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Multiplying a Sequence of Matrices

(This example is from Section 15.2 in CormenLRS’ book.)
Multiplication of n matrices Given as input a sequence
of n matrices (A1 × A2 × · · · × An). Minimize the number of
operation in the computation A1 × A2 × · · · × An

Recall that Given matrices A1,A2 with dim(A1) = p0 × p1 and
dim(A2) = p1 × p2, the basic algorithm to A1 × A2 takes time
at most p0p1p2.

Example: 2 3
3 4
4 5

×
[
2 3 4
3 4 5

]
=

13 18 23
18 25 32
23 32 41
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Multiplying a Sequence of Matrices

Matrix multiplication is NOT commutative, so we can not
permute the order of the matrices without changing the
result.

It is associative, so we can put parenthesis as we wish.

How to multiply is equivalent to the problem of how to
parenthesize.

We want to find the way to put parenthesis so that the
product requires the minimum total number of operations.
And use it to compute the product.
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Example Consider A1 × A2 × A3, where dim (A1) = 10× 100
dim (A2) = 100× 5 and dim (A3) = 5× 50.

((A1A2)A3) takes (10× 100× 5) + (10× 5× 50) =
7500 operations,

(A1(A2A3)) takes (100× 5× 50) + (10× 100× 50) =
75000 operations.

The order in which we make the computation of products of
two matrices makes a big difference in the total computation’s
time.
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How to parenthesize (A1 × . . .× An)?

If n = 1 we do not need parenthesis.

Otherwise, decide where to break the sequence
((A1 × · · · × Ak)(Ak+1 × · · · × An))
for some k, 1 ≤ k < n.

Then, combine any way to parenthesize (A1 × · · · × Ak)
with any way to parenthesize (Ak+1 × · · · × An).

Using this structure, we can count the number of ways to
parenthesize (A1 × · · · ×An) as well as to define a backtracking
algorithm that goes over all those ways to parenthesize and
eventually to a brute force recursive algorithm to solve the
problem of computing efficiently the product.
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How many ways to parenthesize (A1 × · · · × An)?

Let P(n) be the number of ways to paranthesize
(A1 × · · · × An). Then,

P(n) =

{
1 if n = 1∑n−1

k=1 P(k)P(n − k) si n ≥ 2

with solution P(n) = 1
n+1

(2n
n

)
= Ω(4n/n3/2)

The Catalan numbers.

Brute force will take too long!
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Structure of an optimal solution

We want to compute (A1 × · · · × An) efficiently.

In an optimal solution the last matrix product must
correspond to a break at some position k ,
((A1 × · · · × Ak)(Ak+1 × · · · × An)) Let
Ai−j = (AiAi+1 · · ·Aj).

The parenthesization of the subchains (A1 × · · · × Ak) and
(Ak+1 × · · · × An) within the optimal parenthesization
must be an optimal paranthesization of (A1 × · · · × Ak),
(Ak+1 × · · · × An). So,

cost(A1 . . .An) =cost(A1 . . .Ak)

+ cost(Ak+1 . . .An) + p0pkpn.
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Structure of an optimal solution

An optimal solution decomposes in optimal solutions of
the same problem on subchains.

Subproblems: compute the product Ai × Ai+1 × · · · × Aj ,
for 1 ≤ i ≤ j ≤ n

Let us call B j
i = Ai × Ai+1 × · · · × Aj .
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Cost Recurrence

Let m[i , j ] be the minimum cost of computing
B j
i = (Ai × . . .× Aj), for 1 ≤ i ≤ j ≤ n.

m[i , j ] is defined by the value k, i ≤ k ≤ j that minimizes

m[i , k] +m[k + 1, j ] + cost (Bk
i ,B

j
k+1).

That is,

m[i , j ] =

{
0 if i = j

mini≤k<j{m[i , k] +m[k + 1, j ] + pi−1pkpj} otherwise
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Computing the cost of an optimal solution: Rec

Assume that vector P holds the values (p0, p1, . . . , pn).

