
Algoŕısmia QP Curs 2023-2024

Problemes resolts 1

1.1. (Cim)

Suposem que tenim un vector A amb n nombres enters diferents, amb la propietat:
existeix un únic ı́ndex p tal que els valors A[1 · · · p] estan en ordre creixent i els valors
A[p · · ·n] estan en ordre decreixent. Per exemple, en la següent vector tenim n = 10 i
p = 4:

A = (2, 5, 12, 17, 15, 10, 9, 4, 3, 1)

Dissenyeu un algorisme eficient per trobar p suposant que una matriu A amb la propi-
etat anterior ja és a memòria.

Una solució: Primer de tot formalitzarem la propietat del vector A d’entrada. Existeix un
index p ∈ [1, . . . n] tal que, per 1 ≤ i < p, A[i] ≤ A[i+ 1], i per p ≤ j < n, A[i] ≥ A[i+ 1]. El
nostre algorisme ha de trobar aquest valor p.

Proposem l’algorisme recursiu que es descriu en l’Algorisme FindPeak. Donat el vector A,
la resposta s’obté amb una crida amb i = 1 i j = n. L’algorisme fa una cerca binària, en cada
pas, comparem els dos elements intermedis i veurem si estem en la part creixent o decreixent
d’A. El cas base ressòl el problema d’obtenir la posició del màxim, però per a una entrada
amb mida constant.

function FindPeak(A, i, j)
n = j − i+ 1
if n ≤ 5 then

return PosMax(A, i, j)

k = (i+ j)/2
if A[k] < A[k + 1] then

return FindPeak(A, k + 1, j)
else

return FindPeak(A, i, k)

Correctesa: Volem trobar l’́ındex p. Si A[k] < A[k + 1], sabem que A[i] < · · · < A[k] per
i < k i podem prescindir de forma segura els elements A[i · · · k]. De la mateixa manera, si
A[k] > A[k + 1], sabem que A[k + 1] > · · · > A[j] per j > k + 1 i podem descartar amb
seguretat els elements A[k + 1 · · · j]. La posició de p coincideix amb la del valor màxim al
vector, per tant el cas base és correcte.

Cost temporal: El cas base té cost constant. A cada pas, es redueix la mida del problema
a la meitat i, a més, el cost de les operacions és constant. Aix́ı, tenim la recurrència T (n) =
T (n/2) + c per a alguna constant c. Sabem que, com a la cerca binària, T (n) = O(log n).

Comentari: Al fer l’anàlisi del cost de l’algorisme no hem tingut en compte el cost de llegir
el vector. El cost contant el de fer la lectura del vector és O(n).

1.2. (Movent Robots)

Tenim un conjunt de robots que es mouen en un edifici, cadascun d’ells és equipat
amb un transmissor de ràdio. El robot pot utilitzar el transmissor per comunicar-se
amb una estació base. No obstant això, si els robots són massa a prop un de l’altre
hi ha problemes amb la interferència entre els transmissors. Volem trobar un pla de
moviment dels robots, de manera que puguin procedir al seu dest́ı final, sense perdre
mai el contacte amb l’estació base.
Podem modelar aquest problema de la següent manera. Se’ns dóna un graf G = (V,E)
que representa el plànol d’un edifici, hi ha dos robots que inicialment es troben en els
nodes a i b. El robot en el node a voli viatjar a la posició c, i el robot en el node b
vol viatjar a la posició d. Això s’aconsegueix per mitjà d’una planificació: a cada pas
de temps, el programa especifica que un dels robots es mou travessant una aresta. Al
final de la planificació, els dos robots han d’estar en les seves destinacions finals.
Una planificació és lliure d’interferència si no hi ha un punt de temps en el qual els dos
robots ocupen nodes que es troben a distància menor de r, per a un valor determinat
del paràmetre r.
Doneu un algorisme de temps polinomial que decideixi si hi ha una planificació lliure
donats, el graf, les posicions inicials i finals dels robots i el valor de r.

Una solució. Per resoldre el problema farem una reducció cap a un problema amb solució
coneguda, el problema de trobar un camı́ de un vèrtex s a un vèrtex t en un graf G. Aquest
problema de camins es resol en temps lineal fent servir un BFS desde s.

