
The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Algorithmics: Basic definitions and concepts

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

The Algorithmics course

Already known (EDA level)

Algorithms cost and Asymptotic notation

Sorting algorithms: Mergesort, Quicksort, . . .

Divide and conquer, recurrences, master theorem

Complexity, P and NP, reductions

Foundations on probability

Basic data structures: Arrays, lists, stacks, queues, heaps,
hashing . . .

Basics on graph theory, graph data structures

Graph and digrah traversals (BFS, DFS) and applications.

Backtracking algorithms

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

The Algorithmics course

Already known (EDA level)

Algorithms cost and Asymptotic notation

Sorting algorithms: Mergesort, Quicksort, . . .

Divide and conquer, recurrences, master theorem

Complexity, P and NP, reductions

Foundations on probability

Basic data structures: Arrays, lists, stacks, queues, heaps,
hashing . . .

Basics on graph theory, graph data structures

Graph and digrah traversals (BFS, DFS) and applications.

Backtracking algorithms

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

The Algorithmics course

Already known (EDA level)

Algorithms cost and Asymptotic notation

Sorting algorithms: Mergesort, Quicksort, . . .

Divide and conquer, recurrences, master theorem

Complexity, P and NP, reductions

Foundations on probability

Basic data structures: Arrays, lists, stacks, queues, heaps,
hashing . . .

Basics on graph theory, graph data structures

Graph and digrah traversals (BFS, DFS) and applications.

Backtracking algorithms

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

The Algorithmics course

Already known (EDA level)

Algorithms cost and Asymptotic notation

Sorting algorithms: Mergesort, Quicksort, . . .

Divide and conquer, recurrences, master theorem

Complexity, P and NP, reductions

Foundations on probability

Basic data structures: Arrays, lists, stacks, queues, heaps,
hashing . . .

Basics on graph theory, graph data structures

Graph and digrah traversals (BFS, DFS) and applications.

Backtracking algorithms

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

The Algorithmics course

Already known (EDA level)

Algorithms cost and Asymptotic notation

Sorting algorithms: Mergesort, Quicksort, . . .

Divide and conquer, recurrences, master theorem

Complexity, P and NP, reductions

Foundations on probability

Basic data structures: Arrays, lists, stacks, queues, heaps,
hashing . . .

Basics on graph theory, graph data structures

Graph and digrah traversals (BFS, DFS) and applications.

Backtracking algorithms

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

The Algorithmics course

Already known (EDA level)

Algorithms cost and Asymptotic notation

Sorting algorithms: Mergesort, Quicksort, . . .

Divide and conquer, recurrences, master theorem

Complexity, P and NP, reductions

Foundations on probability

Basic data structures: Arrays, lists, stacks, queues, heaps,
hashing . . .

Basics on graph theory, graph data structures

Graph and digrah traversals (BFS, DFS) and applications.

Backtracking algorithms

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

The Algorithmics course

Already known (EDA level)

Algorithms cost and Asymptotic notation

Sorting algorithms: Mergesort, Quicksort, . . .

Divide and conquer, recurrences, master theorem

Complexity, P and NP, reductions

Foundations on probability

Basic data structures: Arrays, lists, stacks, queues, heaps,
hashing . . .

Basics on graph theory, graph data structures

Graph and digrah traversals (BFS, DFS) and applications.

Backtracking algorithms

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

The Algorithmics course

Already known (EDA level)

Algorithms cost and Asymptotic notation

Sorting algorithms: Mergesort, Quicksort, . . .

Divide and conquer, recurrences, master theorem

Complexity, P and NP, reductions

Foundations on probability

Basic data structures: Arrays, lists, stacks, queues, heaps,
hashing . . .

Basics on graph theory, graph data structures

Graph and digrah traversals (BFS, DFS) and applications.

Backtracking algorithms

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

The Algorithmics course

Already known (EDA level)

Algorithms cost and Asymptotic notation

Sorting algorithms: Mergesort, Quicksort, . . .

Divide and conquer, recurrences, master theorem

Complexity, P and NP, reductions

Foundations on probability

Basic data structures: Arrays, lists, stacks, queues, heaps,
hashing . . .

Basics on graph theory, graph data structures

Graph and digrah traversals (BFS, DFS) and applications.

Backtracking algorithms

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

The Algorithmics course

Topics to cover:

Divide and conquer: Linear Selection

Sorting in linear time (when? how?)

Greedy algorithms

Dynamic programming

Distances in graphs

Flow networks: problems, algorithms and applications

Linear Programming

Approximation algorithms

Streaming algorithms

Provide models to solve real problems

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

References

Main references:

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

”The algorithmic lenses: C. Papadimitriou”

In 1936 Alan Turing demonstrated the universality of
computational principles with his mathematical model of
the Turing machine.

Theoretical Computer Science views computation as a
ubiquitous phenomenon, not one that it is limited to
computers.

Algorithms themselves have evolved into a complex set of
techniques, for instances self-learning, Web services,
concurrent, distributed or parallel, etc... Each of them
with ad-hoc relevant computational limitations and social
implications.

However, this course will be a course on classical
algorithms, which are the core needed to understand more
advanced computational material.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

”The algorithmic lenses: C. Papadimitriou”

In 1936 Alan Turing demonstrated the universality of
computational principles with his mathematical model of
the Turing machine.

Theoretical Computer Science views computation as a
ubiquitous phenomenon, not one that it is limited to
computers.

Algorithms themselves have evolved into a complex set of
techniques, for instances self-learning, Web services,
concurrent, distributed or parallel, etc... Each of them
with ad-hoc relevant computational limitations and social
implications.

