Asz, where dim (A1) = 10 x 100
dim (A2) = 100 x 5 and dim (A3) = 5 x 50.

m ((A1A2)A3) takes (10 x 100 x 5) + (10 x 5 x 50) =
7500 operations,

Example Consider A; x Ay x Asz, where dim (A1) = 10 x 100

dim (A2) = 100 x 5 and dim (A3) =5 x 50.

m ((A1A2)A3) takes (10 x 100 x 5) + (10 x 5 x 50) =
7500 operations,

m (A1(A2A43)) takes (100 x 5 x 50) + (10 x 100 x 50) =
75000 operations.

The order in which we make the computation of products of
two matrices makes a big difference in the total computation’s
time.

How to parenthesize (A; X ... X A,)?

m If n =1 we do not need parenthesis.

How to parenthesize (A; X ... X A,)?

m If n =1 we do not need parenthesis.

m Otherwise, decide where to break the sequence
((A1 X o+ X Ak)(Ak—H X o+ X A,-,))
for some k, 1 < k < n.

How to parenthesize (A; X ... X A,)?

m If n =1 we do not need parenthesis.

m Otherwise, decide where to break the sequence
((A1 X - X Ak)(Ak—H X - X A,-,))
for some k, 1 < k < n.
m Then, combine any way to parenthesize (A1 X -+ x Ag)
with any way to parenthesize (Axi11 X -+ X Ap).

How to parenthesize (A; X ... X A,)?

m If n =1 we do not need parenthesis.

m Otherwise, decide where to break the sequence
((A1 X o+ X Ak)(Ak—H X o+ X A,-,))
for some k, 1 < k < n.

m Then, combine any way to parenthesize (A1 X -+ x Ag)
with any way to parenthesize (Axi11 X -+ X Ap).

Using this structure, we can count the number of ways to
parenthesize (A; X --- X Ap) as well as to define a backtracking
algorithm that goes over all those ways to parenthesize and
eventually to a brute force recursive algorithm to solve the
problem of computing efficiently the product.

How many ways to parenthesize (A; X - -+ X A)?

Let P(n) be the number of ways to paranthesize
(A1 x -+ x Ap). Then,

) ifn=1
P = {22_1 P(K)P(n = k) sinz2

How many ways to parenthesize (A; X - -+ X A)?

Let P(n) be the number of ways to paranthesize
(A1 x -+ x Ap). Then,

) ifn=1
P = {22_1 P(K)P(n = k) sinz2

with solution P(n) = nil (2,1") = Q(4"/n3/?)

The Catalan numbers.

How many ways to parenthesize (A; X - -+ X A)?

Let P(n) be the number of ways to paranthesize
(A1 x -+ x Ap). Then,

) ifn=1
P = {22_1 P(K)P(n = k) sinz2

with solution P(n) = nil (2,1") = Q(4"/n3/?)

The Catalan numbers.

Brute force will take too long!

Structure of an optimal solution

m We want to compute (A; X --- x Ap) efficiently.

m In an optimal solution the last matrix product must
correspond to a break at some position k,

((Al X e X Ak)(Ak+1 X e X An)) Let

A,',j = (AiAiJrl s Aj).

iiiii

Structure of an optimal solution

m We want to compute (A; X --- x Ap) efficiently.

m In an optimal solution the last matrix product must
correspond to a break at some position k,
((Al X e X Ak)(Ak+1 X e X An)) Let
A,',j = (AiAiJrl s Aj).

m The parenthesization of the subchains (A; x --- x Ak) and
(Ak+1 x - -+ x Ap) within the optimal parenthesization

must be an optimal paranthesization of (A1 x - -+ x Ay),
(Aks1 X -+ X Ap). So,

iiiii

COSt(Al .. .An) :COSt(Al . Ak)
+ COSt(Ak_H . An) + PoPkPn-

Structure of an optimal solution

m An optimal solution decomposes in optimal solutions of
the same problem on subchains.

m Subproblems: compute the product A; x A1 X -+ X A,
for1<i<j<n

Structure of an optimal solution

iiiii

m An optimal solution decomposes in optimal solutions of
the same problem on subchains.

m Subproblems: compute the product A; x A1 X -+ X A,
for1<i<j<n

m Letuscall B = Aj x Ajpq x - X Aj.

