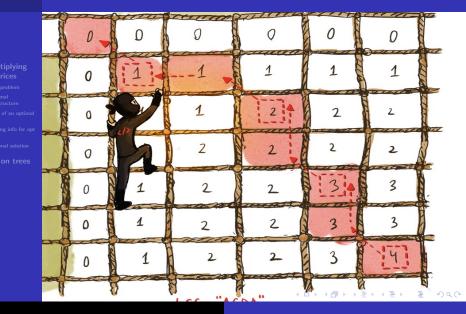
Dynamic Programming II



Multiplying a Sequence of Matrices

Multiplying matrices

The problem

Optimal substructure Cost of an optimal sol Adding info for op

Optimal solution

DP on trees

(This example is from Section 15.2 in CormenLRS' book.) MULTIPLICATION OF *n* MATRICES Given as input a sequence of *n* matrices $(A_1 \times A_2 \times \cdots \times A_n)$. Minimize the number of operation in the computation $A_1 \times A_2 \times \cdots \times A_n$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆□ ▶

Multiplying a Sequence of Matrices

Multiplying matrices

The problem

Optimal substructure Cost of an optimal sol Adding info for opt sol

DP on trees

(This example is from Section 15.2 in CormenLRS' book.) MULTIPLICATION OF *n* MATRICES Given as input a sequence of *n* matrices $(A_1 \times A_2 \times \cdots \times A_n)$. Minimize the number of operation in the computation $A_1 \times A_2 \times \cdots \times A_n$ Recall that Given matrices A_1, A_2 with dim $(A_1) = p_0 \times p_1$ and dim $(A_2) = p_1 \times p_2$, the basic algorithm to $A_1 \times A_2$ takes time at most $p_0p_1p_2$.

Example:

$$\begin{bmatrix} 2 & 3 \\ 3 & 4 \\ 4 & 5 \end{bmatrix} \times \begin{bmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix} = \begin{bmatrix} 13 & 18 & 23 \\ 18 & 25 & 32 \\ 23 & 32 & 41 \end{bmatrix}$$

Multiplying a Sequence of Matrices

Multiplying matrices

The problem

- Optimal substructure
- Cost of an optimal sol
- Adding info for op sol
- Optimal solution

DP on trees

- Matrix multiplication is NOT commutative, so we can not permute the order of the matrices without changing the result.
- It is associative, so we can put parenthesis as we wish.
- How to multiply is equivalent to the problem of how to parenthesize.
- We want to find the way to put parenthesis so that the product requires the minimum total number of operations. And use it to compute the product.

Multiplying matrices

The problem

Optimal substructure

Cost of an optimal sol

sol

Optimal solution

DP on trees

Example Consider $A_1 \times A_2 \times A_3$, where dim $(A_1) = 10 \times 100$ dim $(A_2) = 100 \times 5$ and dim $(A_3) = 5 \times 50$.

イロト イヨト イヨト イヨト

크

• $((A_1A_2)A_3)$ takes $(10 \times 100 \times 5) + (10 \times 5 \times 50) = 7500$ operations,

Multiplying matrices

The problem

Optimal substructure

sol

sol

DP on trees

Example Consider $A_1 \times A_2 \times A_3$, where dim $(A_1) = 10 \times 100$ dim $(A_2) = 100 \times 5$ and dim $(A_3) = 5 \times 50$.

- $((A_1A_2)A_3)$ takes $(10 \times 100 \times 5) + (10 \times 5 \times 50) = 7500$ operations,
- $(A_1(A_2A_3))$ takes $(100 \times 5 \times 50) + (10 \times 100 \times 50) = 75000$ operations.

The order in which we make the computation of products of two matrices makes a big difference in the total computation's time.

《曰》《卽》《臣》《臣》

Multiplying matrices

The problem

Optimal substructure

Cost of an optimal sol

sol

Optimal solution

DP on trees

• If n = 1 we do not need parenthesis.