La reducció: Anem a construir un graf associat a l’entrada del nostre problema. Per això,
considerarem l’espai de configuracions on els dos robots es poden moure. És a dir, el conjunt
de parells de posicions que estan a distància més gran o igual que r:

C = {(u, v) | u, v ∈ V i d(u, v) ≥ r}

Podem considerar la relació entre configuracions definida pels moviments permesos, un d’ells
mou cap a un altre posició. Aix́ı tenim

M = {((u, v), (u′, v′)) |(u, v), (u′, v′) ∈ C i

((u = u′ i (v, v′) ∈ E) o (v = v′ i (u, u′) ∈ E))}.

A l’espai de configuracions podem considerar el graf G = (C,M) on dos configuracions son
vëınes si i només si un del robots pot canviar de posició sense interferir amb la posició de
l’altre.

Finalment, prenem com a posició inicila s = (a, b) i com a posició final t = (c, d).

Correctesa: Els robots són inicialment a la configuració (a, b) i s’han de desplaçar amb mo-
viments vàlids fins a la configuració (c, d). D’acord amb la definició del graf de configuracions,
això serà possible si i només si hi ha un camı́ de (a, b) a (c, d) a G.

Algorisme: D’acord amb el raonament anterior només cal construir el graf de configuracions
i comprovar si hi ha un camı́ entre els dos vèrtexs a G. Podem detectar-ho amb un BFS.

Cost temporal: Per calcular el cost hem de tenir en compte la mida de l’entrada. Si
G = (V,E) i n = |V | i m = |E|, tenim |C| ≤ n2 i |M | ≤ 2m. Suposant que ens donen G
mitjançant llistes d’adjacència la mida de l’entrada és O(n+m). Construir una descripció de
G mitjançant llistes d’adjacència té cost O(n2 +m). Fer un BFS sobre G té cost O(n2 +m).
El cost total es O(n2 +m) però m ≤ n2. Llavors l’algorisme proposat té cost O(n2).

1.3. (Distribució de notes)

El Professor JD ha corregit els exàmens finals del curs, de cara a tenir una distribució
maca de les notes finals decideix formar k grups, cada grup amb el mateix nombre
d’alumnes, i donar la mateixa nota a tots els alumnes que són al mateix grup. La
condició més important és que qualsevol dels alumnes al grup i han de tenir nota
d’examen superior o igual a qualsevol alumne d’un grup inferior (grups de 1 fins a
i − 1). L’ordre dintre de cadascun dels grups es irrellevant. Dissenyeu un algorisme
que donada una taula A no ordenada, que a cada registre conté la identificació d’un
estudiant amb la seva notes d’examen, divideix A en els k grups, amb les propietat
descrita a dalt. El vostre algorisme ha de funcionar en temps O(n lg k). Al vostre
anàlisis podeu suposar que n és múltiple de k i k és una potencia de 2.

Una solució: L’entrada es un vector amb les puntuacions de l’examen i la sortida ha de ser
un conjunt de k grups G1, . . . Gk, cadascú format per n/k estudiants. A més l’estudiant amb
nota més alta a Gi, per 1 ≤ i < k, ha de tenir nota menor o igual que la del estudiant amb
nota més baixa a Gi+1. Com podem tenir notes repetides trencarem l’empat d’acord amb la
posició que ocupa l’estudiant al vector, aix́ı podem treballar assumint que tots els valors son
diferents.

Com que els grups han de tenir la mateixa mida, l’algorisme que proposo anirà calculant la
mediana i dividin el vector en dos parts iguals una amb els valors mes petits o iguals que
la mediana i l’altre amb la resta. AGRUPAR(N, ℓ, t) es l’algorisme recursiu que, té com a
entrada una taula de alumnes-notes N i dos enters ℓ i t, i fa el següent:

� Si ℓ = 1, torna N i t

� Troba la mediana de A i fa una partició al seu voltant.

� Considerem la sub-taula Ne esquerra i la sub-taula dreta Nd de aquesta partició.

� Cridem recursivament AGRUPAR(Ne, ℓ/2, 2t) i AGRUPAR(Nd, ℓ/2, 2t+ 1).