However, this course will be a course on classical
algorithms, which are the core needed to understand more
advanced computational material.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

”The algorithmic lenses: C. Papadimitriou”

In 1936 Alan Turing demonstrated the universality of
computational principles with his mathematical model of
the Turing machine.

Theoretical Computer Science views computation as a
ubiquitous phenomenon, not one that it is limited to
computers.

Algorithms themselves have evolved into a complex set of
techniques, for instances self-learning, Web services,
concurrent, distributed or parallel, etc... Each of them
with ad-hoc relevant computational limitations and social
implications.

However, this course will be a course on classical
algorithms, which are the core needed to understand more
advanced computational material.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

”The algorithmic lenses: C. Papadimitriou”

In 1936 Alan Turing demonstrated the universality of
computational principles with his mathematical model of
the Turing machine.

Theoretical Computer Science views computation as a
ubiquitous phenomenon, not one that it is limited to
computers.

Algorithms themselves have evolved into a complex set of
techniques, for instances self-learning, Web services,
concurrent, distributed or parallel, etc... Each of them
with ad-hoc relevant computational limitations and social
implications.

However, this course will be a course on classical
algorithms, which are the core needed to understand more
advanced computational material.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Algorithms

Algorithm: Precise recipe for a precise computational task.
Each step of the process must be clear and unambiguous, and
it should always yield a clear answer.

Sqrt (n)
x0 = 1
for i = 1 to 6 do

xi = (xi−1 + n/xi−1)/2
end for

Babilònia (XVI BC)
For n = 20, x ’s are 1 10.5 6.2023 4.7134 4.4783

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Algorithms

Algorithm: Precise recipe for a precise computational task.
Each step of the process must be clear and unambiguous, and
it should always yield a clear answer.

Sqrt (n)
x0 = 1
for i = 1 to 6 do

xi = (xi−1 + n/xi−1)/2
end for

Babilònia (XVI BC)

For n = 20, x ’s are 1 10.5 6.2023 4.7134 4.4783

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Algorithms

Algorithm: Precise recipe for a precise computational task.
Each step of the process must be clear and unambiguous, and
it should always yield a clear answer.

Sqrt (n)
x0 = 1
for i = 1 to 6 do

xi = (xi−1 + n/xi−1)/2
end for

Babilònia (XVI BC)
For n = 20, x ’s are 1 10.5 6.2023 4.7134 4.4783

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Once we designed an algorithm: What do we want
to know?

Correctness, it always does what it should?

Performance,

computing time,
memory use
communication cost, . . .

For an algorithm A, tA(x) is the computing time on input x .

In this course, we use a worst case analysis: Given a problem,
for which you designed an algorithm, you assume that your
meanest adversary gives you the worst possible input.
We use as measure of time complexity or cost the function

T (n) = max
|x |=n

tA(x)

.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Once we designed an algorithm: What do we want
to know?

Correctness, it always does what it should?

Performance,

computing time,
memory use
communication cost, . . .

For an algorithm A, tA(x) is the computing time on input x .

In this course, we use a worst case analysis: Given a problem,
for which you designed an algorithm, you assume that your
meanest adversary gives you the worst possible input.
We use as measure of time complexity or cost the function

T (n) = max
|x |=n

tA(x)

.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Once we designed an algorithm: What do we want
to know?

Correctness, it always does what it should?

Performance,

computing time,
memory use
communication cost, . . .

For an algorithm A, tA(x) is the computing time on input x .

In this course, we use a worst case analysis: Given a problem,
for which you designed an algorithm, you assume that your
meanest adversary gives you the worst possible input.
We use as measure of time complexity or cost the function

T (n) = max
|x |=n

tA(x)

.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Once we designed an algorithm: What do we want
to know?

Correctness, it always does what it should?

Performance,

computing time,
memory use
communication cost, . . .

For an algorithm A, tA(x) is the computing time on input x .

In this course, we use a worst case analysis: Given a problem,
for which you designed an algorithm, you assume that your
meanest adversary gives you the worst possible input.

We use as measure of time complexity or cost the function

T (n) = max
|x |=n

tA(x)

.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Once we designed an algorithm: What do we want
to know?

Correctness, it always does what it should?

Performance,

computing time,
memory use
communication cost, . . .

For an algorithm A, tA(x) is the computing time on input x .

In this course, we use a worst case analysis: Given a problem,
for which you designed an algorithm, you assume that your
meanest adversary gives you the worst possible input.
We use as measure of time complexity or cost the function

T (n) = max
|x |=n

tA(x)

.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Time complexity

The time complexity must be independent of the ”used”
machine

We must consider carefully how operations scale with respect
to size.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Time complexity

The time complexity must be independent of the ”used”
machine

We must consider carefully how operations scale with respect
to size.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Typical computation times

We study the behavior of T (n) when n can take very large
values (i.e., n → ∞)

if n = 10, n2 = 100 and 2n = 1024;

if n = 100, n2 = 10000 and
2n = 12676506002282244014696703205376;

if n = 103, n2 = 106 and 2n is a number with 302 digits.

As a comparison, 1064 is estimated to be the number of
atoms in hearth (< 2213).

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Computation time assuming that an input with size
n = 1 can be solved in 1 µsecond:

26 THE BASICS

100

103

106

109

1012

1015

1018

1021

1024

0 10 20 30 40 50 60 70 80 90 100
n

µs

n

n 2

n 3

2n

n !

1 minute

1 day

1 year

age of universe

FIGURE 2.5: Running times of algorithms as a function of the size n . We assume that each one can solve
an instance of size n = 1 in one microsecond. Note that the time axis is logarithmic.

