Dynamic Programming II

Multiplying a Sequence of Matrices

(This example is from Section 15.2 in CormenLRS' book.)
Multiplication of n matrices Given as input a sequence of n matrices $\left(A_{1} \times A_{2} \times \cdots \times A_{n}\right)$. Minimize the number of operation in the computation $A_{1} \times A_{2} \times \cdots \times A_{n}$ Recall that Given matrices A_{1}, A_{2} with $\operatorname{dim}\left(A_{1}\right)=p_{0} \times p_{1}$ and $\operatorname{dim}\left(A_{2}\right)=p_{1} \times p_{2}$, the basic algorithm to $A_{1} \times A_{2}$ takes time at most $p_{0} p_{1} p_{2}$.

Example:

$$
\left[\begin{array}{ll}
2 & 3 \\
3 & 4 \\
4 & 5
\end{array}\right] \times\left[\begin{array}{lll}
2 & 3 & 4 \\
3 & 4 & 5
\end{array}\right]=\left[\begin{array}{lll}
13 & 18 & 23 \\
18 & 25 & 32 \\
23 & 32 & 41
\end{array}\right]
$$

Multiplying a Sequence of Matrices

■ Matrix multiplication is NOT commutative, so we can not permute the order of the matrices without changing the result.

- It is associative, so we can put parenthesis as we wish.

■ How to multiply is equivalent to the problem of how to parenthesize.
■ We want to find the way to put parenthesis so that the product requires the minimum total number of operations. And use it to compute the product.

Example Consider $A_{1} \times A_{2} \times A_{3}$, where $\operatorname{dim}\left(A_{1}\right)=10 \times 100$ $\operatorname{dim}\left(A_{2}\right)=100 \times 5$ and $\operatorname{dim}\left(A_{3}\right)=5 \times 50$.

- $\left(\left(A_{1} A_{2}\right) A_{3}\right)$ takes $(10 \times 100 \times 5)+(10 \times 5 \times 50)=$ 7500 operations,
- $\left(A_{1}\left(A_{2} A_{3}\right)\right)$ takes $(100 \times 5 \times 50)+(10 \times 100 \times 50)=$ 75000 operations.

The order in which we make the computation of products of two matrices makes a big difference in the total computation's time.

How to parenthesize $\left(A_{1} \times \ldots \times A_{n}\right)$?

- If $n=1$ we do not need parenthesis.
- Otherwise, decide where to break the sequence $\left(\left(A_{1} \times \cdots \times A_{k}\right)\left(A_{k+1} \times \cdots \times A_{n}\right)\right)$ for some $k, 1 \leq k<n$.
- Then, combine any way to parenthesize $\left(A_{1} \times \cdots \times A_{k}\right)$ with any way to parenthesize $\left(A_{k+1} \times \cdots \times A_{n}\right)$.
Using this structure, we can count the number of ways to parenthesize $\left(A_{1} \times \cdots \times A_{n}\right)$ as well as to define a backtracking algorithm that goes over all those ways to parenthesize and eventually to a brute force recursive algorithm to solve the problem of computing efficiently the product.

How many ways to parenthesize $\left(A_{1} \times \cdots \times A_{n}\right)$?

Optimal solution

Let $P(n)$ be the number of ways to paranthesize $\left(A_{1} \times \cdots \times A_{n}\right)$. Then,

$$
P(n)= \begin{cases}1 & \text { if } n=1 \\ \sum_{k=1}^{n-1} P(k) P(n-k) & \text { si } n \geq 2\end{cases}
$$

with solution $P(n)=\frac{1}{n+1}\binom{2 n}{n}=\Omega\left(4^{n} / n^{3 / 2}\right)$
The Catalan numbers.
Brute force will take too long!