La crida inicial la farem amb N , ℓ = k i t = 0.

Correctesa: La correctesa ve de com particionem els elements. Sempre tenim dos meitats
i els elements a Ne són més petits o igual que la mediana i els elements a Nd són més grans
o iguals que la mediana. Aconseguirem ℓ = 1 desprès de lg k iteracions, en aquell moment
la taula considerada té n/k elements. La variable t comptabilitza l’ordre de las crides. Al
primer nivell tenim només una taula i t = 0. Al segon tindrem dos taules, la de l’esquerra
etiquetada amb 0 i la de la dreta amb 1. Al següent nivell, tindrem 0,1,2,3 (e-e,e-d,d-e,d-d).
Llavors t comptabilitza l’ordre correcte de les particions per garantir la propietat requerida.

Cost temporal: El cost de l’algorisme recursiu és pot expresar amb la recurrència T (n, k) =
2T (n/2, k/2) + Θ(n) amb T (n, 1) = Θ(1), per a tot n. Desplegant la recursió tenim

T (n, k) = 2T (n/2, k/2) + cn = 4T (n/4, k/4) + 2c(n/2) + cn

= 4T (n/4, k/4) + 2cn = k + cn lg k.

llavors, T (n) = Θ(n lg k).

1.4. (Amb pocs missatges?)

Siguin A i B dos conjunts, ambdós amb n elements, tal que els elements de A es
troben a l’ordinador P i els de B al Q. P i Q es poden comunicar entre ells enviant-se
missatges i poden executar localment qualsevol tipus d’operacions. Per simplificar-ho,
podeu suposar que tots els elements són diferents.
Volem un algorisme per trobar l’n-èsim element més petit d’A∪B. Per fer-ne l’anàlisi
temporal volem comptabilitzar només el nombre de missatges, assumint que un mis-
satge pot contenir o bé un número entre 1 i n, o bé un element del conjunt.
Es pot trobar l’n-èsim element més petit d’A ∪ B amb o(n) missatges en cas pitjor?
Justifiqueu-ne la vostra resposta.

Una solució curta Donats 2n elements en A i B, el n-èssim element més petit de A ∪ B
és la mediana. Per obtenir un cost o(n), necessitem un algoritme que redueixi la mida del
problema a una fracció del mateix en cada pas. Primer, ordenem localment cada conjunt A
i B (no afecta el cost de pas de missatges). Siguin ma i mb les medianes de A i B, wlog,
si ma < mb, la mediana cercada està entre ma i mb. Podem descartar n/2 valors de cada
conjunt i procedir recursivament en les meitats restants. L’algoritme acaba quan queden dos
elements (el menor d’ells és la mediana). L’algoritme realitza O(log n) passos (missatges entre
ordinadors), on O(log n) ⊂ o(n).

Una solució amb més detalls (amb un fi docent)

Per a poder obtenir cost o(n) necessitem tenir un algoritme que a cada pas redueixi la mida del
problema a una fracció de la mida original; és a dir, O(log n) ⊂ o(n). Primer, podem ordenar
localment cada conjunt A i B, ja que no afecta el cost O(log n) de pas de missatges. Amb A
i B ordenats, sigui ma = A[n/2] i mb = B[n/2] (la mediana de cada conjunt). Com que no
hi ha elements repetits, un dels valors és més gran que l’altre. Sense pèrdua de generalitat,
suposem que ma < mb. Hi ha com a mı́nim n elements menors que mb i com a mı́nim n
elements més grans que ma, aix́ı que la mediana que busquem compleix ma ≤ m ≤ mb. Per
això, els primers n/2 elements de A són menors o iguals que ma (i que m) i els últims n/2
elements de B són més grans o iguals que mb (i més grans que m). En eliminar el mateix
nombre de valors més grans que menors, la mediana del conjunt de valors que resten continua
sent m. A més, eliminem el mateix nombre n/2 de valors de cada conjunt.