Multiplying matrices

The problem

- Optimal substructure
- Cost of an optimal sol
- Adding info for opt sol
- Optimal solution

DP on trees

- If n = 1 we do not need parenthesis.
- Otherwise, decide where to break the sequence ((A₁ × · · · × A_k)(A_{k+1} × · · · × A_n)) for some k, 1 ≤ k < n.</p>

イロト イヨト イヨト イヨト

æ

Multiplying matrices

The problem

- Optimal substructure
- Cost of an optimal sol
- Adding info for opt sol
- Optimal solution

DP on trees

- If n = 1 we do not need parenthesis.
- Otherwise, decide where to break the sequence ((A₁ × · · · × A_k)(A_{k+1} × · · · × A_n)) for some k, 1 ≤ k < n.
- Then, combine any way to parenthesize (A₁ × · · · × A_k) with any way to parenthesize (A_{k+1} × · · · × A_n).

イロト イヨト イヨト イヨト

Multiplying matrices

The problem

Optimal substructure Cost of an optimal sol Adding info for opt sol

Optimal solution

DP on trees

- If n = 1 we do not need parenthesis.
- Otherwise, decide where to break the sequence ((A₁ × · · · × A_k)(A_{k+1} × · · · × A_n)) for some k, 1 ≤ k < n.
- Then, combine any way to parenthesize $(A_1 \times \cdots \times A_k)$ with any way to parenthesize $(A_{k+1} \times \cdots \times A_n)$.

Using this structure, we can count the number of ways to parenthesize $(A_1 \times \cdots \times A_n)$ as well as to define a backtracking algorithm that goes over all those ways to parenthesize and eventually to a brute force recursive algorithm to solve the problem of computing efficiently the product.

How many ways to parenthesize $(A_1 \times \cdots \times A_n)$?

Multiplying matrices

The problem

Optimal substructure Cost of an optim sol

Adding into for opt sol

Optimal solution

DP on trees

Let P(n) be the number of ways to paranthesize $(A_1 \times \cdots \times A_n)$. Then,

$$P(n) = \begin{cases} 1 & \text{if } n = 1\\ \sum_{k=1}^{n-1} P(k) P(n-k) & \text{si } n \ge 2 \end{cases}$$

イロト イヨト イヨト イヨト

크

How many ways to parenthesize $(A_1 \times \cdots \times A_n)$?

Multiplying matrices

The problem

Optimal substructure Cost of an optimal sol Adding info for opt sol

DP on trees

Let P(n) be the number of ways to paranthesize $(A_1 \times \cdots \times A_n)$. Then,

$$P(n) = \begin{cases} 1 & \text{if } n = 1\\ \sum_{k=1}^{n-1} P(k) P(n-k) & \text{si } n \ge 2 \end{cases}$$

with solution $P(n) = \frac{1}{n+1} {\binom{2n}{n}} = \Omega(4^n/n^{3/2})$ The Catalan numbers.

How many ways to parenthesize $(A_1 \times \cdots \times A_n)$?

Multiplying matrices

The problem

Optimal substructure Cost of an optimal sol Adding info for opt sol

DP on trees

Let P(n) be the number of ways to paranthesize $(A_1 \times \cdots \times A_n)$. Then,

$$P(n) = \begin{cases} 1 & \text{if } n = 1\\ \sum_{k=1}^{n-1} P(k) P(n-k) & \text{si } n \ge 2 \end{cases}$$

イロト イヨト イヨト イヨト

with solution $P(n) = \frac{1}{n+1} {\binom{2n}{n}} = \Omega(4^n / n^{3/2})$

The Catalan numbers.

Brute force will take too long!

• We want to compute $(A_1 \times \cdots \times A_n)$ efficiently.

In an optimal solution the last matrix product must correspond to a break at some position k, ((A₁ × ··· × A_k)(A_{k+1} × ··· × A_n)) Let A_{i-j} = (A_iA_{i+1} ··· A_j).

