
Algoŕısmia QP Curs 2025-2026

Problemes 1

1.1. (Quin no hi és?) Un vector A[n] conté tots els enters entre 0 i n excepte un.

(a) Dissenyeu un algorisme que, utilitzant un vector auxiliar B[n+1], detecti l’enter que no
és a A, i ho faci en O(n) passos.

(b) Suposem ara que n = 2k − 1 per a k ∈ N i que els enters a A venen donats per la seva
representació binària. En aquest cas, l’accés a cada enter no és constant, i llegir qualsevol
enter té un cost lg n. L’única operació que podem fer en temps constant es “recuperar”
el j-èsim bit de l’enter a A[i]. Dissenyeu un algorisme que, utilitzant la representació
binària per a cada enter, trobi l’enter que no és a A en O(n) passos.

1.2. (Gini) El coeficient de Gini és una mesura de la desigualtat ideada per l’estad́ıstic italià
Corrado Gini. Normalment s’utilitza per mesurar la desigualtat en els ingressos, dins d’un
páıs, però pot utilitzar-se per mesurar qualsevol forma de distribució desigual. El coeficient
de Gini és un nombre entre 0 i 1 , on 0 es correspon amb la perfecta igualtat (tots tenen els
mateixos ingressos) i on el valor 1 es correspon amb la perfecta desigualtat (una persona té
tots els ingressos i els altres cap).

Formalment, si r = (r1, . . . , rn), amb n > 1, és un vector de valors no negatius, el coeficient
de Gini es defineix com:

G(r) =

∑n
i=1

∑n
j=1 | ri − rj |

2(n− 1)
∑n

i=1 ri
.

Proporcioneu un algorisme eficient per calcular el coeficient de Gini donat el vector r.

1.3. (Celebritat?) En una festa, un convidat es diu que és una celebritat si tothom el coneix,
però ell no coneix a ningú (tret d’ell mateix). Les relacions de coneixença donen lloc a un
graf dirigit: cada convidat és un vèrtex, i hi ha un arc entre u i v si u coneix a v.

(a) Doneu una formalització de la propietat de ser celebritat.

(b) Doneu un algorisme que, donat un graf dirigit representat amb una matriu d’adjacència,
indica si hi ha o no cap celebritat. En el cas que hi sigui, cal dir qui és. El vostre
algorisme ha de funcionar en temps O(n), on n és el nombre de vèrtexs.

1.4. (És 2-colorable?) Un graf G = (V,E) es k-colorable si existeix una coloración dels vèrtex
de G amb k-colors tal que els extrems de una aresta a E tenen color diferents.

(a) Doneu una formalització de la propietat de ser 2-colorable.

(b) Demostreu que un graf es 2-colorable si i només si es bipartit.

(c) Fent servir la propietat anterior doneu un algorisme eficient per determinar si un graf és
2-colorable.

1.5. (k-mers) Definim els k-mers com les subcadenes de DNA, amb grandària k. Per tant, per
a un valor donat k podem assumir que tenim una base de dades amb tots els 4k k-mers.
Una manera utilitzada en l’experimentació cĺınica per a identificar noves seqüències de DNA,
consisteix a agafar mostres aleatòries de una cadena i determinar quins k-mers conté, on els
k-mers es poden solapar. A partir d’aquest procés, podem reconstruir tota la seqüència de
DNA.
Formalment, donada una cadena w ∈ {A,C, T,G}∗, i un enter k, sigui S(w) el multi-conjunt
de tots els k-mers que apareixen a w. Notem que |S(w)| = |w|−k+1. El problema consisteix
en, donat un multi-conjunt C de k-mers, trobar la cadena de DNA w tal que S(w) = C.

(a) Demostreu que hi ha una reducció polinòmica d’aquest problema al problema del camı́
Hamiltonià, que és NPC (utilitzeu els k-mers com a vèrtexs i el solapament entre k-mers
com condició d’existència d’arestes).

(b) Demostreu que hi ha una reducció d’aquest problema al problema del camı́ Eulerià, que
és a P (aquest cop, utilitzeu k-mers com a arestes dirigides).

(c) Vol dir això que aquest problema és a P i a NPC, i per tant P=NP?

