Algorismia QP Curs 2023-2024

Problemes resolts 1

1.1. (Cim)

Suposem que tenim un vector A amb n nombres enters diferents, amb la propietat:
existeix un unic index p tal que els valors A[l---p| estan en ordre creixent i els valors
Alp---n] estan en ordre decreixent. Per exemple, en la seglient vector tenim n = 10 i
p=4:

A=(2,5,12,17,15,10,9,4,3,1)

Dissenyeu un algorisme eficient per trobar p suposant que una matriu A amb la propi-
etat anterior ja és a memoria.

Una solucié: Primer de tot formalitzarem la propietat del vector A d’entrada. Existeix un
index p € [1,...n] tal que, per 1 <i <p, Afi] < A[i +1],iperp <j<mn, Ali] > A[i +1]. El
nostre algorisme ha de trobar aquest valor p.

Proposem I’algorisme recursiu que es descriu en I’Algorisme FINDPEAK. Donat el vector A,
la resposta s’obté amb una crida amb ¢ = 11 j = n. L’algorisme fa una cerca binaria, en cada
pas, comparem els dos elements intermedis i veurem si estem en la part creixent o decreixent
d’A. El cas base ressol el problema d’obtenir la posicié del maxim, perd per a una entrada
amb mida constant.
function FINDPEAK(A, 1, j)
n=j3—1+1
if n <5 then
return PosMAX(A4,1, j)
k=(i+7j)/2
if Alk] < A[k + 1] then
return FINDPEAK (A, k + 1, 7)
else
return FINDPEAK(A, i, k)

Correctesa: Volem trobar I'index p. Si A[k] < A[k + 1], sabem que A[i] < --- < A[k] per
i < k i podem prescindir de forma segura els elements Afi---k|. De la mateixa manera, si
Alk] > Alk + 1], sabem que A[k + 1] > --- > A[j] per j > k + 1 i podem descartar amb
seguretat els elements A[k + 1---j]. La posicié de p coincideix amb la del valor maxim al
vector, per tant el cas base és correcte.

Cost temporal: El cas base té cost constant. A cada pas, es redueix la mida del problema
a la meitat i, a més, el cost de les operacions és constant. Aixi, tenim la recurrencia T'(n) =
T(n/2) + c per a alguna constant ¢. Sabem que, com a la cerca binaria, T'(n) = O(logn).

Comentari: Al fer ’analisi del cost de ’algorisme no hem tingut en compte el cost de llegir
el vector. El cost contant el de fer la lectura del vector és O(n).

1.2. (Movent Robots)

Tenim un conjunt de robots que es mouen en un edifici, cadascun d’ells és equipat
amb un transmissor de radio. El robot pot utilitzar el transmissor per comunicar-se
amb una estacié base. No obstant aixo, si els robots sén massa a prop un de l'altre
hi ha problemes amb la interferéncia entre els transmissors. Volem trobar un pla de
moviment dels robots, de manera que puguin procedir al seu desti final, sense perdre
mai el contacte amb ’estacié base.

Podem modelar aquest problema de la seglient manera. Se’'ns déna un graf G = (V, E)
que representa el planol d’un edifici, hi ha dos robots que inicialment es troben en els
nodes a i b. El robot en el node a voli viatjar a la posicié c, i el robot en el node b
vol viatjar a la posicié d. Aix0 s’aconsegueix per mitja d’una planificacié: a cada pas
de temps, el programa especifica que un dels robots es mou travessant una aresta. Al
final de la planificacid, els dos robots han d’estar en les seves destinacions finals.

Una planificacié6 és [liure d’interferencia si no hi ha un punt de temps en el qual els dos
robots ocupen nodes que es troben a distancia menor de 7, per a un valor determinat
del parametre r.

Doneu un algorisme de temps polinomial que decideixi si hi ha una planificacié lliure
donats, el graf, les posicions inicials i finals dels robots i el valor de r.

Una solucié. Per resoldre el problema farem una reduccié cap a un problema amb solucid
coneguda, el problema de trobar un cami de un vertex s a un vertex ¢t en un graf G. Aquest
problema de camins es resol en temps lineal fent servir un BFS desde s.