イロト イヨト イヨト イヨト

æ

Multiplying matrices

Optimal

substructure

Cost of an optimal sol Adding info for opt sol

Optimal solution

DP on trees

- We want to compute $(A_1 \times \cdots \times A_n)$ efficiently.
- In an optimal solution the last matrix product must correspond to a break at some position k, ((A₁ × · · · × A_k)(A_{k+1} × · · · × A_n)) Let A_{i-j} = (A_iA_{i+1} · · · A_j).
- The parenthesization of the subchains (A₁ × ··· × A_k) and (A_{k+1} × ··· × A_n) within the optimal parenthesization must be an optimal paranthesization of (A₁ × ··· × A_k), (A_{k+1} × ··· × A_n). So,

$$cost(A_1...A_n) = cost(A_1...A_k) + cost(A_{k+1}...A_n) + p_0 p_k p_n.$$

イロト イヨト イヨト イヨト 二日

Multiplying matrices

Optimal substructure

Cost of an optima sol Adding info for op

Optimal solutio

DP on trees

Multiplying matrices

The problem

Optimal substructure

Cost of an optimal sol Adding info for opt

Optimal solution

DP on trees

- An optimal solution decomposes in optimal solutions of the same problem on subchains.
- Subproblems: compute the product $A_i \times A_{i+1} \times \cdots \times A_j$, for $1 \le i \le j \le n$

Multiplying matrices

The problem

Optimal substructure

Cost of an optimal sol Adding info for opt

Optimal solution

DP on trees

- An optimal solution decomposes in optimal solutions of the same problem on subchains.
- Subproblems: compute the product $A_i \times A_{i+1} \times \cdots \times A_j$, for $1 \le i \le j \le n$

• Let us call $B_i^j = A_i \times A_{i+1} \times \cdots \times A_j$.

Cost Recurrence

Multiplying matrices

The problem

Optimal substructure

Cost of an optimal sol

Adding info for opt sol Optimal solution

DP on trees

- Let m[i, j] be the minimum cost of computing $B_i^j = (A_i \times \ldots \times A_j)$, for $1 \le i \le j \le n$.
- m[i, j] is defined by the value k, $i \le k \le j$ that minimizes

$$m[i,k] + m[k+1,j] + \cos((B_i^k, B_{k+1}^j))$$

イロト イヨト イヨト イヨト

æ

Cost Recurrence

Multiplying matrices

The problem Optimal

substructure

Cost of an optimal sol

Adding info for opt sol Optimal solution

DP on trees

- Let m[i, j] be the minimum cost of computing $B_i^j = (A_i \times \ldots \times A_j)$, for $1 \le i \le j \le n$.
- m[i,j] is defined by the value k, $i \le k \le j$ that minimizes

$$m[i,k] + m[k+1,j] + \text{ cost } (B_i^k, B_{k+1}^j)$$

That is,

 $m[i,j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\} & \text{otherwise} \end{cases}$

Computing the cost of an optimal solution: Rec

Assume that vector P holds the values (p_0, p_1, \ldots, p_n) .

Multiplyin matrices

The problem Optimal substructure

Cost of an optimal sol

sol Optimal solution

DP on trees

$$\begin{split} & \mathsf{MCR}(i,j) \\ & \text{if } i = j \text{ then} \\ & \text{return } 0 \\ & m[i,j] = \infty \\ & \text{for } k = i \text{ to } j - 1 \text{ do} \\ & q = \mathsf{MCR}(i,k) + \mathsf{MCR}(k+1,j) + P[i-1] * P[k] * P[j] \\ & \text{if } q < m[i,j] \text{ then} \\ & m[i,j] = q \\ & \text{return } (m[i,j]) \end{split}$$

Computing the cost of an optimal solution: Rec

Assume that vector P holds the values (p_0, p_1, \ldots, p_n) .

Multiplying matrices

The problem Optimal

Cost of an optimal sol Adding info for opt

Sol

DP on trees

MCR(i, j)if i = j then return 0 $m[i, j] = \infty$ for k = i to i - 1 do q = MCR(i, k) + MCR(k + 1, j) + P[i - 1] * P[k] * P[j]if q < m[i, j] then m[i, j] = q**return** (m[i, j])Cost: $T(n) \ge 2 \sum_{i=1}^{n-1} T(i) + n \sim \Omega(2^n)$.

Multiplying matrices

The problem Optimal

Cost of an optimal sol

Adding info for opt sol

DP on trees

• We have an optimal recursive algorithm which takes exponential time.