MCR(i , j)
if i = j then

return 0
m[i , j ] = ∞
for k = i to j − 1 do

q = MCR(i , k) + MCR(k + 1, j) + P[i − 1] ∗ P[k] ∗ P[j ]
if q < m[i , j ] then

m[i , j ] = q
return (m[i , j ])

Cost: T (n) ≥ 2
∑n−1

i=1 T (i) + n ∼ Ω(2n).
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Can we apply dynamic programming?

We have an optimal recursive algorithm which takes
exponential time.

Subproblems?
The subproblems are identified by the two inputs in the
recursive call, the pair (i , j).

How many subproblems?
As 1 ≤ i < j ≤ n, we have only O(n2) subproblems.

We can use DP!



Multiplying
matrices

The problem

Optimal
substructure

Cost of an optimal
sol

Adding info for opt
sol

Optimal solution

DP on trees

Can we apply dynamic programming?

We have an optimal recursive algorithm which takes
exponential time.

Subproblems?

The subproblems are identified by the two inputs in the
recursive call, the pair (i , j).

How many subproblems?
As 1 ≤ i < j ≤ n, we have only O(n2) subproblems.

We can use DP!



Multiplying
matrices

The problem

Optimal
substructure

Cost of an optimal
sol

Adding info for opt
sol

Optimal solution

DP on trees

Can we apply dynamic programming?

We have an optimal recursive algorithm which takes
exponential time.

Subproblems?
The subproblems are identified by the two inputs in the
recursive call, the pair (i , j).

How many subproblems?
As 1 ≤ i < j ≤ n, we have only O(n2) subproblems.

We can use DP!



Multiplying
matrices

The problem

Optimal
substructure

Cost of an optimal
sol

Adding info for opt
sol

Optimal solution

DP on trees

Can we apply dynamic programming?

We have an optimal recursive algorithm which takes
exponential time.

Subproblems?
The subproblems are identified by the two inputs in the
recursive call, the pair (i , j).

How many subproblems?

As 1 ≤ i < j ≤ n, we have only O(n2) subproblems.

We can use DP!



Multiplying
matrices

The problem

Optimal
substructure

Cost of an optimal
sol

Adding info for opt
sol

Optimal solution

DP on trees

Can we apply dynamic programming?

We have an optimal recursive algorithm which takes
exponential time.

Subproblems?
The subproblems are identified by the two inputs in the
recursive call, the pair (i , j).

How many subproblems?
As 1 ≤ i < j ≤ n, we have only O(n2) subproblems.

We can use DP!



Multiplying
matrices

The problem

Optimal
substructure

Cost of an optimal
sol

Adding info for opt
sol

Optimal solution

DP on trees

Can we apply dynamic programming?

We have an optimal recursive algorithm which takes
exponential time.

Subproblems?
The subproblems are identified by the two inputs in the
recursive call, the pair (i , j).

How many subproblems?
As 1 ≤ i < j ≤ n, we have only O(n2) subproblems.

We can use DP!



Multiplying
matrices

The problem

Optimal
substructure

Cost of an optimal
sol

Adding info for opt
sol

Optimal solution

DP on trees

Dynamic programming: Memoization

MCP(P)
for all 1 ≤ i < j ≤ n do

m[i , j ] = −1
for i = 1 to n do

m[i , i ] = 0
MCR(1, n)
return (m[1, n])

MCR(i , j)
if m[i , j ]! = −1 then

return (m[i , j ])
m[i , j ] = ∞
for k = i to j − 1 do

q = MCR(i , k) + MCR(k + 1, j) +
P[i − 1] ∗ P[k] ∗ P[j ]
if q < m[i , j ] then

m[i , j ] = q
return (m[i , j ])

T (n) = Θ(n3) additional space Θ(n2).
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Dynamic programming: Tabulating

To compute the element m[i , j ] the base case is when i = j , we
need to access m[i , k] and m[k + 1, j ]. We can achieve that by
filling the (half) table by diagonals.

MCP(P)
for i = 1 to n do

m[i , i ] = 0
for d = 2 to n do

for i = 1 to n − d + 1 do
j = i + d − 1
m[i , j ] = ∞
for k = i to j − 1 do

q =
m[i , k]+m[k+1, j ]+P[i−1]∗P[k]∗P[j ]
if q < m[i , j ] then

m[i , j ] = q
return (m[1, n])

T (n) = Θ(n3),
space = Θ(n2).
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Example.