La reduccié: Anem a construir un graf associat a I’entrada del nostre problema. Per aixo,
considerarem ’espai de configuracions on els dos robots es poden moure. Es a dir, el conjunt
de parells de posicions que estan a distancia més gran o igual que 7:

C={(u,v) |u,v € Vid(u,v)>r}

Podem considerar la relacié entre configuracions definida pels moviments permesos, un d’ells
mou cap a un altre posicié. Aixi tenim

M = {((u,v), («,v')) |(u, v), (u,0') € C'i
(u=v"i(v,v)€E)o(v=2"i(u,u) € E))}.

A Tespai de configuracions podem considerar el graf G = (C, M) on dos configuracions son
veines si i només si un del robots pot canviar de posicié sense interferir amb la posicié de
I’altre.

Finalment, prenem com a posicié inicila s = (a,b) i com a posicié final t = (¢, d).

Correctesa: Els robots sén inicialment a la configuracié (a, b) i s’han de desplagar amb mo-
viments valids fins a la configuracié (¢, d). D’acord amb la definicié del graf de configuracions,
aix0 sera possible si i només si hi ha un cami de (a,b) a (¢,d) a G.

Algorisme: D’acord amb el raonament anterior només cal construir el graf de configuracions
i comprovar si hi ha un cami entre els dos vertexs a G. Podem detectar-ho amb un BFS.

Cost temporal: Per calcular el cost hem de tenir en compte la mida de ’entrada. Si
G=(V,E)in=|V|im = |E|, tenim |C| < n?i |M| < 2m. Suposant que ens donen G
mitjancant llistes d’adjacencia la mida de l'entrada és O(n+m). Construir una descripci6 de
G mitjancant llistes d’adjacencia té cost O(n? + m). Fer un BFS sobre G té cost O(n? +m).
El cost total es O(n? + m) perd m < n?. Llavors I’algorisme proposat té cost O(n?).

1.3. (Distribucié de notes)

El Professor JD ha corregit els examens finals del curs, de cara a tenir una distribuci
maca de les notes finals decideix formar k£ grups, cada grup amb el mateix nombre
d’alumnes, i donar la mateixa nota a tots els alumnes que sén al mateix grup. La
condicié més important és que qualsevol dels alumnes al grup ¢ han de tenir nota
d’examen superior o igual a qualsevol alumne d’un grup inferior (grups de 1 fins a
i —1). L’ordre dintre de cadascun dels grups es irrellevant. Dissenyeu un algorisme
que donada una taula A no ordenada, que a cada registre conté la identificacié d’un
estudiant amb la seva notes d’examen, divideix A en els k grups, amb les propietat
descrita a dalt. El vostre algorisme ha de funcionar en temps O(nlgk). Al vostre
analisis podeu suposar que n és multiple de k i k és una potencia de 2.

Una solucio: L’entrada es un vector amb les puntuacions de 'examen i la sortida ha de ser
un conjunt de k grups Gj,...Gg, cadasci format per n/k estudiants. A més I'estudiant amb
nota més alta a G;, per 1 < ¢ < k, ha de tenir nota menor o igual que la del estudiant amb
nota més baixa a G;11. Com podem tenir notes repetides trencarem I'empat d’acord amb la
posicié que ocupa l’estudiant al vector, aixi podem treballar assumint que tots els valors son
diferents.

Com que els grups han de tenir la mateixa mida, l’algorisme que proposo anira calculant la
mediana i dividin el vector en dos parts iguals una amb els valors mes petits o iguals que
la mediana i laltre amb la resta. AGRUPAR(N,{,t) es l’algorisme recursiu que, té com a
entrada una taula de alumnes-notes N i dos enters £ i t, i fa el segiient:

e Si/f=1,torna Nit

Troba la mediana de A i fa una particié al seu voltant.

e Considerem la sub-taula N, esquerra i la sub-taula dreta N, de aquesta particio.
e Cridem recursivament AGRUPAR(N,, ¢/2,2t) i AGRUPAR(Ngy,¢/2,2t + 1).