◆□ > ◆□ > ◆目 > ◆目 > ◆□ > ◆□ >

Multiplying matrices

- The problem Optimal
- Cost of an optimal sol
- Adding info for opt sol Optimal solution
- DP on trees

• We have an optimal recursive algorithm which takes exponential time.

イロン イヨン イヨン イヨン

Subproblems?

Multiplying matrices

- The problem Optimal
- Cost of an optimal sol
- Adding info for opt sol Optimal solution
- DP on trees

- We have an optimal recursive algorithm which takes exponential time.
- Subproblems?

The subproblems are identified by the two inputs in the recursive call, the pair (i, j).

イロト イヨト イヨト イヨト

Multiplying matrices

- The problem Optimal
- Cost of an optimal sol
- Adding info for opt sol Optimal solution
- DP on trees

- We have an optimal recursive algorithm which takes exponential time.
- Subproblems?
 - The subproblems are identified by the two inputs in the recursive call, the pair (i, j).

イロト イヨト イヨト イヨト

How many subproblems?

Multiplying matrices

- The problem Optimal
- substructure Cost of an optimal
- sol Adding info for opt sol
- Optimal solution
- DP on trees

- We have an optimal recursive algorithm which takes exponential time.
- Subproblems?
 - The subproblems are identified by the two inputs in the recursive call, the pair (i, j).

イロト イヨト イヨト イヨト

- How many subproblems?
 - As $1 \le i < j \le n$, we have only $O(n^2)$ subproblems.

Multiplying matrices

- The problem Optimal
- substructure

Cost of an optimal sol

- Adding info for opt sol Optimal solution
- DP on trees

• We have an optimal recursive algorithm which takes exponential time.

Subproblems?

The subproblems are identified by the two inputs in the recursive call, the pair (i, j).

イロト イヨト イヨト イヨト

- How many subproblems?
 - As $1 \le i < j \le n$, we have only $O(n^2)$ subproblems.
- We can use DP!

Dynamic programming: Memoization

Multiplying matrices

The problem Optimal substructure

Cost of an optimal sol Adding info for opt

Optimal solution

DP on trees

```
\begin{array}{l} {\sf MCP}(P) \\ {\sf for \ all \ 1 \le i < j \le n \ do} \\ m[i,j] = -1 \\ {\sf for \ i = 1 \ to \ n \ do} \\ m[i,i] = 0 \\ {\sf MCR}(1,n) \\ {\sf return \ (m[1,n])} \end{array}
```

```
\begin{split} & \mathsf{MCR}(i,j) \\ & \text{if } m[i,j]! = -1 \text{ then} \\ & \text{return } (m[i,j]) \\ & m[i,j] = \infty \\ & \text{for } k = i \text{ to } j - 1 \text{ do} \\ & q = \mathsf{MCR}(i,k) + \mathsf{MCR}(k+1,j) + \\ & P[i-1] * P[k] * P[j] \\ & \text{if } q < m[i,j] \text{ then} \\ & m[i,j] = q \\ & \text{return } (m[i,j]) \end{split}
```

イロト イヨト イヨト イヨト

æ

 $T(n) = \Theta(n^3)$ additional space $\Theta(n^2)$.

Dynamic programming: Tabulating

To compute the element m[i, j] the base case is when i = j, we need to access m[i, k] and m[k + 1, j]. We can achieve that by filling the (half) table by diagonals.

イロン イヨン イヨン イヨン

Multiplying matrices

The problem Optimal

Cost of an optimal sol

Adding into for opt sol Optimal solution

DP on trees

Dynamic programming: Tabulating

To compute the element m[i, j] the base case is when i = j, we need to access m[i, k] and m[k + 1, j]. We can achieve that by filling the (half) table by diagonals.