1.6. (Un joc d’actrius i actors) Tenim dos jugadors P0 i P1 i dues llistes, X i Y . La llista X
conté els noms d’n actrius amb les pel·ĺıcules on han participat, i la llista Y conte els noms
d’n actors i les pel·ĺıcules on han participat. Cada jugador disposa de còpies de les llistes X
i Y amb la informació completa de qui ha aparegut en una pel·ĺıcula amb qui.

El joc consisteix en el següent, el jugador P0 diu el nom d’una actriu x1 ∈ X, aleshores P1 ha
de donar el nom d’un actor y1 ∈ Y que ha aparegut a una pel·ĺıcula amb x1, a continuació
P0 ha de donar el nom d’una actriu x2 ∈ X, x2 ̸= x1, que ha aparegut a una pel·ĺıcula amb
y1, i aix́ı successivament fins que un dels dos jugadors no pot donar cap nom diferent. Noteu
que la restricció important és que no es poden repetir noms al llarg de la partida. El jugador
que per primer cop no pot donar cap nom és el jugador que perd.

Podeu observar que a una partida P0 i P1 generen col·lectivament una seqüència

x1, y1, x2, y2, . . . , xi, yi, . . . ,

de manera que cada actor/actriu en la seqüència ha coprotagonitzat al costat de l’actriu/actor
immediatament anterior, i no es repeteixen noms.

Una estratègia per al jugador P0 és un algorisme que pren com a entrada una seqüència
x1, y1, x2, y2, . . . , xi, yi i genera un xi+1 legal, si això és possible. De la mateixa manera
podem definir una estratègia per a P1.

Si a més ens donen una forma de formar n parelles actriu-actor, de manera que cap actor
ni cap actriu apareix a més d’una parella i a més per cada parella actriu-actor tots dos han
participat junts a alguna peĺıcula. Voldrias jugar com P0 o com P1? Com jugaries? Justifica
la teva resposta.

1.7. Digueu si cadascuna de les afirmacions següents són certes o falses (i per què).

(a) Asimptòticament (1 + o(1))ω(1) = 1

(b) Si f(n) = (n+ 2)n/2 aleshores f(n) ∈ Θ(n2).

(c) Si f(n) = (n+ 2)n/2 aleshores f(n) ∈ Θ(n3).

(d) n1.1 ∈ O(n(lg n)2)

(e) n0.01 ∈ ω((lg n)2)

1.8. (És fortament connex?) Un graf dirigit és fortament connex quan, per cada parell de
vèrtexs u, v, hi ha un camı́ de u a v. Doneu un algorisme per determinar si un graf dirigit és
fortament connex.

1.9. (És semiconnex?) Un graf dirigit G = (V,E) és semiconnex si, per qualsevol parell de
vèrtexs u, v ∈ V , tenim un camı́ dirigit de u a v o de v a u. Doneu un algorisme eficient per
determinar si un graf dirigit G és semiconnex. Demostreu la correctesa del vostre algorisme i
analitzeu-ne el cost. Dissenyeu el vostre algorisme fent us d’un algorisme que us proporcioni
les components connexes fortes del graf en temps O(n+m).

1.10. Considereu el següent algorisme de dividir-i-vèncer que té com entrada un vector d’enters.

SRT(A[1..k])

1: if n ≤ 2 then
2: if A[1] > A[k] then
3: Interchange A[1] with A[k]

4: else
5: m = ⌊n/3⌋
6: SRT(A[1..k −m])
7: SRT(A[m+ 1..k])
8: SRT(A[1..k −m])

9: return (A)

(a) Demostra que SRT(A[1..n]) torna el vector A ordenat creixentment.

(b) Dona el cost temporal de SRT indicant com ho has obtingut.

1.11. (Clique max?) Donat un graf no dirigit G = (V,E) i un subconjunt de vèrtex V1, el subgraf
indüıt per V1, G[V1] té com a vèrtex V1 i con a arestes totes les arestes a E que connecten
vèrtexs en V1. Un clique és un subgraf indiut per un conjunt C on tots els vèrtexs estan
connectats entre ells.

Considereu el següent algorisme de dividir-i-vèncer per al problema de trobar un clique en un
graf no dirigit G = (V,A).