La crida inicial la farem amb N, f =k it = 0.

Correctesa: La correctesa ve de com particionem els elements. Sempre tenim dos meitats
i els elements a N, sén més petits o igual que la mediana i els elements a Ny sén més grans
o iguals que la mediana. Aconseguirem ¢ = 1 despres de lg k iteracions, en aquell moment
la taula considerada té n/k elements. La variable ¢ comptabilitza I'ordre de las crides. Al
primer nivell tenim només una taula i ¢ = 0. Al segon tindrem dos taules, la de I'esquerra
etiquetada amb 0 i la de la dreta amb 1. Al segiient nivell, tindrem 0,1,2,3 (e-e,e-d,d-e,d-d).
Llavors t comptabilitza 1’ordre correcte de les particions per garantir la propietat requerida.

Cost temporal: El cost de I’algorisme recursiu és pot expresar amb la recurrencia 7'(n, k) =
2T (n/2,k/2) + O(n) amb T'(n,1) = ©(1), per a tot n. Desplegant la recursié tenim

T(n,k) =2T(n/2,k/2) + cn =4T(n/4,k/4) 4+ 2¢(n/2) + cn
=4T(n/4,k/4) +2cn =k + cenlgk.
llavors, T'(n) = O(nlgk).

1.4. (Amb pocs missatges?)

Siguin A i B dos conjunts, ambdés amb n elements, tal que els elements de A es
troben a ’ordinador P iels de B al (). P i @) es poden comunicar entre ells enviant-se
missatges i poden executar localment qualsevol tipus d’operacions. Per simplificar-ho,
podeu suposar que tots els elements son diferents.

Volem un algorisme per trobar I'n-ésim element més petit d’A U B. Per fer-ne I'analisi
temporal volem comptabilitzar només el nombre de missatges, assumint que un mis-
satge pot contenir o bé un nimero entre 1 i n, o bé un element del conjunt.

Es pot trobar I'n-ésim element més petit d’A U B amb o(n) missatges en cas pitjor?
Justifiqueu-ne la vostra resposta.

Una solucié curta Donats 2n elements en A i B, el n-éssim element més petit de AU B
és la mediana. Per obtenir un cost o(n), necessitem un algoritme que redueixi la mida del
problema a una fraccié del mateix en cada pas. Primer, ordenem localment cada conjunt A
i B (no afecta el cost de pas de missatges). Siguin m, i my les medianes de A i B, wlog,
si mg < my, la mediana cercada esta entre m, i mp. Podem descartar n/2 valors de cada
conjunt i procedir recursivament en les meitats restants. L’algoritme acaba quan queden dos
elements (el menor d’ells és la mediana). L’algoritme realitza O(logn) passos (missatges entre
ordinadors), on O(logn) C o(n).

Una solucié amb més detalls (amb un fi docent)

Per a poder obtenir cost o(n) necessitem tenir un algoritme que a cada pas redueixi la mida del
problema a una fraccié de la mida original; és a dir, O(logn) C o(n). Primer, podem ordenar
localment cada conjunt A i B, ja que no afecta el cost O(logn) de pas de missatges. Amb A
i B ordenats, sigui m, = A[n/2] i my = B[n/2] (la mediana de cada conjunt). Com que no
hi ha elements repetits, un dels valors és més gran que I'altre. Sense perdua de generalitat,
suposem que m, < my. Hi ha com a minim n elements menors que m; i com a minim n
elements més grans que my, aixi que la mediana que busquem compleix m, < m < my. Per
aixo, els primers n/2 elements de A sén menors o iguals que m, (i que m) i els dltims n/2
elements de B sén més grans o iguals que my (i més grans que m). En eliminar el mateix
nombre de valors més grans que menors, la mediana del conjunt de valors que resten continua
sent m. A més, eliminem el mateix nombre n/2 de valors de cada conjunt.
procedure MEDIANA (a1, ag, by, b2)
> Cas base
if ag —a; =1 return min(Afa;], B[bz])
> Cas general recursiu
r < (a2 —ay)/2
(mq, mp) < (Alar + 7], B[b1 + 7))
if m, < my then
(al, bg) — (a1 +r, by — 7“)
else
(bl,ag) — (b1 +7r,a9 — 7")

return MEDIANA(al, aa, bl, b2)