We wish to compute A1 × A2 × A3 × A4 with
P =< 3, 5, 3, 2, 4 >

i \ j 1 2 3 4

1

2

3

4
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Example.

We wish to compute A1 × A2 × A3 × A4 with
P =< 3, 5, 3, 2, 4 >

i \ j 1 2 3 4

1 0

2 0

3 0

4 0
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Example.

We wish to compute A1 × A2 × A3 × A4 with
P =< 3, 5, 3, 2, 4 >

i \ j 1 2 3 4

1 0 45

2 0 30

3 0 24

4 0
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Example.

We wish to compute A1 × A2 × A3 × A4 with
P =< 3, 5, 3, 2, 4 >

i \ j 1 2 3 4

1 0 45 60

2 0 30 70

3 0 24

4 0
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Example.

We wish to compute A1 × A2 × A3 × A4 with
P =< 3, 5, 3, 2, 4 >

i \ j 1 2 3 4

1 0 45 60 84

2 0 30 70

3 0 24

4 0
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Recording more information about the optimal
solution

We have been working with the recurrence

m[i , j ] =

{
0 if i = j

mini≤k<j{m[i , k] +m[k + 1, j ] + pi−1pkpj} otherwise

To keep information about the optimal solution the algorithm
keep additional information about the value of k that provides
the optimal cost as

s[i , j ] =

{
i if i = j

arg mini≤k<j{m[i , k] +m[k + 1, j ] + pi−1pkpj} otherwise
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Dynamic programming: Memoization

MCP(P)
for all 1 ≤ i < j ≤ n do

m[i , j ] = −1
for i = 1 to n do

m[i , i ] = 0; s[i , i ] = i ;
MCR(1, n)
return m, s

MCR(i , j)
if m[i , j ]! = −1 then

return (m[i , j ])
m[i , j ] = ∞
for k = i to j − 1 do

q = MCR(i , k) + MCR(k + 1, j) +
P[i − 1] ∗ P[k] ∗ P[j ]
if q < m[i , j ] then

m[i , j ] = q; s[i , j ] = k;
return (m[i , j ])
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Dynamic programming: Tabulating

MCP(P)
for i = 1 to n do

m[i , i ] = 0; s[i , i ] = 0;
for d = 2 to n do

for i = 1 to n − d + 1 do
j = i + d − 1
m[i , j ] = ∞
for k = i to j − 1 do

q =
m[i , k]+m[k+1, j ]+P[i−1]∗P[k]∗P[j ]
if q < m[i , j ] then

m[i , j ] = q; s[i , j ] = k ;
return m, s.
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Example.

We wish to compute A1 × A2 × A3 × A4 with P = (3, 5, 3, 2, 4)

i \ j 1 2 3 4

1

2

3

4
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Example.

We wish to compute A1 × A2 × A3 × A4 with P = (3, 5, 3, 2, 4)

i \ j 1 2 3 4

1 0 1

2 0 2

3 0 3

4 0 4
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Example.

We wish to compute A1 × A2 × A3 × A4 with P = (3, 5, 3, 2, 4)

i \ j 1 2 3 4

1 0 1 45 1

2 0 2 30 2

3 0 3 24 3

4 0 4
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Example.

We wish to compute A1 × A2 × A3 × A4 with P = (3, 5, 3, 2, 4)

i \ j 1 2 3 4
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3 0 3 24 3

4 0 4
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Computing optimally the product

s[i , j ] contains the value of k that decomposes optimally
the product as product of two submatrices, i.e.,

Ai × · · · × Aj = (Ai × · · · × As[i ,j])(As[i ,j]+1 × · · · × Aj).

Therefore,

A1 × · · · × An = (A1 × · · · × As[1,n])(As[1,n]+1 × · · · × An).

We can design a recursive algorithm to perform the
product in an optimal way.
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The product algorithm

The input is the sequence of matrices A = A1, . . . ,An and the
table s computed before.

Product(A, s, i , j)
if i = j then

return (Ai )
X =Product(A, s, i , s[i , j ])
Y =Product(A, s, s[i , j ] + 1, j)
return (X × Y )

The total number operations required to compute the product
is m[1, n] and the cost of the complete algorithm is
T (n) = O(n3 +m[1, n])
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Example.