Euler
input: a graph G = (V, E)
output: “yes” if G is Eulerian, and “no” otherwise
begin

y := 0 ;
for all v ∈V do

if deg(v) is odd then y := y +1;
if y > 2 then return “no”;

end
return “yes”

end

FIGURE 2.6: Euler’s algorithm for EULERIAN PATH. The variable y counts the number of odd-degree vertices.

2.4.2 Details, and Why they Don’t Matter

In the Prologue we saw that Euler’s approach to EULERIAN PATH is much more efficient than exhaustive
search. But how does the running time of the resulting algorithm scale with the size of the graph? It turns
out that a precise answer to this question depends on many details. We will discuss just enough of these
details to convince you that we can and should ignore them in our quest for a fundamental understanding
of computational complexity.

From: Moore-Mertens, The Nature of Computation

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

An example

Assume that the input to an algorithm is an integer x that
uses 64 bits.

The cost of the algorithm is O(x) and the time units are
nanoseconds.

Thus, processing this input takes more than 500 years

Note that the cost of this algorithm is a polynomial function on
the input value not on the input size.
Such algorithms are classified as pseudopolynomial.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

An example

Assume that the input to an algorithm is an integer x that
uses 64 bits.

The cost of the algorithm is O(x) and the time units are
nanoseconds.

Thus, processing this input takes more than 500 years

Note that the cost of this algorithm is a polynomial function on
the input value not on the input size.
Such algorithms are classified as pseudopolynomial.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

An example

Assume that the input to an algorithm is an integer x that
uses 64 bits.

The cost of the algorithm is O(x) and the time units are
nanoseconds.

Thus, processing this input takes more than

500 years

Note that the cost of this algorithm is a polynomial function on
the input value not on the input size.
Such algorithms are classified as pseudopolynomial.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

An example

Assume that the input to an algorithm is an integer x that
uses 64 bits.

The cost of the algorithm is O(x) and the time units are
nanoseconds.

Thus, processing this input takes more than 500 years

Note that the cost of this algorithm is a polynomial function on
the input value not on the input size.
Such algorithms are classified as pseudopolynomial.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

An example

Assume that the input to an algorithm is an integer x that
uses 64 bits.

The cost of the algorithm is O(x) and the time units are
nanoseconds.

Thus, processing this input takes more than 500 years

Note that the cost of this algorithm is a polynomial function on
the input value not on the input size.

Such algorithms are classified as pseudopolynomial.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

An example

Assume that the input to an algorithm is an integer x that
uses 64 bits.

The cost of the algorithm is O(x) and the time units are
nanoseconds.

Thus, processing this input takes more than 500 years

Note that the cost of this algorithm is a polynomial function on
the input value not on the input size.
Such algorithms are classified as pseudopolynomial.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Efficient algorithms and practical algorithms

We say that an algorithm is feasible if its cost is
polynomial.

However n10
10

is a polynomial but this computing time
could be prohibitive!

In the same way, if we have cn2 for constant c = 1064,
then c dominates inputs up to a size of n > 1064.

In this course, we will not enter in the analysis up to
constants, but keep in mind that constants matter!!!!

In practice, even a feasible algorithms with time complexity
of for example n4 could be too slow for n ≥ 1000.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Efficient algorithms and practical algorithms

We say that an algorithm is feasible if its cost is
polynomial.

However n10
10

is a polynomial but this computing time
could be prohibitive!

In the same way, if we have cn2 for constant c = 1064,
then c dominates inputs up to a size of n > 1064.

In this course, we will not enter in the analysis up to
constants, but keep in mind that constants matter!!!!

In practice, even a feasible algorithms with time complexity
of for example n4 could be too slow for n ≥ 1000.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Efficient algorithms and practical algorithms

We say that an algorithm is feasible if its cost is
polynomial.

However n10
10

is a polynomial but this computing time
could be prohibitive!

In the same way, if we have cn2 for constant c = 1064,
then c dominates inputs up to a size of n > 1064.

In this course, we will not enter in the analysis up to
constants, but keep in mind that constants matter!!!!

In practice, even a feasible algorithms with time complexity
of for example n4 could be too slow for n ≥ 1000.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Efficient algorithms and practical algorithms

We say that an algorithm is feasible if its cost is
polynomial.

However n10
10

is a polynomial but this computing time
could be prohibitive!

In the same way, if we have cn2 for constant c = 1064,
then c dominates inputs up to a size of n > 1064.

In this course, we will not enter in the analysis up to
constants, but keep in mind that constants matter!!!!

In practice, even a feasible algorithms with time complexity
of for example n4 could be too slow for n ≥ 1000.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Efficient algorithms and practical algorithms

We say that an algorithm is feasible if its cost is
polynomial.

However n10
10

is a polynomial but this computing time
could be prohibitive!

In the same way, if we have cn2 for constant c = 1064,
then c dominates inputs up to a size of n > 1064.

In this course, we will not enter in the analysis up to
constants, but keep in mind that constants matter!!!!