Cost Recurrence

m Let m[/,j] be the minimum cost of computing
Bl = (Aix...xAj) for 1 <i<j<n.

m m[i,j] is defined by the value k, i < k < j that minimizes

mli, k] + m[k +1,j] + cost (BE, B,).

Cost Recurrence

m Let m[/,j] be the minimum cost of computing
Bl = (Aix...xAj) for 1 <i<j<n.

m m[i,j] is defined by the value k, i < k < j that minimizes
mli, k] + mk +1,j] + cost (BF, Bl ,).

m That is,

i j] {0 ifi=

min;<k<;j{mli, k] + mlk +1,j] + pi—1pxp;} otherwise

Computing the cost of an optimal solution: Rec

Assume that vector P holds the values (po, p1, - - -, Pn)-

MCR(i,)
if / =/ then
return 0
mli, j] = oo
for k=itoj—1do
g = MCR(i, k) + MCR(k + 1,j) + P[i — 1] P[k] * P[j]
if ¢ < m[i,j] then
mli,j]=q
return (mli,j])

Computing the cost of an optimal solution: Rec

Assume that vector P holds the values (po, p1, - - -, Pn)-

MCR(i,)
if / =/ then
return 0
mli, j] = oo
for k=itoj—1do
g = MCR(i, k) + MCR(k + 1,j) + P[i — 1] P[k] * P[j]
if ¢ < m[i,j] then
mli,j]=q
return (mli,j])

Cost: T(n) > 2371 T(i) + n~ Q(2").

Can we apply dynamic programming?

m We have an optimal recursive algorithm which takes
exponential time.

Can we apply dynamic programming?

m We have an optimal recursive algorithm which takes
exponential time.

m Subproblems?

Can we apply dynamic programming?

m We have an optimal recursive algorithm which takes
exponential time.

m Subproblems?
The subproblems are identified by the two inputs in the
recursive call, the pair (/,J).

Can we apply dynamic programming?

m We have an optimal recursive algorithm which takes
exponential time.

m Subproblems?
The subproblems are identified by the two inputs in the
recursive call, the pair (/,J).

m How many subproblems?

Can we apply dynamic programming?

m We have an optimal recursive algorithm which takes
exponential time.

m Subproblems?
The subproblems are identified by the two inputs in the
recursive call, the pair (/,J).

m How many subproblems?
As 1 < i< j < n, we have only O(n?) subproblems.

we apply dynamic programming?

m We have an optimal recursive algorithm which takes
exponential time.

m Subproblems?
The subproblems are identified by the two inputs in the
recursive call, the pair (/,J).

m How many subproblems?
As 1 < i< j < n, we have only O(n?) subproblems.

We can use DP!

Dynamic programming: Memoization

MCR(i,)
if m[i,]! = —1 then
MCP(P) return (m[i,j])
foralll1 </<j<ndo mli,j] = oo
m[i,j] = -1 for k=itoj—1do
for i=1to ndo qg = MCR(i, k) + MCR(k + 1,) +
mi,i]=0 P[i — 1] = P[k] * P[j]
MCR(1, n) if g < mli,j] then
return (m[1, n]) mli,j] =q

return (ml[i,j])

©(n?) additional space ©(n?).

Dynamic programming: Tabulating

To compute the element m|[i, | the base case is when i = j, we
need to access m(i, k| and m[k + 1, j]. We can achieve that by
filling the (half) table by diagonals.

Dynamic programming: Tabulating

To compute the element m|[i, | the base case is when i = j, we
need to access m(i, k| and m[k + 1, j]. We can achieve that by
filling the (half) table by diagonals.

MCP(P)
for i =1 to n do
m[i,i] =0
for d =2 to n do
fori=1ton—d-+1do
j=i+d-1 T(n) = ©(n%),
mli,j] = oo space = O(n?).
for k=itoj—1do
q =
mli, k] +ml[k+1,]+ P[i — 1] * P[k] = P[]
if g < m[i,j] then
mli,jl=q
return (m[1, n])

Example.

We wish to compute A; x Ay x Az X A4 with
P =<3,5,3,2,4 >

Example.