CliqueDV(G)

1: Enumereu els vèrtexs V com 1, 2, . . . , n, on n = |V |
2: Si n = 1 tornar V
3: Dividir V en V1 = {1, 2, . . . , ⌊n/2⌋} i V2 = {⌊n/2⌋+ 1, . . . , n}
4: Sigui G1 = G[V1] i G2 = G[V2]
5: C1= CliqueDV(G1) i C2= CliqueDV(G2)
6: C+

1 = C1 i C+
2 = C2

7: for u ∈ C1 do
8: if u està connectat a tots els vèrtexs a C+

2 then
9: C+

2 = C+
2 ∪ {u}

10: for u ∈ C2 do
11: if u està connectat a tots els vèrtexs a C+

1 then
12: C+

1 = C+
1 ∪ {u}

13: Retorneu el més gran d’entre C+
1 i C+

2

Contesteu les següents preguntes:

(a) Demostreu que l’algorisme CliqueDV sempre retorna un subgraf de G que és un clique.

(b) Doneu una expressió asimptòtica del nombre de passos de l’algorisme CliqueDV.

(c) Doneu un exemple d’un graf G on l’algorisme CliqueDV retorna un clique que no és de
grandària màxima.

(d) Creieu que és fàcil modificar CliqueDV de manera que sempre done el clique màxim,
sense incrementar el temps pitjor de l’algorisme? Expliqueu la vostra resposta.

1.12. (Ĺınies visibles) El problema de l’eliminació de superf́ıcies ocultes és un problema important
en informàtica gràfica. Si des de la teva perspectiva, en Pepet està davant d’en Ramonet,
podràs veure en Pepet però no en Ramonet. Considereu el següent problema, restringit al pla.
Us donen n rectes no verticals al pla, L1, . . . , Ln, on la recta Li ve especificada per l’equació
y = aix + bi. Assumim, que no hi han tres rectes que es creuen exactament al mateix punt.
Direm que Li és maximal en x0 de la coordenada x, si per qualsevol 1 ≤ j ≤ n amb j ̸= i
tenim que aix0 + bi > ajx0 + bj . Direm que Li és visible si té algun punt maximal.

x

1

2

3

4

5

y

Donat com a entrada un conjunt de n rectes L = {L1, . . . , Ln}, doneu un algorisme que,
en temps O(n lg n), torne las rectes no visibles. A la figura de sobre teniu un exemple amb
L = {1, 2, 3, 4, 5}. Totes les rectes excepte la 2 són visibles (considerem rectes infinites).

1.13. (Moltes còpies?) Suposeu que sou consultors per a un banc que està molt amöınat amb
el tema de la detecció de fraus. El banc ha confiscat n targetes de crèdit que se sospita han
estat utilitzades en negocis fraudulents. Cada targeta conté una banda magnètica amb dades
encriptades, entre elles el número del compte bancari on es carrega la tageta. Cada targeta es
carrega a un únic compte bancari, però un mateix compte pot tenir moltes targetes. Direm
que dues targetes són equivalents si corresponen al mateix compte.

És molt dif́ıcil de llegir directament el número de compte d’una targeta intel·ligent, però el
banc té una tecnologia que donades dues targetes permet determinar si són equivalents.

La qüestió que el banc vol resoldre és la següent: donades les n targetes, volen conèixer si
hi ha un conjunt on més de ⌈n/2⌉ targetes són totes equivalents entre si. Suposem que les
úniques operacions possibles que pot fer amb les targetes és connectar-les de dues en dues, al
sistema que comprova si són equivalents.

Doneu un algorisme que resolgui el problema utilitzant només O(n lg n) comprovacions d’e-
quivalència entre targetes. Sabŕıeu com fer-ho en temps lineal?

1.14. (Ordena segment I) Donada una taula A amb n registres, on cada registre conté un enter
de valor entre 0 i 2n, i els continguts de la taula estan desordenats, dissenyeu un algorisme
lineal per a obtenir una llista ordenada dels elements a A que tenen valor més gran que els
log n elements més petits a A, i al mateix temps, tenen valor més petit que els n − 3 log n
elements més grans a A.

1.15. (Ordena segment II)Tenim un taula T amb n claus (no necessàriament numèriques) que
pertanyen a un conjunt totalment ordenat. Doneu un algorisme O(n+ k log k) per a ordenar
els k elements a T que són els més petits d’entre els més grans que la mediana de les claus a
T .

1.16. Com ordenar eficientment elements de longitud variable:

(a) Donada una taula d’enters, on els enters emmagatzemats poden tenir diferent nombre
de d́ıgits. Però sabem que el nombre total de d́ıgits sobre tots els enters de la matriu és
n. Mostreu com ordenar la matriu en O(n) passos.