In practice, even a feasible algorithms with time complexity
of for example n4 could be too slow for n ≥ 1000.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Asymptotic notation

Symbol L = limn→∞
f (n)
g(n) intuition

f (n) = O(g(n)) L < ∞ f ≤ g

f (n) = Ω(g(n)) L > 0 f ≥ g

f (n) = Θ(g(n)) 0 < L < ∞ f = g

f (n) = o(g(n)) L = 0 f < g

f (n) = ω(g(n)) L = ∞ f > g

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Names used for specific function classes

Name Definition

polylogarithmic f = O(logc n) (c constant)

polynomial f = O(nc) (c constant) or nO(1)

subexponential f = o(2n
ϵ
) (0 < ϵ < 1)

exponential f = 2poly(n)

double exponential f = 2exp(n)

Notation:
lg ≡ log2; ln ≡ loge ; log ≡ log10.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Some math you should remember

Given an integer n > 0 and a real a > 1 and a ̸= 0:

Arithmetic summation:
∑n

i=0 i =
n(n+1)

2 .

Geometric summation:
∑n

i=0 a
i = 1−an+1

1−a .

Logarithms and Exponents: For a, b, c ∈ R+,

logb a = c ⇔ a = bc ⇒ logb 1 = 0

logb ac = logb a+ logb c , logb a/c = logb a− logb c.

logb a
c = c logb a ⇒ c logb a = alogb c ⇒ 2log2 n = n.

logb a = logc a/ logc b ⇒ logb a = Θ(logc a)

Stirling: n! =
√
2πn(n/e)n + 0(1/n) + γ ⇒ n! + ω((n/2)n).

n-Harmonic: Hn =
∑n

i=1 1/i ∼ ln n.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Graphs

See for ex. Chapter 3 of Dasgupta, Papadimitriou, Vazirani (DPV).

Graph: G = (V ,E), where V is the set of vertices, n = |V |,
and E ⊂ V × V is the set of edges, m = |E |,

Graphs: undirected graphs (graphs) and directed graphs
(digraphs)

The degree of v (d(v)) is the number of edges which are
incident to v .

A clique on n vertices (Kn) is a complete graph (with
m = n(n − 1)/2).

A undirected G is said to be connected if there is a path
between any two distinct vertices.

If G is connected, then m ≥ n − 1.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Graphs

See for ex. Chapter 3 of Dasgupta, Papadimitriou, Vazirani (DPV).

Graph: G = (V ,E), where V is the set of vertices, n = |V |,
and E ⊂ V × V is the set of edges, m = |E |,

Graphs: undirected graphs (graphs) and directed graphs
(digraphs)

The degree of v (d(v)) is the number of edges which are
incident to v .

A clique on n vertices (Kn) is a complete graph (with
m = n(n − 1)/2).

A undirected G is said to be connected if there is a path
between any two distinct vertices.

If G is connected, then m ≥ n − 1.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Directed graphs

Edges are directed.

The connectivity concept in digraphs is the so called
strong connectivity: There is is a directed path between
any two vertices.

In a digraph m ≤ n(n − 1).

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Density of a graph

A G with n vertices is said to be dense when m = Θ(n2).
When m = o(n2), G is said to be sparse.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Common graph’s data structures

Let G be a graph with V = {1, 2, . . . , n}.

Adjacency list

Adjacency matrix

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Adjacency list

c

a

b

c

d

b d

a d c

d b

a b c

a

a

b

b c

d

d

c

a

b

c

d

a

b

d

c

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Adjacency matrix

Given G with |V | = n define its adjacency matrix as the n × n
matrix:

A[i , j] =

{
1 if (i , j) ∈ E ,

0 if (i , j) ̸∈ E .

c

a

a

b

b c

d

d a
b
c
d


a b c d
0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0



a
b
c
d


a b c d
0 0 0 1
1 0 1 0
0 0 0 0
0 1 1 0



The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Adjacency matrix

If G is undirected, its adjacency matrix A(G) is symmetric.

If A is the adjacency matrix of G , then A2 gives, for
i , j ∈ V , whether there is a path between i and j in G ,
with length 2.
For k > 0, Ak indicates if there is a path with length k
from i to j .

If G has weights on edges, i.e. wi ,j for each (i , j) ∈ E ,
A(G) keeps wij in position (i , j).

Adjacency matrices allow the use of tools from linear
algebra.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Comparison between the matrix and the list DS

The adjacency list uses a register per vertex and two per
edge. As each register needs 64 bits, then the space to
represent a graph is Θ(n +m).

The use of the adjacency matrix needs n2 bits ({0, 1}), so
for an unweighted graph G , we need Θ(n2) bits.

For weighted G , we need 64n2 bits (assuming weights are
reasonably “small”).

In general, for unweighted dense graphs, the adjacency
matrix is better, otherwise the adjacency list is a shorter
representation.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Comparison between the matrix and the list DS

The adjacency list uses a register per vertex and two per
edge. As each register needs 64 bits, then the space to
represent a graph is Θ(n +m).

The use of the adjacency matrix needs n2 bits ({0, 1}), so
for an unweighted graph G , we need Θ(n2) bits.

For weighted G , we need 64n2 bits (assuming weights are
reasonably “small”).

In general, for unweighted dense graphs, the adjacency
matrix is better, otherwise the adjacency list is a shorter
representation.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Comparison between the matrix and the list DS

The adjacency list uses a register per vertex and two per
edge. As each register needs 64 bits, then the space to
represent a graph is Θ(n +m).

The use of the adjacency matrix needs n2 bits ({0, 1}), so
for an unweighted graph G , we need Θ(n2) bits.

For weighted G , we need 64n2 bits (assuming weights are
reasonably “small”).

In general, for unweighted dense graphs, the adjacency
matrix is better, otherwise the adjacency list is a shorter
representation.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Complexity issues between matrix and list DS

Adding a new edge to G : In both data structures, we need
Θ(1).

Edge query, for u and v in V (G), (u, v) ∈ E (V)?:
For matrix representation: Θ(1).
For list representation: O(n).