Structure of an optimal solution

- We want to compute $\left(A_{1} \times \cdots \times A_{n}\right)$ efficiently.
- In an optimal solution the last matrix product must correspond to a break at some position k, $\left(\left(A_{1} \times \cdots \times A_{k}\right)\left(A_{k+1} \times \cdots \times A_{n}\right)\right)$ Let $A_{i-j}=\left(A_{i} A_{i+1} \cdots A_{j}\right)$.
- The parenthesization of the subchains $\left(A_{1} \times \cdots \times A_{k}\right)$ and ($A_{k+1} \times \cdots \times A_{n}$) within the optimal parenthesization must be an optimal paranthesization of $\left(A_{1} \times \cdots \times A_{k}\right)$, $\left(A_{k+1} \times \cdots \times A_{n}\right)$. So,

$$
\begin{aligned}
\operatorname{cost}\left(A_{1} \ldots A_{n}\right)= & \operatorname{cost}\left(A_{1} \ldots A_{k}\right) \\
& +\operatorname{cost}\left(A_{k+1} \ldots A_{n}\right)+p_{0} p_{k} p_{n}
\end{aligned}
$$

Structure of an optimal solution

■ An optimal solution decomposes in optimal solutions of the same problem on subchains.
■ Subproblems: compute the product $A_{i} \times A_{i+1} \times \cdots \times A_{j}$, for $1 \leq i \leq j \leq n$
■ Let us call $B_{i}^{j}=A_{i} \times A_{i+1} \times \cdots \times A_{j}$.

Cost Recurrence

- Let $m[i, j]$ be the minimum cost of computing $B_{i}^{j}=\left(A_{i} \times \ldots \times A_{j}\right)$, for $1 \leq i \leq j \leq n$.
■ $m[i, j]$ is defined by the value $k, i \leq k \leq j$ that minimizes

$$
m[i, k]+m[k+1, j]+\operatorname{cost}\left(B_{i}^{k}, B_{k+1}^{j}\right)
$$

- That is,

$$
m[i, j]= \begin{cases}0 & \text { if } i=j \\ \min _{i \leq k<j}\left\{m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}\right\} & \text { otherwise }\end{cases}
$$

Computing the cost of an optimal solution: Rec

Assume that vector P holds the values $\left(p_{0}, p_{1}, \ldots, p_{n}\right)$.

Multiplying

matrices

The problem

Optimal

```
\(\operatorname{MCR}(i, j)\)
if \(i=j\) then
        return 0
    \(m[i, j]=\infty\)
    for \(k=i\) to \(j-1\) do
        \(q=\operatorname{MCR}(i, k)+\operatorname{MCR}(k+1, j)+P[i-1] * P[k] * P[j]\)
        if \(q<m[i, j]\) then
        \(m[i, j]=q\)
return \((m[i, j])\)
```

Cost: $T(n) \geq 2 \sum_{i=1}^{n-1} T(i)+n \sim \Omega\left(2^{n}\right)$.

Can we apply dynamic programming?

■ We have an optimal recursive algorithm which takes exponential time.

- Subproblems?

The subproblems are identified by the two inputs in the recursive call, the pair (i, j).
■ How many subproblems?
As $1 \leq i<j \leq n$, we have only $O\left(n^{2}\right)$ subproblems.

- We can use DP!

Dynamic programming: Memoization

$\operatorname{MCP}(P)$
for all $1 \leq i<j \leq n$ do

$$
m[i, j]=-1
$$

for $i=1$ to n do $m[i, i]=0$
$\operatorname{MCR}(1, n)$
return $(m[1, n])$

```
\(\operatorname{MCR}(i, j)\)
```

$\operatorname{MCR}(i, j)$
if $m[i, j]$! $=-1$ then
if $m[i, j]$! $=-1$ then
return $(m[i, j])$
return $(m[i, j])$
$m[i, j]=\infty$
$m[i, j]=\infty$
for $k=i$ to $j-1$ do
for $k=i$ to $j-1$ do
$q=\operatorname{MCR}(i, k)+\operatorname{MCR}(k+1, j)+$
$q=\operatorname{MCR}(i, k)+\operatorname{MCR}(k+1, j)+$
$P[i-1] * P[k] * P[j]$
$P[i-1] * P[k] * P[j]$
if $q<m[i, j]$ then
if $q<m[i, j]$ then
$m[i, j]=q$
$m[i, j]=q$
return $(m[i, j])$

```
return \((m[i, j])\)
```

 \(T(n)=\Theta\left(n^{3}\right)\) additional space \(\Theta\left(n^{2}\right)\).