The problem Optimal

Cost of an optimal sol Adding info for opt

SOI Ontimal solution

DP on trees

```
MCP(P)
for i = 1 to n do
  m[i, i] = 0
for d = 2 to n do
  for i = 1 to n - d + 1 do
    i = i + d - 1
                                                    T(n) = \Theta(n^3),
     m[i, j] = \infty
                                                    space = \Theta(n^2).
     for k = i to i - 1 do
       a =
        m[i, k] + m[k+1, j] + P[i-1] * P[k] * P[j]
       if q < m[i, j] then
          m[i, j] = q
return (m[1, n])
                                         イロト イヨト イヨト イヨト 二日
```

Multiplying matrices

Optimal substructure

Cost of an optimal sol

Adding into for op sol Optimal solution

DP on trees

We wish to compute $A_1 \times A_2 \times A_3 \times A_4$ with P = <3, 5, 3, 2, 4>

$i \setminus j$	1	2	3	4
1				
2				
3				
4				

Multiplying matrices

Optimal substructure

Cost of an optimal sol

Adding into for op sol Optimal solution

DP on trees

We wish to compute $A_1 \times A_2 \times A_3 \times A_4$ with P = <3, 5, 3, 2, 4>

$i \setminus j$	1	2	3	4
1	0			
2		0		
3			0	
4				0

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

Multiplying matrices

Optimal substructure

Cost of an optimal sol

Adding into for op sol Optimal solution

DP on trees

We wish to compute $A_1 \times A_2 \times A_3 \times A_4$ with P = <3, 5, 3, 2, 4>

$i \setminus j$	1	2	3	4
1	0	45		
2		0	30	
3			0	24
4				0

ヘロア 人間 アメヨア 人間 アー

æ

Multiplying matrices

Optimal substructure

Cost of an optimal sol

sol Sol

DP on trees

We wish to compute $A_1 \times A_2 \times A_3 \times A_4$ with P = <3, 5, 3, 2, 4>

$i \setminus j$	1	2	3	4
1	0	45	60	
2		0	30	70
3			0	24
4				0

Multiplying matrices

Optimal substructure

Cost of an optimal sol

Adding into for op sol Optimal solution

DP on trees

We wish to compute $A_1 \times A_2 \times A_3 \times A_4$ with P = <3, 5, 3, 2, 4>

$i \setminus j$	1	2	3	4
1	0	45	60	84
2		0	30	70
3			0	24
4				0

Recording more information about the optimal solution

We have been working with the recurrence

$$m[i,j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\} & \text{otherwise} \end{cases}$$

To keep information about the optimal solution the algorithm keep additional information about the value of k that provides the optimal cost as

 $s[i,j] = \begin{cases} i & \text{if } i = j \\ \arg \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\} & \text{otherwise} \end{cases}$

Multiplying matrices

The problem

substructure

sol

sol

DP on trees

Dynamic programming: Memoization

Multiplying matrices The problem Optimal substructure Cost of an optimal sol Adding info for opt

sol Optimal solution

DP on trees

```
\begin{array}{l} \mathsf{MCP}(P) \\ \mathsf{for all } 1 \leq i < j \leq n \ \mathsf{do} \\ m[i,j] = -1 \\ \mathsf{for } i = 1 \ \mathsf{to} \ n \ \mathsf{do} \\ m[i,i] = 0; \ s[i,i] = i; \\ \mathsf{MCR}(1,n) \\ \mathsf{return} \ m,s \end{array}
```

 $\begin{aligned} &\mathsf{MCR}(i,j) \\ &\mathsf{if} \ m[i,j]! = -1 \ \mathsf{then} \\ &\mathsf{return} \ (m[i,j]) \\ &m[i,j] = \infty \\ &\mathsf{for} \ \ k = i \ \mathsf{to} \ j - 1 \ \mathsf{do} \\ &q = \mathsf{MCR}(i,k) + \mathsf{MCR}(k+1,j) + \\ &P[i-1] * P[k] * P[j] \\ &\mathsf{if} \ q < m[i,j] \ \mathsf{then} \\ &m[i,j] = q; \ s[i,j] = k; \\ &\mathsf{return} \ (m[i,j]) \end{aligned}$

Dynamic programming: Tabulating

Adding info for opt

sol

DP on trees

MCP(P)for i = 1 to n do m[i, i] = 0; s[i, i] = 0;for d = 2 to n do for i = 1 to n - d + 1 do i = i + d - 1 $m[i, j] = \infty$ for k = i to i - 1 do a =m[i, k] + m[k+1, j] + P[i-1] * P[k] * P[j]if q < m[i, j] then m[i, j] = q; s[i, j] = k;

return m, s.