Explore all neighbours of vertex v :
For matrix representation: Θ(n)
For list representation: Θ(|d(v)|)
Erase an edge in G : The same as Edge query.

Erase a vertex in G :
For matrix representation: Θ(n).
For list representation: O(m).

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Complexity issues between matrix and list DS

Adding a new edge to G :

In both data structures, we need
Θ(1).

Edge query, for u and v in V (G), (u, v) ∈ E (V)?:
For matrix representation: Θ(1).
For list representation: O(n).

Explore all neighbours of vertex v :
For matrix representation: Θ(n)
For list representation: Θ(|d(v)|)
Erase an edge in G : The same as Edge query.

Erase a vertex in G :
For matrix representation: Θ(n).
For list representation: O(m).

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Complexity issues between matrix and list DS

Adding a new edge to G : In both data structures, we need
Θ(1).

Edge query, for u and v in V (G), (u, v) ∈ E (V)?:
For matrix representation: Θ(1).
For list representation: O(n).

Explore all neighbours of vertex v :
For matrix representation: Θ(n)
For list representation: Θ(|d(v)|)
Erase an edge in G : The same as Edge query.

Erase a vertex in G :
For matrix representation: Θ(n).
For list representation: O(m).

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Complexity issues between matrix and list DS

Adding a new edge to G : In both data structures, we need
Θ(1).

Edge query, for u and v in V (G), (u, v) ∈ E (V)?:
For matrix representation:

Θ(1).
For list representation: O(n).

Explore all neighbours of vertex v :
For matrix representation: Θ(n)
For list representation: Θ(|d(v)|)
Erase an edge in G : The same as Edge query.

Erase a vertex in G :
For matrix representation: Θ(n).
For list representation: O(m).

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Complexity issues between matrix and list DS

Adding a new edge to G : In both data structures, we need
Θ(1).

Edge query, for u and v in V (G), (u, v) ∈ E (V)?:
For matrix representation: Θ(1).

For list representation: O(n).

Explore all neighbours of vertex v :
For matrix representation: Θ(n)
For list representation: Θ(|d(v)|)
Erase an edge in G : The same as Edge query.

Erase a vertex in G :
For matrix representation: Θ(n).
For list representation: O(m).

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Complexity issues between matrix and list DS

Adding a new edge to G : In both data structures, we need
Θ(1).

Edge query, for u and v in V (G), (u, v) ∈ E (V)?:
For matrix representation: Θ(1).
For list representation:

O(n).

Explore all neighbours of vertex v :
For matrix representation: Θ(n)
For list representation: Θ(|d(v)|)
Erase an edge in G : The same as Edge query.

Erase a vertex in G :
For matrix representation: Θ(n).
For list representation: O(m).

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Complexity issues between matrix and list DS

Adding a new edge to G : In both data structures, we need
Θ(1).

Edge query, for u and v in V (G), (u, v) ∈ E (V)?:
For matrix representation: Θ(1).
For list representation: O(n).

Explore all neighbours of vertex v :
For matrix representation: Θ(n)
For list representation: Θ(|d(v)|)
Erase an edge in G : The same as Edge query.

Erase a vertex in G :
For matrix representation: Θ(n).
For list representation: O(m).

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Complexity issues between matrix and list DS

Adding a new edge to G : In both data structures, we need
Θ(1).

Edge query, for u and v in V (G), (u, v) ∈ E (V)?:
For matrix representation: Θ(1).
For list representation: O(n).

Explore all neighbours of vertex v :
For matrix representation:

Θ(n)
For list representation: Θ(|d(v)|)
Erase an edge in G : The same as Edge query.

Erase a vertex in G :
For matrix representation: Θ(n).
For list representation: O(m).

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Complexity issues between matrix and list DS

Adding a new edge to G : In both data structures, we need
Θ(1).

Edge query, for u and v in V (G), (u, v) ∈ E (V)?:
For matrix representation: Θ(1).
For list representation: O(n).

Explore all neighbours of vertex v :
For matrix representation: Θ(n)
For list representation:

Θ(|d(v)|)
Erase an edge in G : The same as Edge query.

Erase a vertex in G :
For matrix representation: Θ(n).
For list representation: O(m).

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Complexity issues between matrix and list DS

Adding a new edge to G : In both data structures, we need
Θ(1).

Edge query, for u and v in V (G), (u, v) ∈ E (V)?:
For matrix representation: Θ(1).
For list representation: O(n).

Explore all neighbours of vertex v :
For matrix representation: Θ(n)
For list representation: Θ(|d(v)|)

Erase an edge in G : The same as Edge query.

Erase a vertex in G :
For matrix representation: Θ(n).
For list representation: O(m).

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Complexity issues between matrix and list DS

Adding a new edge to G : In both data structures, we need
Θ(1).

Edge query, for u and v in V (G), (u, v) ∈ E (V)?:
For matrix representation: Θ(1).
For list representation: O(n).

Explore all neighbours of vertex v :
For matrix representation: Θ(n)
For list representation: Θ(|d(v)|)
Erase an edge in G :

The same as Edge query.

Erase a vertex in G :
For matrix representation: Θ(n).
For list representation: O(m).

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Complexity issues between matrix and list DS

Adding a new edge to G : In both data structures, we need
Θ(1).

Edge query, for u and v in V (G), (u, v) ∈ E (V)?:
For matrix representation: Θ(1).
For list representation: O(n).

Explore all neighbours of vertex v :
For matrix representation: Θ(n)
For list representation: Θ(|d(v)|)
Erase an edge in G : The same as Edge query.