procedure Mediana(a1, a2, b1, b2)
▷ Cas base

if a2 − a1 = 1 return min(A[a1], B[b2])
▷ Cas general recursiu

r ← (a2 − a1)/2
(ma,mb)← (A[a1 + r], B[b1 + r])
if ma < mb then

(a1, b2)← (a1 + r, b2 − r)
else

(b1, a2)← (b1 + r, a2 − r)

return Mediana(a1, a2, b1, b2)

L’algoritme mantindrà en tot moment els dos trossos de cada conjunt dels quals hem d’obtenir
la mediana i finalitzarà quan tinguem dos trossos amb un únic element. En aquest cas base, el
menor dels dos elements és la mediana. La crida Mediana(a1,a2,b1,b2) obtindrà la mediana
de {A[i] | a1 ≤ i < a2}∪{B[j] | b1 ≤ j < b2}. Per resoldre el problema serà suficient executar
Mediana(0,n,0,n). Al llarg de l’algoritme mantindrem la propietat a2 − a1 = b2 − b1, aix́ı
garantim que el tros d’A i el tros de B a tractar tenen la mateixa mida. L’algoritme realitza
O(log n) passos (missatges entre ordinadors), on O(log n) ⊂ o(n).

1.5. (Ordenar k-multiconjunts)

Un k-multiconjunt és un multiconjunt amb k elements diferents, cadascun dels
quals apareix exactament n/k cops. Per exemple, {1, 1, 2, 2, 3, 3, 4, 4, 5, 5} és un 5-
multiconjunt (ordenat) de mida n = 10. Doneu un algorisme Θ(n lg k) per a ordenar
un k-multiconjunt de mida n. Considerem que n = 2i i k = 2j per a alguns i i j, i ≥ j.

Una solució:

Sigui S un k-multi conjunt. Considerem el següent algorisme:

� Utilitzar selecció determinista per a trobar la mediana sm de S.

� partim S al voltant de sm, treien els elements amb valor sm que emmagatzemen a un
vector Aux.

� Com hi ha n/k elements a S que son iguals a sm, la partició divideix els elements restants
de S en dues parts, cada part té com a molt n/2 elements i apareixen com a molt k/2
valors diferents. Siguin Sl i Sr les dues meitats,

� Aplicar recursivament l’algorisme a cada meitat (mentre aquestes tinguin grandària ≥
n/k. Tornarem Sl ordenat, seguit de Aux i seguit de Sr ordenat.

A cada nivell de la recursió, dividim S en dos subconjunts amb grandària ≤ |S|/2 en O(n)
passos. L’algorisme s’aturara quan arribe a subproblemes amb grandària n/k, es a dir n/2j .
Per tant l’alçada de l’arbre de recursió serà j = lg k (fins arribar a un S amb grandària n/k).
A cada nivell, el cost de cada crida recursiva és lineal, i les crides es fan sobre conjunts disjunts
de valors. Per tant, el cost d’un nivell és O(n). Aix́ı tenim cost total O(n lg k).

Comentari: Un algorisme que ordena el multiconjunt, però no en el temps demanat.

Podem ordenar el multiconjunt donat a un vector A mantenint un vector V ordenat que
contingui els valors que trobem al vector i associant a cada valor del vector V una cua de les
posicions dels elements del vector d’entrada que contenen aquest valor.

L’algorisme és el següent:

� Guardem A[0] a V [0] i 0 a la cua associada a V [0].

� per 1 ≤ i < n, cerquem A[i] a V amb cerca dicotòmica. Si trobem el valor afegim i a la
cua associada. En cas contrari, inserim el valor A[i] en la seva posició a V i inserim i a
la cua associada a la posició corresponent de V .

� Finalment, obtenim la sortida recorrent en ordre, una darrera de l’altre, les cues associ-
ades als elements d’V .

L’algorisme és correcte, ja que cada llista té posicions amb el mateix valor i es manté ordenada
al llarg de tota l’execució.

Com V té sempre k o menys elements la cerca dicotòmica té cost O(log k). Per tant, el cost
total de les cerques a V és O(n log k). Per un altra part, tenim el cost d’inserció, que és com
a molt O(k2). L’algorisme té el cost demanat sempre que k2/logk = O(n), observem que això
no passa sempre, per exemple quan n = ck per alguna constant c.