We wish to compute A; x Ay x Az X A4 with
P =<3,5,3,2,4 >

Example.

We wish to compute A; x Ay x Az X A4 with
P =<3,5,3,2,4 >

Example.

We wish to compute A; x Ay x Az X A4 with
P =<3,5,3,2,4 >

Example.

We wish to compute A; x Ay x Az X A4 with
P =<3,5,3,2,4 >

Recording more information about the optimal
solution

We have been working with the recurrence

i] {0 ifi=j

minj<i<j{mli, k] + m{k + 1,j] + pi—1pkpj} otherwise

To keep information about the optimal solution the algorithm
keep additional information about the value of k that provides
the optimal cost as

] = {/ ifi=j

arg minj<i<j{mli, k] + mlk + 1, j] 4+ pi—1pkpj} otherwise

Dynamic programming: Memoization

MCR(i, j)
if m[i,j]! = —1 then
MCP(P) return (m[i, j])
forall1<i<j<ndo mli,j] = oo
m[i,j] = -1 for k=itoj—1do
for i=1to ndo g = MCR(i, k) + MCR(k + 1,/) +
mi,i] =0; s[i,i] =1 Pli — 1] = P[k] = P[j]
MCR(1, n) if ¢ < mli,j] then
return m,s mli,j] = q; s[i,j] = k;

return (m[i,j])

Dynamic programming: Tabulating

MCP(P)
for i=1to ndo
m[i,i] = 0; s[i,i]=0;
for d =2 to ndo
fori=1ton—d+1do
j=i+d-1
mli,j] = oo
for k=itoj—1do
q=
mli, k] + mlk+1,j]+ Pli— 1] P[k] « P[]
if g < m[i,j] then
m[l’./] =q S[I'.,_j] =k;
return m, s.

Example.

We wish to compute A; x Ay x Az X Ag with P =(3,5,3,2,4)

112|134

Example.

We wish to compute A; x Ay x Az X Ag with P =(3,5,3,2,4)

jl1 23] 4
01

02

BN~

Example.

We wish to compute A; x Ay x Az X Ag with P =(3,5,3,2,4)

jl 1| 2] 3| 4
01451
02 302

BN~

Example.

We wish to compute A; x Ay x Az X Ag with P =(3,5,3,2,4)

jl 1| 2] 3| 4
01451601
02 |302 703

BN~

Example.

We wish to compute A; x Ay x Az X Ag with P =(3,5,3,2,4)

jl 1| 2] 3| 4
01451 (601|843
02 |302 703

BN~

Computing optimally the product

m s[i, /] contains the value of k that decomposes optimally
the product as product of two submatrices, i.e.,

A,' Xoee XAJ':(A,' Xoee XAs[iJ])(As[iJ]+1 Xoeee XAj).
m Therefore,
Ap X oo X Ap = (AL X X Agn) (Asqinj+1 X - X An).

m We can design a recursive algorithm to perform the
product in an optimal way.

The product algorithm

The input is the sequence of matrices A = Ay, ..., A, and the

table s computed before.
Product(A, s, i,j)
if i = then
return (A))
X =Product(A,s,i,sl[i,j])
Y =Product(A, s, s[i,j] + 1,/)
return (X x Y)

The total number operations required to compute the product
is m[1, n] and the cost of the complete algorithm is
T(n) = O(n*+ m[1, n])

Example.

We wish to compute A; x Ay x Az X Aq with P =(3,5,3,2,4)

iNjl 1] 2] 3| 4
1 |01]451|601]843
2 02 [302 703
3 03 | 243
4 04

The optimal way to minimize the number of operations is

(((A1) x (A2 x A3)) x (As))

Multiplying matrices

Multiplying matrices

m In order to compute s, we only need the dimensions of the
matrices.

Multiplying matrices

m In order to compute s, we only need the dimensions of the
matrices.

m What if we use Strassen algorithm to compute a two
matrices product instead of the naive algorithm?

Dynamic Programming in Trees

Trees are nice graphs easily adapted to recursion.

m Once you root the tree each node can be seen as the root
of a subtree .

m We can use Dynamic Programming to give polynomial

solutions to "difficult” graph problems when the input is
Rhlon]tces restricted to be a tree, or to have a treee-like structure
(small treewidth).

m In this case instead of having a global table, each node in
the tree keeps additional information about the associated
subproblem.