Multiplying matrices

The problem

Cost of an optim

Adding info for opt sol

Optimal solution

DP on trees

We wish to compute $A_1 \times A_2 \times A_3 \times A_4$ with P = (3, 5, 3, 2, 4)

1	i∖j	1	2	3	4
	1				
	2				
	3				
	4				

<ロ> <四> <四> <四> <三</td>

Multiplying matrices

The problem

Cost of an optim

Adding info for opt sol

Optimal solution

DP on trees

We wish to compute $A_1 \times A_2 \times A_3 \times A_4$ with P = (3, 5, 3, 2, 4)

$i \setminus j$	1	2	3	4
1	01			
2		02		
3			03	
4				04

ヘロト 人間 とくほとう ほとう

Multiplying matrices

The problem

Optimal substructure

Cost of an optimal sol

Adding info for opt sol

Optimal solution

DP on trees

We wish to compute $A_1 \times A_2 \times A_3 \times A_4$ with P = (3, 5, 3, 2, 4)

$i \setminus j$	1	2	3	4
1	01	45 <mark>1</mark>		
2		02	30 2	
3			03	24 <mark>3</mark>
4				04

ヘロト 人間 とくほとう ほとう

Multiplying matrices

The problem

Optimal substructure

Cost of an optimal sol

Adding info for opt sol

Optimal solution

DP on trees

We wish to compute $A_1 \times A_2 \times A_3 \times A_4$ with P = (3, 5, 3, 2, 4)

$i \setminus j$	1	2	3	4
1	01	45 <mark>1</mark>	60 <mark>1</mark>	
2		02	30 2	70 <mark>3</mark>
3			03	24 <mark>3</mark>
4				04

ヘロト 人間 とくほとう ほとう

Multiplying matrices

The problem

Optimal substructure

Cost of an optimal sol

Adding info for opt sol

Optimal solution

DP on trees

We wish to compute $A_1 \times A_2 \times A_3 \times A_4$ with P = (3, 5, 3, 2, 4)

$i \setminus j$	1	2	3	4
1	01	45 <mark>1</mark>	60 <mark>1</mark>	84 <mark>3</mark>
2		02	30 <mark>2</mark>	70 <mark>3</mark>
3			03	24 <mark>3</mark>
4				04

ヘロト 人間 とくほとう ほとう

Computing optimally the product

Multiplying matrices

The problen

Optimal substructure

Cost of an optima sol

Adding into for opt sol

Optimal solution

DP on trees

s[i, j] contains the value of k that decomposes optimally the product as product of two submatrices, i.e.,

$$A_i \times \cdots \times A_j = (A_i \times \cdots \times A_{s[i,j]})(A_{s[i,j]+1} \times \cdots \times A_j).$$

Therefore,

$$A_1 \times \cdots \times A_n = (A_1 \times \cdots \times A_{s[1,n]})(A_{s[1,n]+1} \times \cdots \times A_n).$$

 We can design a recursive algorithm to perform the product in an optimal way.

The product algorithm

The input is the sequence of matrices $A = A_1, \ldots, A_n$ and the table *s* computed before.

```
\mathbf{Product}(A, s, i, j)
if i = j then
   return (A_i)
```

Optimal solution

DP on trees

```
X = \mathbf{Product}(A, s, i, s[i, j])
Y = Product(A, s, s[i, j] + 1, j)
return (X \times Y)
```

The total number operations required to compute the product is m[1, n] and the cost of the complete algorithm is $T(n) = O(n^3 + m[1, n])$

We wish to compute $A_1 \times A_2 \times A_3 \times A_4$ with P = (3, 5, 3, 2, 4)

$i \setminus j$	1	2	3	4
1	01	45 <mark>1</mark>	60 <mark>1</mark>	84 <mark>3</mark>
2		02	30 <mark>2</mark>	70 <mark>3</mark>
3			03	24 <mark>3</mark>
4				04