We wish to compute A1 × A2 × A3 × A4 with P = (3, 5, 3, 2, 4)

i \ j 1 2 3 4

1 0 1 45 1 60 1 84 3

2 0 2 30 2 70 3

3 0 3 24 3

4 0 4

The optimal way to minimize the number of operations is

(((A1)× (A2 × A3))× (A4))
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Multiplying matrices

In order to compute s, we only need the dimensions of the
matrices.

What if we use Strassen algorithm to compute a two
matrices product instead of the naive algorithm?
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Dynamic Programming in Trees

Trees are nice graphs easily adapted to recursion.

Once you root the tree each node can be seen as the root
of a subtree .

We can use Dynamic Programming to give polynomial
solutions to ”difficult” graph problems when the input is
restricted to be a tree, or to have a treee-like structure
(small treewidth).

In this case instead of having a global table, each node in
the tree keeps additional information about the associated
subproblem.
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The Maximum Weight Independent Set
(MWIS)

Given as input G = (V ,E ), together with a weight w : V → R.
Find the heaviest S ⊆ V such that no two vertices in S are
connected in G .

5

1

1

2

2

2

6

For general graphs, the problem is hard, even for the case in
which all vertex have weight 1, i.e. Maximum Independent
Set is NP-complete.
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Maximum Weight Independent Set on
Trees

Given a tree T = (V ,E ) choose a r ∈ V and root it from r

i.e. Given a rooted tree
T = (V ,E , r) and weights
w : V → R, find the independent set
with maximum weight.

6

4 8 8

5 6 2 8 3 9 7

5 4 6 2

Notation:

For v ∈ V , let Tv be the subtree rooted at v . T = Tr .

Given v ∈ V let C (v) be the set of children of v , and
G (v) be the set of grandchildren of v .
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Characterization of the optimal solution

Key observation: An IS can’t contain vertices which are
father-son.

Let S be an optimal solution.

If r ∈ S : then C (r) ̸⊆ Sr . So S − {r} contains an
optimum solution for each Tv , with v ∈ G (r).

If r ̸∈ S : S contains an optimum solution for each Tu,
with u ∈ C (r).
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Recursive definition of the optimal solution

To implement DP, tor every node v , we add one value,
v .M: the value of the optimal solution for Tv

Following the recursive structure of the solution we have
the following recurrence

v .M =

{
w(v) v a leaf,

max{
∑

u∈C(v)u.M ,w(v) +
∑

u∈G(v) u.M} otherwise.

Notice that for any v ∈ T : we have to compute∑
u∈C(v) u.M and for this we must access to the children

of its children

To avoid this we add another value to the node
v .M ′: the sum of the values of the optimal solutions of
their children, i.e.,

∑
u∈C(v) u.M.
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Post-order traversal of a rooted tree

To perform the computation, we can follow a DFS, post-order,
traversal of the nodes in the tree, computing the additional
values at each node.

6

4 8 8

5 6 2 8 3 9 7

5 4 6 2

15

3 9 14

1 2 4

8

10

12 13

5 6 7 11
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DP Algorithm to compute the optimal weight

Let v1, . . . , vn = r be the post-order traversal of Tr

WIS Tr

Let v1, . . . , vn = r the post-order traversal of Tr

for i = 1 to n do
if vi is a leaf then

vi .M = w [vi ], vi .M
′ = 0

else
vi .M

′ =
∑

u∈C(v) u.M

aux =
∑

u∈C(v) u.M
′

vi .M = max{aux + w [vi ], vi .M
′}

return r.M

Complexity: space = O(n), time = O(n)
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Top-down traversal to obtain an optimal IS

RWIS(v)
if v is a leaf then
return ({v})

if vi .M = vi .M
′ + w [vi ] then

S = S ∪ {vi}
for w ∈ G (v) do
S = S ∪ RWIS(w)

else
for w ∈ N(v) do

S = S ∪ RWIS(w)
return S

RWIS(r)

provides an optimal solution
in time O(n)

Total cost O(n) and
additional space O(n)
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