The MAXIMUM WEIGHT INDEPENDENT SET
(MWIS)

Given as input G = (V, E), together with a weight w : V — R.
Find the heaviest S C V such that no two vertices in S are
connected in G.

(2)

DP on trees @>\@>

The MAXIMUM WEIGHT INDEPENDENT SET
(MWIS)

Given as input G = (V, E), together with a weight w : V — R.
Find the heaviest S C V such that no two vertices in S are
connected in G.

(2)

DP on trees @>\@>

For general graphs, the problem is hard, even for the case in
which all vertex have weight 1, i.e. MAXIMUM INDEPENDENT
SET is NP-complete.

MAXIMUM WEIGHT INDEPENDENT SET on
Trees

Given a tree T = (V, E) choose a r € V and root it from r

i.e. Given a rooted tree /(?\
T = (V,E,r) and weights @
@ @ & 6 (‘P

w: V — R, find the independent set

with maximum weight. A ©
DP on trees e @ e @

Notation:
m For ve V, let T, be the subtree rooted at v. T = T,.

m Given v € V let C(v) be the set of children of v, and
G(v) be the set of grandchildren of v.

Characterization of the optimal solution

Key observation: An IS can't contain vertices which are
father-son.

DP on trees

Characterization of the optimal solution

Key observation: An IS can't contain vertices which are
father-son.
Let S be an optimal solution.

mIf reS: then C(r) £ S;. So S — {r} contains an
DR onitrees optimum solution for each T,, with v € G(r).

m If r €5: S contains an optimum solution for each T,
with u € C(r).

Recursive definition of the optimal solution

m To implement DP, tor every node v, we add one value,
v.M: the value of the optimal solution for T,
Following the recursive structure of the solution we have
the following recurrence

M w(v) v a leaf,
v.M =
aX{ZueC(v)u,Mv w(v)+> uEG(v) u.M} otherwise.

DP on trees

Recursive definition of the optimal solution

m To implement DP, tor every node v, we add one value,
v.M: the value of the optimal solution for T,
Following the recursive structure of the solution we have
the following recurrence

M w(v) v a leaf,
v.M =
aX{ZueC(v)u,Mv w(v)+> uEG(v) u.M} otherwise.

DP on trees

m Notice that for any v € T: we have to compute
2_uec(v) U-M and for this we must access to the children
of its children

Recursive definition of the optimal solution

m To implement DP, tor every node v, we add one value,
v.M: the value of the optimal solution for T,
Following the recursive structure of the solution we have
the following recurrence

M w(v) v a leaf,
v.M =
aX{ZueC(v)u,Mv w(v)+> uEG(v) u.M} otherwise.

DP on trees

m Notice that for any v € T: we have to compute
2_uec(v) U-M and for this we must access to the children
of its children

m To avoid this we add another value to the node
v.M’: the sum of the values of the optimal solutions of
their children, i.e., 3~ cc(,) u-M.

Post-order traversal of a rooted tree

To perform the computation, we can follow a DFS, post-order,
traversal of the nodes in the tree, computing the additional
values at each node.

DP on trees

DP on trees

DP Algorithm to compute the optimal weight

Let vq,...,v, = r be the post-order traversal of T,
WIS T,
Let vi,...,v, = r the post-order traversal of T,

for i=1to ndo
if v; is a leaf then
vi.M = wlv;],vi.M' =0
else
vi.M'=3%" ey u-M
aux =3 cc(y) Uu-M'
vi.M = max{aux + w[vj], v;; M’}
return r.M
Complexity: space = O(n), time = O(n)

Top-down traversal to obtain an optimal IS

RWIS(v)
if v is a leaf then
return ({v})

if vi.M = v;.M" + w|v;] then RWIS(r)
S=SuU{v} provides an optimal solution
P on trees for w € G(v) do in time O(n)
S =SURWIS(w)
else Total cost O(n) and
for w € N(v) do additional space O(n)

S = SURWIS(w)
return S

	Multiplying matrices
	The problem
	Optimal substructure
	Cost of an optimal sol
	Adding info for opt sol
	Optimal solution

	DP on trees