The optimal way to minimize the number of operations is

 $(((A_1) \times (A_2 \times A_3)) \times (A_4))$

イロン イヨン イヨン イヨン

3

Multiplying matrices

Ontimal

substructure

sol

sol

Optimal solution

DP on trees

Multiplying matrices

- Multiplying matrices
- The problem
- Optimal substructure
- Cost of an optima sol
- Adding info for op sol
- Optimal solution
- DP on trees

Multiplying matrices

- Multiplying matrices
- The problen
- Optimal substructure
- Cost of an optima sol
- Adding info for opt sol
- Optimal solution
- DP on trees

 In order to compute s, we only need the dimensions of the matrices.

ヘロト 人間 とくほとう ほとう

크

Multiplying matrices

- Multiplying matrices
- The problem
- Optimal substructure
- Cost of an optimal sol
- Adding info for opt sol
- Optimal solution
- DP on trees

- In order to compute s, we only need the dimensions of the matrices.
- What if we use Strassen algorithm to compute a two matrices product instead of the naive algorithm?

Dynamic Programming in Trees

- Multiplying matrices
- The problem
- substructure
- Cost of an optimal sol
- Adding info for opt sol
- Optimal solution
- DP on trees

- Trees are nice graphs easily adapted to recursion.
- Once you root the tree each node can be seen as the root of a subtree.
- We can use Dynamic Programming to give polynomial solutions to "difficult" graph problems when the input is restricted to be a tree, or to have a treee-like structure (small treewidth).
- In this case instead of having a global table, each node in the tree keeps additional information about the associated subproblem.

The MAXIMUM WEIGHT INDEPENDENT SET (MWIS)

Multiplying matrices

The problem Optimal substructure

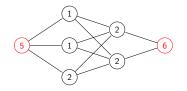
Cost of an optimal sol

Adding info for opt sol

Optimal solution

DP on trees

Given as input G = (V, E), together with a weight $w : V \to \mathbb{R}$. Find the heaviest $S \subseteq V$ such that no two vertices in S are connected in G.



イロト イヨト イヨト イヨト

The MAXIMUM WEIGHT INDEPENDENT SET (MWIS)

Multiplying matrices

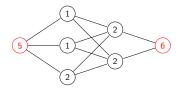
The problem Optimal

Cost of an optimal sol

sol

DP on trees

Given as input G = (V, E), together with a weight $w : V \to \mathbb{R}$. Find the heaviest $S \subseteq V$ such that no two vertices in S are connected in G.



For general graphs, the problem is hard, even for the case in which all vertex have weight 1, i.e. MAXIMUM INDEPENDENT SET is NP-complete.

$\label{eq:Maximum Weight Independent Set on Trees} \end{tabular}$

Multiplying matrices

The problem

substructure

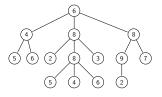
sol Adding info for a

Ontimal solution

DP on trees

Given a tree T = (V, E) choose a $r \in V$ and root it from r

i.e. Given a rooted tree T = (V, E, r) and weights $w : V \to \mathbb{R}$, find the independent set with maximum weight.



Notation:

For $v \in V$, let T_v be the subtree rooted at v. $T = T_r$.

Given $v \in V$ let C(v) be the set of children of v, and G(v) be the set of grandchildren of v.

Characterization of the optimal solution

Multiplying matrices

The problem

Optimal substructure

Cost of an optimal sol

Adding info for opt sol

Optimal solution

DP on trees

Key observation: An IS can't contain vertices which are father-son.

▲ロ▶▲御▶▲臣▶▲臣▶ 臣 のの(

Characterization of the optimal solution

Multiplying matrices

The problem

substructure

Cost of an optima sol

sol

DP on trees

Key observation: An IS can't contain vertices which are father-son.

Let S be an optimal solution.

- If $r \in S$: then $C(r) \not\subseteq S_r$. So $S \{r\}$ contains an optimum solution for each T_v , with $v \in G(r)$.
- If $r \notin S$: S contains an optimum solution for each T_u , with $u \in C(r)$.