Erase a vertex in G :
For matrix representation: Θ(n).
For list representation: O(m).

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Complexity issues between matrix and list DS

Adding a new edge to G : In both data structures, we need
Θ(1).

Edge query, for u and v in V (G), (u, v) ∈ E (V)?:
For matrix representation: Θ(1).
For list representation: O(n).

Explore all neighbours of vertex v :
For matrix representation: Θ(n)
For list representation: Θ(|d(v)|)
Erase an edge in G : The same as Edge query.

Erase a vertex in G :
For matrix representation:

Θ(n).
For list representation: O(m).

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Complexity issues between matrix and list DS

Adding a new edge to G : In both data structures, we need
Θ(1).

Edge query, for u and v in V (G), (u, v) ∈ E (V)?:
For matrix representation: Θ(1).
For list representation: O(n).

Explore all neighbours of vertex v :
For matrix representation: Θ(n)
For list representation: Θ(|d(v)|)
Erase an edge in G : The same as Edge query.

Erase a vertex in G :
For matrix representation: Θ(n).
For list representation:

O(m).

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Complexity issues between matrix and list DS

Adding a new edge to G : In both data structures, we need
Θ(1).

Edge query, for u and v in V (G), (u, v) ∈ E (V)?:
For matrix representation: Θ(1).
For list representation: O(n).

Explore all neighbours of vertex v :
For matrix representation: Θ(n)
For list representation: Θ(|d(v)|)
Erase an edge in G : The same as Edge query.

Erase a vertex in G :
For matrix representation: Θ(n).
For list representation: O(m).

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Searching a graph: Breadth First Search

1 Start with vertex v , visit v
and all its neighbors.

2 Then, the non-visited
neighbors of visited ones.

3 Repeat until all vertices are
visited.

BFS use a QUEUE, (FIFO) to keep the neighbors of visited
vertices.

Recall that vertices are labeled to avoid visiting them more
than once.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Searching a graph: Depth First Search

explore

1 From current vertex, move to a
neighbor.

2 Until you get stuck.

3 Then backtrack till new place to
explore.

DFS use a STACK, (LIFO)

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Time Complexity of DFS and BFS

For graphs given by adjacency lists: O(|V |+ |E |)

For graphs given by adjacency matrix: O(|V |2)

Therefore, both procedures can be implemented in linear time
with respect to the size of the input graph.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Connected components in undirected graphs

A connected component is a maximal connected subgraph of G .

A connected graph has a unique connected component.

Connected Components Problem
INPUT: undirected graph G
GOAL: Find all the connected components of G .

To find connected components
in G use DFS/BFS and keep
track of the set of vertices
visited in each explore call.

a

b

c

de

f

g

hi

The problem can be solved in O(|V |+ |E |).

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Connected components in undirected graphs

A connected component is a maximal connected subgraph of G .

A connected graph has a unique connected component.

Connected Components Problem
INPUT: undirected graph G
GOAL: Find all the connected components of G .

To find connected components
in G use DFS/BFS and keep
track of the set of vertices
visited in each explore call.

a

b

c

de

f

g

hi

The problem can be solved in O(|V |+ |E |).

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Connected components in undirected graphs

A connected component is a maximal connected subgraph of G .

A connected graph has a unique connected component.

Connected Components Problem
INPUT: undirected graph G
GOAL: Find all the connected components of G .

To find connected components
in G use DFS/BFS and keep
track of the set of vertices
visited in each explore call.

a

b

c

de

f

g

hi

The problem can be solved in O(|V |+ |E |).

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Strongly connected components in a digraph

A digraph G = (V ,E), is strongly connected, if for all
u, v ∈ V , there are paths u → v and v → u.

A strongly connected component is a maximal strongly
connected graph.

Strongly Connected Components Problem
INPUT: digraph G
GOAL: Find the strongly connected components of G .

Kosharaju-Sharir’s algorithm: Uses DFS (twice). Complexity
T (n) = O(|V |+ |E |)
Tarjan’s algorithm: Using DFS (once). Complexity
T (n) = O(|V |+ |E |)

https://www.geeksforgeeks.org/strongly-connected-components/
https://www.geeksforgeeks.org/tarjan-algorithm-find-strongly-connected-components/

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Strongly connected components in a digraph

A digraph G = (V ,E), is strongly connected, if for all
u, v ∈ V , there are paths u → v and v → u.

A strongly connected component is a maximal strongly
connected graph.

Strongly Connected Components Problem
INPUT: digraph G
GOAL: Find the strongly connected components of G .

Kosharaju-Sharir’s algorithm: Uses DFS (twice). Complexity
T (n) = O(|V |+ |E |)

Tarjan’s algorithm: Using DFS (once). Complexity
T (n) = O(|V |+ |E |)

https://www.geeksforgeeks.org/strongly-connected-components/
https://www.geeksforgeeks.org/tarjan-algorithm-find-strongly-connected-components/

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Strongly connected components in a digraph

A digraph G = (V ,E), is strongly connected, if for all
u, v ∈ V , there are paths u → v and v → u.

A strongly connected component is a maximal strongly
connected graph.

Strongly Connected Components Problem
INPUT: digraph G
GOAL: Find the strongly connected components of G .

