
Divide-and-conquer: Selection



Selection

From 9.3 in CLRS
Problem: Given a list A of n of unordered distinct keys, and a
i ∈ Z, 1 ≤ i ≤ n, select the i-smallest element x ∈ A, that is x is
larger than exactly i − 1 other elements in A.

Notice if:

1. i = 1 ⇒ MINIMUM element

2. i = n ⇒ MAXIMUM element

3. i = bn+1
2 c ⇒ the MEDIAN

4. i = b0.25 · nc ⇒ order statistics

Non smart approach:
Sort A in (O(n lg n)) steps and search for A[k].
Can we do it in linear time?
Yes, selection is easier than sorting



Deterministic linear selection: The algorithm

I Generate deterministically a good split element x .

I Use x to determine the partition (with respect to x) in which
the i-th element lies.

I Apply the algorithm recursively to the selected part.

The position that has an element in the sorted list is often called
its rank.



Deterministic linear selection: Finding a splitting element

If n ≤ 5 return their median. Otherwise, Divide the n elements in
bn/5c groups, each with 5 elements (+ possible one group with
< 5 elements).



Deterministic linear selection. Finding a splitting element

Sort each set to find its median, say xi . (Each sorting needs 5
comparisons, i.e. Θ(1)) Total: dn/5e

The splitting element will be the median x of the medians
{xi}, 1 ≤ i ≤ dn/5e.



Deterministic linear selection: Selecting a part

x

Using as pivot x , the median of the medians xi , partition the input
array around x . If x is the k-th element of the array, after
partitioning, there are k − 1 elements on the low side of the
partition and n − k elements on the high side.



The deterministic algorithm

Select (A, i)
1.- Divide the n elements into dn/5e groups of 5 elements each

with a possible group with < 5 elements
2.- Find the medians on each group by insertion sort.
3.- Use Select recursively to find the median x of the bn/5c

medians
4.- Partition the elements of A around x .

Smaller to the left and larger to the right.
Let k be the rank of x

5.- if i = k then
return x

else if i < k then
use Select to find the i-th smallest in the left

else
use Select to find the i − k-th smallest in the right

end if



Example: Find the median

Get the median (b(n + 1)/2c) on the following input:

and iterate until getting the median
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PARTITION around 10:

13   12   15   11   14   17103   4   5   9    1   2   6   8

3    13    9    4    5    1    15    12    10    2    6    14    8    11   17

 

To get the 8th element (median)

call SELECT on  3 4 5 9 1 2 6 8 to get  3 1 2 4 5 9 6 8



The deterministic algorithm: Cost

Select (A, i)
1.- Divide the n elements into dn/5e groups of 5 O(n)

with a possible group with < 5 elements
2.- Find the median by insertion sort, and take

the middle element O(n)
3.- Use Select recursively to find the median x of the dn/5e

medians T (n/5)
4.- Partition the elements of A around x . O(n)

Smaller to the left and larger to the right.
Let k be the rank of x

5.- if i = k then
return x

else if i < k then
use Select to find the i-th smallest in the left T (?)

else
use Select to find the i − k-th smallest in the right T (?)

end if



Analysis: Deterministic linear selection.

Al least 3(12(dn/5e − 2)) ≥ 3n
10 − 6 of the elements are < x .

x
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Worst case Analysis.

I As at least ≥ 3n
10 − 6 of the elements are > x , at most

n − (3n10 − 6) = 6 + 7n/10 elements are < x .

I Similarly, as at least 3n
10 − 6 elements are < x , at most

6 + 7n/10 elements are > x .

I In the worst case, step 5 calls Select recursively on a vector
with size ≤ 6 + 7n/10. So step 5 takes time ≤ T (6 + 7n/10).

Therefore, selecting 50 as the size to stop the recursion, we have

T (n) =

{
Θ(1) if n ≤ 50,

T (dn/5e) + T (6 + 7n/10) + Θ(n) if n > 50.

Solving we get T (n) = Θ(n)

How?
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Solving the recurrence

I Use substitution.

I Assume that T (n) ≤ cn for some constant c and n ≤ 50.
Note that 6 + 7n/10 < n, for n > 20.

I Prove that T (n) ≤ cn always by induction.

T (n) ≤ T (dn/5e) + T (6 + 7n/10) + Θ(n)

≤ c n/5 + c + c(6 + 7n/10) + Θ(n)

≤ 9cn/10 + 7c + Θ(n) ≤ cn

We can select c larger than the constant in the term Θ(n).
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Remarks on the cardinality of the groups

Notice:

I If we make groups of 7, the number of elements ≥ x is 2n
7 ,

which yield T (n) ≤ T (n/7) + T (5n/7) + O(n) with solution
T (n) = O(n).

I However, if we make groups of 3, then
T (n) ≤ T (n/3) + T (2n/3) + O(n), which has a solution
T (n) = O(n ln n).