Dynamic programming: Tabulating

To compute the element $m[i, j]$ the base case is when $i=j$, we need to access $m[i, k]$ and $m[k+1, j]$. We can achieve that by filling the (half) table by diagonals.

```
MCP \((P)\)
for \(i=1\) to \(n\) do
    \(m[i, i]=0\)
for \(d=2\) to \(n\) do
    for \(i=1\) to \(n-d+1\) do
        \(j=i+d-1\)
        \(m[i, j]=\infty\)
        for \(k=i\) to \(j-1\) do
        \(q=\)
        \(m[i, k]+m[k+1, j]+P[i-1] * P[k] * P[j]\)
        if \(q<m[i, j]\) then
            \(m[i, j]=q\)
return ( \(m[1, n]\) )
```


Example.

Multiplying

matrices

The problem
Optimal
substructure
Cost of an optimal sol
Adding info for opt sol
Optimal solution DP on trees

We wish to compute $A_{1} \times A_{2} \times A_{3} \times A_{4}$ with $P=<3,5,3,2,4>$

$i \backslash j$	1	2	3	4
1				
2				
3				
4				

Example.

Multiplying

matrices

The problem
Optimal
substructure
Cost of an optimal sol
Adding info for opt sol
Optimal solution

We wish to compute $A_{1} \times A_{2} \times A_{3} \times A_{4}$ with $P=<3,5,3,2,4>$

$i \backslash j$	1	2	3	4
1	0			
2		0		
3			0	
4				0

Example.

Multiplying

matrices

The problem
Optimal
substructure
Cost of an optimal sol
Adding info for opt sol
Optimal solution

We wish to compute $A_{1} \times A_{2} \times A_{3} \times A_{4}$ with $P=<3,5,3,2,4>$

$i \backslash j$	1	2	3	4
1	0	45		
2		0	30	
3			0	24
4				0

Example.

Multiplying

matrices

The problem
Optimal
substructure
Cost of an optimal sol
Adding info for opt sol
Optimal solution

We wish to compute $A_{1} \times A_{2} \times A_{3} \times A_{4}$ with $P=<3,5,3,2,4>$

$i \backslash j$	1	2	3	4
1	0	45	60	
2		0	30	70
3			0	24
4				0

Example.

Multiplying

matrices

The problem
Optimal
substructure
Cost of an optimal

Adding info for opt sol
Optimal solution

We wish to compute $A_{1} \times A_{2} \times A_{3} \times A_{4}$ with $P=<3,5,3,2,4>$

$i \backslash j$	1	2	3	4
1	0	45	60	84
2		0	30	70
3			0	24
4				0

Recording more information about the optimal solution

We have been working with the recurrence

$$
m[i, j]= \begin{cases}0 & \text { if } i=j \\ \min _{i \leq k<j}\left\{m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}\right\} & \text { otherwise }\end{cases}
$$

To keep information about the optimal solution the algorithm keep additional information about the value of k that provides the optimal cost as

$$
s[i, j]= \begin{cases}i & \text { if } i=j \\ \arg \min _{i \leq k<j}\left\{m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}\right\} & \text { otherwise }\end{cases}
$$

Dynamic programming: Memoization

Optimal solution

```
\(\operatorname{MCR}(i, j)\)
if \(m[i, j]\) ! \(=-1\) then
    return ( \(m[i, j]\) )
\(m[i, j]=\infty\)
for \(k=i\) to \(j-1\) do
    \(q=\operatorname{MCR}(i, k)+\operatorname{MCR}(k+1, j)+\)
    \(P[i-1] * P[k] * P[j]\)
    if \(q<m[i, j]\) then
        \(m[i, j]=q ; s[i, j]=k ;\)
return \((m[i, j])\)
```


Dynamic programming: Tabulating

The problem

Optimal
substructure
Cost of an optimal

Adding info for opt sol
Optimal solution
DP on trees

```
\(\operatorname{MCP}(P)\)
for \(i=1\) to \(n\) do
    \(m[i, i]=0 ; s[i, i]=0\);
for \(d=2\) to \(n\) do
    for \(i=1\) to \(n-d+1\) do
        \(j=i+d-1\)
        \(m[i, j]=\infty\)
        for \(k=i\) to \(j-1\) do
        \(q=\)
        \(m[i, k]+m[k+1, j]+P[i-1] * P[k] * P[j]\)
        if \(q<m[i, j]\) then
            \(m[i, j]=q ; s[i, j]=k ;\)
```

return m, s.