Kosharaju-Sharir’s algorithm: Uses DFS (twice). Complexity
T (n) = O(|V |+ |E |)
Tarjan’s algorithm: Using DFS (once). Complexity
T (n) = O(|V |+ |E |)

https://www.geeksforgeeks.org/strongly-connected-components/
https://www.geeksforgeeks.org/tarjan-algorithm-find-strongly-connected-components/

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Strongly connected components in a digraph

A nice property: For every digraph, the graph on its strongly
connected components is acyclic.

a b c

d e f

g h i

j lk

a, b, e

d c, f , h

g , j , k , l i

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

The classes P and NP

Recall that a problem belong to the class P if there exists
an algorithm that is polynomial in the worst-case analysis,
(for the worst input given by a malicious adversary)

A problem given in decisional form belong to the class NP
non-deterministic polynomial time if, given a certificate of
a solution, we can verify in polynomial time that indeed
the certificate is a valid solution to the problem and those
certificates have polynomial size

It is easy to se that P⊆ NP, but it is an open problem to
prove that P=NP or that P̸=NP.

The class NP-complete is the class of most difficult
problems in decisional form that are in NP. Most difficult
in the sense that if one of them is proved to be in P then
P=NP.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

The classes P and NP

Recall that a problem belong to the class P if there exists
an algorithm that is polynomial in the worst-case analysis,
(for the worst input given by a malicious adversary)

A problem given in decisional form belong to the class NP
non-deterministic polynomial time if, given a certificate of
a solution, we can verify in polynomial time that indeed
the certificate is a valid solution to the problem and those
certificates have polynomial size

It is easy to se that P⊆ NP, but it is an open problem to
prove that P=NP or that P̸=NP.

The class NP-complete is the class of most difficult
problems in decisional form that are in NP. Most difficult
in the sense that if one of them is proved to be in P then
P=NP.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

The classes P and NP

Recall that a problem belong to the class P if there exists
an algorithm that is polynomial in the worst-case analysis,
(for the worst input given by a malicious adversary)

A problem given in decisional form belong to the class NP
non-deterministic polynomial time if, given a certificate of
a solution, we can verify in polynomial time that indeed
the certificate is a valid solution to the problem and those
certificates have polynomial size

It is easy to se that P⊆ NP, but it is an open problem to
prove that P=NP or that P̸=NP.

The class NP-complete is the class of most difficult
problems in decisional form that are in NP. Most difficult
in the sense that if one of them is proved to be in P then
P=NP.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

The classes P and NP

Recall that a problem belong to the class P if there exists
an algorithm that is polynomial in the worst-case analysis,
(for the worst input given by a malicious adversary)

A problem given in decisional form belong to the class NP
non-deterministic polynomial time if, given a certificate of
a solution, we can verify in polynomial time that indeed
the certificate is a valid solution to the problem and those
certificates have polynomial size

It is easy to se that P⊆ NP, but it is an open problem to
prove that P=NP or that P̸=NP.

The class NP-complete is the class of most difficult
problems in decisional form that are in NP. Most difficult
in the sense that if one of them is proved to be in P then
P=NP.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Beyond worst-case analysis

Under the hypothesis that P̸=NP, if the decision version of
a problem is NP-complete, then the optimization problem
will require at least exponential time, for some inputs.

The classification of a problem as NP-complete is a case
of worst-case analysis, and for many problems the
”expensive inputs” are few, and far from practical typical
inputs. We will see some examples through the course.

Therefore, there are alternative ways to get in practice,
solutions for NP-complete problems, with the use of
alternative algorithmic techniques, as approximation (we
will see some examples), heuristics and self-learning
algorithms, that are deferred to other courses.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

A powerful tool to solve problems: Reductions

You have been introduced in previous courses to the concept of
reduction between decision problems, to define the class
NP-complete.

We have to extend the concept to function problems.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Reductions

Given problems A and B, assume we have an algorithm AB to
solve the problem B on any input y .

A polynomial time reduction A ≤ B is a pair of polynomial
time functions (f , g) such that

f maps any input x to A, in polynomial time, to an input
f (x) to problem B in such a way that x has a valid
solution for A iff f (x) has a valid solution for B.

g maps solutions to f (x) into solutions to x .

Therefore if we have that A ≤ B, as there is an algorithm AB

to solve problem B in polynomial time, then we have an
algorithm AA, for any input x of A: Compute g(AB(f (x))),
that runs in polynomial time.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Reductions

Given problems A and B, assume we have an algorithm AB to
solve the problem B on any input y .

A polynomial time reduction A ≤ B is a pair of polynomial
time functions (f , g) such that

f maps any input x to A, in polynomial time, to an input
f (x) to problem B in such a way that x has a valid
solution for A iff f (x) has a valid solution for B.

g maps solutions to f (x) into solutions to x .

Therefore if we have that A ≤ B, as there is an algorithm AB

to solve problem B in polynomial time, then we have an
algorithm AA, for any input x of A: Compute g(AB(f (x))),
that runs in polynomial time.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Reductions

Given problems A and B, assume we have an algorithm AB to
solve the problem B on any input y .

A polynomial time reduction A ≤ B is a pair of polynomial
time functions (f , g) such that

f maps any input x to A, in polynomial time, to an input
f (x) to problem B in such a way that x has a valid
solution for A iff f (x) has a valid solution for B.

g maps solutions to f (x) into solutions to x .

Therefore if we have that A ≤ B, as there is an algorithm AB

to solve problem B in polynomial time, then we have an
algorithm AA, for any input x of A: Compute g(AB(f (x))),
that runs in polynomial time.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

The Vertex Cover problem

Vertex Cover: Given a graph G = (V ,E) with
|V | = n, |E | = m, find the minimum set of vertices S ⊆ V such
that it covers every edge of G .
Example:

The Vertex Cover problem is known to be in NP-hard.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

The Set Cover problem

Set Cover: Given a set U of m elements, a collection
S = {S1, . . . ,Sn} where each Si ⊆ U, select de minimum
number of subsets in such a way that their union is equal to U.