イロト イヨト イヨト イヨト

Recursive definition of the optimal solution

- Multiplying matrices
- The problem
- Optimal substructure
- Cost of an optima sol
- Adding info for opt sol
- Optimal solution

DP on trees

To implement DP, tor every node v, we add one value, v.M: the value of the optimal solution for T_v
 Following the recursive structure of the solution we have the following recurrence

$$v.M = \begin{cases} w(v) & v \text{ a leaf,} \\ \max\{\sum_{u \in C(v)u.M}, w(v) + \sum_{u \in G(v)} u.M\} & \text{otherwise.} \end{cases}$$

イロト イヨト イヨト イヨト

Recursive definition of the optimal solution

- Multiplying matrices
- The problem
- Optimal substructure
- Cost of an optima sol
- Adding info for opt sol
- **Optimal solution**

DP on trees

To implement DP, tor every node v, we add one value, v.M: the value of the optimal solution for T_v
 Following the recursive structure of the solution we have the following recurrence

$$v.M = \begin{cases} w(v) & v \text{ a leaf,} \\ \max\{\sum_{u \in C(v)u.M}, w(v) + \sum_{u \in G(v)} u.M\} & \text{otherwise.} \end{cases}$$

■ Notice that for any *v* ∈ *T*: we have to compute $\sum_{u \in C(v)} u.M$ and for this we must access to the children of its children

Recursive definition of the optimal solution

- Multiplying matrices
- The problen
- Optimal substructure
- Cost of an optima sol
- Adding info for op
- Optimal solution

DP on trees

To implement DP, tor every node v, we add one value, v.M: the value of the optimal solution for T_v
 Following the recursive structure of the solution we have the following recurrence

$$v.M = \begin{cases} w(v) & v \text{ a leaf,} \\ \max\{\sum_{u \in C(v)u.M}, w(v) + \sum_{u \in G(v)} u.M\} & \text{otherwise.} \end{cases}$$

- Notice that for any $v \in T$: we have to compute $\sum_{u \in C(v)} u.M$ and for this we must access to the children of its children
- To avoid this we add another value to the node v.M': the sum of the values of the optimal solutions of their children, i.e., ∑_{u∈C(v)} u.M.

Post-order traversal of a rooted tree

Multiplying matrices

The problem Optimal

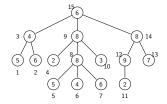
substructure Cost of an optima

Adding info for opt

Optimal solution

DP on trees

To perform the computation, we can follow a DFS, post-order, traversal of the nodes in the tree, computing the additional values at each node.



イロト イヨト イヨト イヨト

DP Algorithm to compute the optimal weight

Multiplying matrices

The problem

substructure Cost of an optin

Adding info for opt

Optimal solution

DP on trees

Let $v_1, \ldots, v_n = r$ be the post-order traversal of T_r WIS T_r Let $v_1, \ldots, v_n = r$ the post-order traversal of T_r for i = 1 to n do if v_i is a leaf then $v_i.M = w[v_i], v_i.M' = 0$ else $v_i.M' = \sum_{u \in C(v)} u.M$ $aux = \sum_{u \in C(v)} u.M'$ $v_i.M = \max\{aux + w[v_i], v_i.M'\}$ return r.M Complexity: space = O(n), time = O(n)

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ● のへで

Top-down traversal to obtain an optimal IS

Multiplying matrices

Optimal substructure

Cost of an optima sol Adding info for on

Optimal solution

DP on trees

$\begin{aligned} & \mathsf{RWIS}(v) \\ & \text{if } v \text{ is a leaf then} \\ & \text{return } (\{v\}) \\ & \text{if } v_i.M = v_i.M' + w[v_i] \text{ then} \\ & S = S \cup \{v_i\} \\ & \text{for } w \in G(v) \text{ do} \\ & S = S \cup \mathsf{RWIS}(w) \\ & \text{else} \\ & \text{for } w \in N(v) \text{ do} \\ & S = S \cup \mathsf{RWIS}(w) \end{aligned}$

return S

RWIS(r) provides an optimal solution in time O(n)

Total cost O(n) and additional space O(n)

・ロト ・ 西 ト ・ 王 ト ・ 王 ・ の へ ()