Example.

Multiplying

matrices

The problem
Optimal
substructure
Cost of an optimal
Adding info for opt sol
Optimal solution

We wish to compute $A_{1} \times A_{2} \times A_{3} \times A_{4}$ with $P=(3,5,3,2,4)$

$i \backslash j$	1	2	3	4
1				
2				
3				
4				

Example.

Multiplying

matrices
The problem
Optimal
substructure
Cost of an optimal
Adding info for opt sol
Optimal solution

We wish to compute $A_{1} \times A_{2} \times A_{3} \times A_{4}$ with $P=(3,5,3,2,4)$

$i \backslash j$	1	2	3	4
1	01			
2		0	2	
3			03	
4				04

Example.

Multiplying

matrices
The problem
Optimal
substructure
Cost of an optimal
Adding info for opt sol
Optimal solution

We wish to compute $A_{1} \times A_{2} \times A_{3} \times A_{4}$ with $P=(3,5,3,2,4)$

$i \backslash j$	1	2	3	4
1	01	451		
2		02	302	
3			03	243
4				04

Example.

Multiplying

matrices

The problem

Optimal
substructure
Cost of an optimal
Adding info for opt sol
Optimal solution

We wish to compute $A_{1} \times A_{2} \times A_{3} \times A_{4}$ with $P=(3,5,3,2,4)$

$i \backslash j$	1	2	3	4
1	01	451	601	
2		02	302	703
3			03	243
4				04

Example.

Multiplying

matrices

The problem

Optimal
substructure
Cost of an optimal
Adding info for opt sol
Optimal solution

We wish to compute $A_{1} \times A_{2} \times A_{3} \times A_{4}$ with $P=(3,5,3,2,4)$

$i \backslash j$	1	2	3	4
1	01	451	601	843
2		02	302	703
3			03	243
4				04

Computing optimally the product

$$
A_{i} \times \cdots \times A_{j}=\left(A_{i} \times \cdots \times A_{s[i, j]}\right)\left(A_{s[i, j]+1} \times \cdots \times A_{j}\right)
$$

■ $s[i, j]$ contains the value of k that decomposes optimally the product as product of two submatrices, i.e.,

■ Therefore,

$$
A_{1} \times \cdots \times A_{n}=\left(A_{1} \times \cdots \times A_{s[1, n]}\right)\left(A_{s[1, n]+1} \times \cdots \times A_{n}\right)
$$

■ We can design a recursive algorithm to perform the product in an optimal way.

The product algorithm

The input is the sequence of matrices $A=A_{1}, \ldots, A_{n}$ and the table s computed before.

$$
\operatorname{Product}(A, s, i, j)
$$

if $i=j$ then
return $\left(A_{i}\right)$
$X=\operatorname{Product}(A, s, i, s[i, j])$
$Y=\operatorname{Product}(A, s, s[i, j]+1, j)$
return $(X \times Y)$
The total number operations required to compute the product is $m[1, n]$ and the cost of the complete algorithm is

$$
T(n)=O\left(n^{3}+m[1, n]\right)
$$

Example.

We wish to compute $A_{1} \times A_{2} \times A_{3} \times A_{4}$ with $P=(3,5,3,2,4)$

$i \backslash j$	1	2	3	4
1	01	451	601	843
2		02	302	703
3			03	243
4				04

The optimal way to minimize the number of operations is

$$
\left(\left(\left(A_{1}\right) \times\left(A_{2} \times A_{3}\right)\right) \times\left(A_{4}\right)\right)
$$

Multiplying matrices

- In order to compute s, we only need the dimensions of the matrices.
- What if we use Strassen algorithm to compute a two matrices product instead of the naive algorithm?