There is a weighted version of the problem, but this simpler
version already is NP-hard.

Example: Given U = {1, 2, 3, 4, 5, 6, 7} (m = 7), with S1 = {3, 7},
S2 = {2, 4}, S3 = {3, 4, 5, 6}, S4 = {6}, S5 = {1}, S6 = {1, 2, 6, 7}
(n = 6).

Solution: {S3,S6} U

1 2

5

6

4

37

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Set Cover

The Vertex Cover problem is a special case of the Set
Cover problem. As a model, the Set Cover has important
practical applications.
To understand the computational complexity of Set Cover it
is important to understand first the complexity of special cases
as Vertex Cover.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Vertex Cover ≤ Set Cover

Given a input to Vertex Cover, G = (V ,E) of size
|V |+ |E | = n+m, we want to construct in polynomial time on
n+m a specific input f (G) = (U,S) to Set Cover such that
if there exist a polynomial algorithm A to find a min set cover
in G , then A(f (G)) is an efficient algorithm to find an optimal
solution to vertex cover.

REDUCTION f :

Consider U as the set E of edges.

For each vertex i ∈ V , Si is the set of edges incident to i .
Therefore |S | = n and for each Si , |Si | ≤ m.

The cost of the reduction from G to (U, S) is O(n +m)

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Example for the reduction

a b

f c

e d

1
2 3

4

5

6

7

f︷︸︸︷⇒

U = {1, 2, 3, 4, 5, 6, 7}
S = {Sa, Sb,Sc ,Sd ,Se ,Sf }
Sa = {1, 2},Sb = {3, 4},
Sc = {1, 3, 5, 6}, Sd = {5},
Se = {7}, Sf = {2, 4, 6, 7}.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Example for the reduction

a b

f c

e d

1
2 3

4

5

6

7

f︷︸︸︷⇒

U = {1, 2, 3, 4, 5, 6, 7}
S = {Sa, Sb,Sc ,Sd ,Se ,Sf }
Sa = {1, 2},Sb = {3, 4},
Sc = {1, 3, 5, 6}, Sd = {5},
Se = {7}, Sf = {2, 4, 6, 7}.

If there is an algorithm to solve the Set Cover, the same
algorithm apply to f (G) = (U,S) will yield a solution for
Vertex Cover on input G .

As Vertex Cover is known to be NP-hard, this shows that
Set Cover is also NP-hard.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

The divide-and-conquer strategy.

1 Break the problem into smaller
subproblems,

2 recursively solve each problem,

3 appropriately combine their
answers. Julius Caesar (I-BC)

”Divide et impera”

Known Examples:

Binary search

Merge-sort

Quicksort

Strassen matrix multiplication
J. von Neumann

(1903-57) Merge sort

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Recurrences Divide and Conquer

T (n) = 3T (n/2) + O(n)
The algorithm under analysis divides input of size n into 3
subproblems, each of size n/2, at a cost (of dividing and
joining the solutions) of O(n)

n/4

1 1 1 1 1 1

 size n

 n/2
n/2n/2

n/4 n/4 n/4 n/4 n/4 n/4 n/4 n/4

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

T (n) = 3T (n/2) + O(n).

 3

1 1 1

k=0

k=1

k=2

k=lg n

 lg n

 size n

T(n)=3T(n/2)+O(n)

n/2 n/2 n/2

n/4 n/4

27/8n

9/4n

3/2n

n

n/4 n/4 n/4

lg n

n/4n/4n/4n/4

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

At depth k of the tree there are 3k subproblems, each of size
n/2k .

For each of those problems we need O(n/2k) (splitting time +
combination time).
Therefore, for some constant c , the cost at depth k is:

3k ×
(n

2k

)
=

(
3

2

)k

× c n.

with max. depth k = lg n, so T (n) is(
1 +

3

2
+

(
3

2

)2

+

(
3

2

)3

+ · · ·+
(
3

2

)lg n
)
c n

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

From T (n) = c n
(∑lg n

k=0

(
3
2

)k)
,

We have a geometric series of ratio 3/2, starting at 1 and

ending at
(
(32)

lg n
)
= nlg 3

nlg 2 = n1.58

n = n0.58.

As the series is increasing, T (n) is dominated by the last term:

T (n) = c n

(
nlg 3

n

)
= O(n1.58).

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

A basic Master Theorem

There are several versions of the Master Theorem to solve
D&C recurrences. The one presented below is taken from
DPV’s book.

Theorem (DPV-2.2)

If T (n) = aT (⌈n/b⌉) + O(nd) for constants
a ≥ 1, b > 1, d ≥ 0, then has asymptotic solution:

T (n) =


O(nd), if d > logb a,

O(nd lg n), if d = logb a,

O(nlogb a), if d < logb a.

The course

Algorithms:
our context

Time
complexity

Asymptotic
notation

Graphs

Data structures

Traversals

Reductions

Divide and
conquer

Master Theorems

This basic Master Theorem does not provide always exact
bounds.

A different one can be found in CLRS’s book providing
exact bounds but leaving cases outside.

For stronger versions look at Akra-Bazi Theorem or
Salvador Roura Theorems

https://courses.csail.mit.edu/6.046/spring04/handouts/akrabazzi.pdf
http://www.lsi.upc.edu/~diaz/RouraMT.pdf

	The course
	Algorithms: our context
	Time complexity
	Asymptotic notation
	Graphs
	Data structures
	Traversals

	Reductions
	Divide and conquer