L’algoritme mantindra en tot moment els dos trossos de cada conjunt dels quals hem d’obtenir
la mediana i finalitzara quan tinguem dos trossos amb un tnic element. En aquest cas base, el
menor dels dos elements és la mediana. La crida Mediana(al,a2,b1,b2) obtindra la mediana
de {A[i] | al < i < a2} U{B][j] | b1 < j < b2}. Per resoldre el problema sera suficient executar
Mediana(0,n,0,n). Al llarg de 'algoritme mantindrem la propietat a2 — al = b2 — b1, aixi
garantim que el tros d’A i el tros de B a tractar tenen la mateixa mida. L’algoritme realitza
O(log n) passos (missatges entre ordinadors), on O(logn) C o(n).

1.5. (Ordenar k-multiconjunts)

Un k-multiconjunt és un multiconjunt amb k elements diferents, cadascun dels
quals apareix exactament n/k cops. Per exemple, {1,1,2,2,3,3,4,4,5,5} és un 5-
multiconjunt (ordenat) de mida n = 10. Doneu un algorisme O(nlgk) per a ordenar
un k-multiconjunt de mida n. Considerem que n = 2'i k = 27 per a alguns i i j, i > j.

Una solucio:

Sigui S un k-multi conjunt. Considerem el segiient algorisme:

e Utilitzar seleccié determinista per a trobar la mediana s,, de S.

e partim S al voltant de s,,, treien els elements amb valor s, que emmagatzemen a un
vector Auzx.

e Com hi ha n/k elements a S que son iguals a s,,, la particié divideix els elements restants
de S en dues parts, cada part té com a molt n/2 elements i apareixen com a molt k/2
valors diferents. Siguin 57 i .S, les dues meitats,

e Aplicar recursivament ’algorisme a cada meitat (mentre aquestes tinguin grandaria >
n/k. Tornarem S; ordenat, seguit de Auz i seguit de S, ordenat.

A cada nivell de la recursid, dividim S en dos subconjunts amb grandaria < |S|/2 en O(n)
passos. L’algorisme s’aturara quan arribe a subproblemes amb grandaria n/k, es a dir n/27.
Per tant I'algada de I’arbre de recursié sera j = lgk (fins arribar a un S amb grandaria n/k).
A cada nivell, el cost de cada crida recursiva és lineal, i les crides es fan sobre conjunts disjunts
de valors. Per tant, el cost d’un nivell és O(n). Aix{ tenim cost total O(nlgk).

Comentari: Un algorisme que ordena el multiconjunt, perd no en el temps demanat.

Podem ordenar el multiconjunt donat a un vector A mantenint un vector V ordenat que
contingui els valors que trobem al vector i associant a cada valor del vector V una cua de les
posicions dels elements del vector d’entrada que contenen aquest valor.

L’algorisme és el segiient:

e Guardem A[0] a V[0] i 0 a la cua associada a V[0].

e per 1 <i < n, cerquem A[i] a V amb cerca dicotomica. Si trobem el valor afegim i a la
cua associada. En cas contrari, inserim el valor A[i] en la seva posicié a V' i inserim i a
la cua associada a la posicié corresponent de V.

e Finalment, obtenim la sortida recorrent en ordre, una darrera de l’altre, les cues associ-
ades als elements d’V'.

L’algorisme és correcte, ja que cada llista té posicions amb el mateix valor i es manté ordenada
al llarg de tota ’execucio.

Com V té sempre k o menys elements la cerca dicotomica té cost O(log k). Per tant, el cost
total de les cerques a V' és O(nlogk). Per un altra part, tenim el cost d’insercié, que és com
a molt O(k?). L’algorisme té el cost demanat sempre que k2 /logk = O(n), observem que aixd
no passa sempre, per exemple quan n = ck per alguna constant c.