Dynamic Programming in Trees

- Trees are nice graphs easily adapted to recursion.

■ Once you root the tree each node can be seen as the root of a subtree .

■ We can use Dynamic Programming to give polynomial solutions to "difficult" graph problems when the input is restricted to be a tree, or to have a treee-like structure (small treewidth).
■ In this case instead of having a global table, each node in the tree keeps additional information about the associated subproblem.

The Maximum Weight Independent Set (MWIS)

Given as input $G=(V, E)$, together with a weight $w: V \rightarrow \mathbb{R}$. Find the heaviest $S \subseteq V$ such that no two vertices in S are connected in G.

For general graphs, the problem is hard, even for the case in which all vertex have weight 1, i.e. Maximum Independent SET is NP-complete.

Given a tree $T=(V, E)$ choose a $r \in V$ and root it from r
i.e. Given a rooted tree
$T=(V, E, r)$ and weights
$w: V \rightarrow \mathbb{R}$, find the independent set with maximum weight.

Notation:
$■$ For $v \in V$, let T_{v} be the subtree rooted at $v . T=T_{r}$.

- Given $v \in V$ let $C(v)$ be the set of children of v, and $G(v)$ be the set of grandchildren of v.

Characterization of the optimal solution

Key observation: An IS can't contain vertices which are father-son.
Let S be an optimal solution.

- If $r \in S$: then $C(r) \nsubseteq S_{r}$. So $S-\{r\}$ contains an optimum solution for each T_{v}, with $v \in G(r)$.
- If $r \notin S: S$ contains an optimum solution for each T_{u}, with $u \in C(r)$.

Recursive definition of the optimal solution

■ To implement DP, tor every node v, we add one value, $v . M$: the value of the optimal solution for T_{v} Following the recursive structure of the solution we have the following recurrence

$$
v \cdot M= \begin{cases}w(v) & v \text { a leaf, } \\ \max \left\{\sum_{u \in C(v) u \cdot M}, w(v)+\sum_{u \in G(v)} u \cdot M\right\} & \text { otherwise } .\end{cases}
$$

■ Notice that for any $v \in T$: we have to compute $\sum_{u \in C(v)} u . M$ and for this we must access to the children of its children

- To avoid this we add another value to the node v. M^{\prime} : the sum of the values of the optimal solutions of their children, i.e., $\sum_{u \in C(v)} u . M$.

Post-order traversal of a rooted tree

To perform the computation, we can follow a DFS, post-order, traversal of the nodes in the tree, computing the additional values at each node.

DP Algorithm to compute the optimal weight

Multiplying

matrices

The problem

Let $v_{1}, \ldots, v_{n}=r$ be the post-order traversal of T_{r} WIS T_{r}
Let $v_{1}, \ldots, v_{n}=r$ the post-order traversal of T_{r} for $i=1$ to n do
if v_{i} is a leaf then

$$
v_{i} \cdot M=w\left[v_{i}\right], v_{i} \cdot M^{\prime}=0
$$

else

$$
\begin{aligned}
& v_{i} \cdot M^{\prime}=\sum_{u \in C(v)} u \cdot M \\
& a u x=\sum_{u \in C(v)} u \cdot M^{\prime} \\
& v_{i} \cdot M=\max \left\{a u x+w\left[v_{i}\right], v_{i} \cdot M^{\prime}\right\}
\end{aligned}
$$

return r.M
Complexity: space $=O(n)$, time $=O(n)$

Top-down traversal to obtain an optimal IS

RWIS(v)
if v is a leaf then return (\{v\})
if $v_{i} \cdot M=v_{i} \cdot M^{\prime}+w\left[v_{i}\right]$ then $S=S \cup\left\{v_{i}\right\}$ for $w \in G(v)$ do $S=S \cup \operatorname{RWIS}(w)$
else

$$
\begin{aligned}
& \text { for } w \in N(v) \text { do } \\
& \quad S=S \cup \operatorname{RWIS}(w)
\end{aligned}
$$

return S

RWIS(r)
provides an optimal solution in time $O(n)$

Total cost $O(n)$ and additional space $O(n)$