(b) Se us proporciona una sèrie de cadenes de caràcters, on les diferents cadenes poden tenir
diferent nombre de caràcters. Com en al cas previ, el nombre total de caràcters sobre
totes les cadenes és n. Mostreu com ordenar les cadenes en ordre alfabètic fent servir
O(n) passos. (Tingueu en compte que l’ordre desitjat és l’ordre alfabètic estàndard, per
exemple, a < ab < b.)

1.17. (Mediana amb dades repartides) Tenim un conjunt de 2n valors tots diferents. Una mei-
tat dels valors estan emmagatzemats a una taula A i l’altra meitat a una taula B. Cadascuna
de les dues taules està ordenada en ordre creixent i es troba a un ordinador diferent. No hi
ha cap relació d’ordre entre els valors a A i els valors a B. Volen trobar la mediana del total
dels 2n valors. Doneu un algorisme amb cost O(lg n) que permeti obtenir la mediana sota la
hipòtesis que només podeu fer crides de la forma Element(i, A) o Element(i, B), per 1 ≤ i ≤ n,
que retornen l’element i-ésim a A o a B, respectivament (amb cost O(1)).

1.18. (Suma elements) Tenim un vector A[1, . . . , n] no ordenat on cada registre conté un enter
de valor entre −2n i 2n. Sigui xi el 2

i-èsim element més petit en A. Doneu un algorisme per
calcular la suma dels valors xi, per 1 ≤ 2i ≤ n, en Θ(n) passos.

1.19. (Millor tall) Tenim el següent problema:

L’entrada és una seqüència de nombres diferents S = (x1, x2, . . . , xn), tal que cada element
xi ∈ S té associat un pes w(xi) > 0. Sigui W =

∑
xi∈S w(xi) la suma dels pesos de tots els

elements de la seqüència.

Donat un valor X (0 ≤ X ≤ W), el problema consisteix a trobar l’element xj de la seqüència
tal que ∑

xi<xj

w(xi) < X i w(xj) +
∑
xi<xj

w(xi) ≥ X

Dissenyeu un algorisme eficient (o(n log n)) per a resoldre aquest problema.

1.20. (Examen) La Facultat ens ha proporcionat un llistat complet dels N alumnes de l’assigna-
tura, però malauradament està ordenat per DNI (o equivalent). De cada estudiant tenim el
nom, el cognom, el username, el DNI i altres dades. De cara a l’examen, se’ns han assignat
k aules, ens han donat un vector Aula amb els identificadors de les aules. Volem assignar
N/k alumnes a cada aula (N és divisible entre k) i totes les aules tenen capacitat ≥ N/k.
L’assignació d’alumnes a aules s’ha de fer en ordre lexicogràfic de cognom; no ens cal la llista
ordenada dels alumnes que van a cada aula, ens cal el rang de cognoms, per exemple, amb
k = 4 (per simplificar aquest exemple només escrivim el primer cognom de cada estudiant):

Aula A5002 ABAT - JIMENEZ

Aula A5112 LAMAS - MATA

Aula A6E01 MAURA - RAMON

Aula A6E02 RAMOS - ZHANG

Dissenya un algorisme tan eficient com puguis per resoldre el problema. Justifica la seva
correctesa, i dona el seu cost en funció d’N i k. Qualsevol solució amb cost Ω(N logN)
independentment del valor k no és admissible i serà desestimada (però, un cost Θ(N logN)
seria acceptable quan k = Θ(N)).

1.21. (Azamon) L’empresa de paqueteria Azamon vol col.locar una nova guixeta de recollida
de paquets a un poble que no en té cap. Demanen a l’ajuntament del poble que els doni
informació sobre possibles llocs on els hi deixarien instal.lar i on els habitants del poble s’hi
podrien desplaçar fàcilment.

La informació que proporcionen consisteix en n punts {p1, p2, . . . , pn}, que indiquen les pos-
sibles localitzacions per a les guixetes, i uns pesos positius associats {w1, w2, . . . , wn}, que
en quantifiquen la idonëıtat en funció del nombre de persones que hi viuen a prop, les seves
edats, discapacitats, etc. Aquests pesos estan normalitzats de manera que

∑n
i=1wi = 1.

Azamon ha decidit que posarà la guixeta al punt p que minimitzi la suma

S =
n∑

i=1

wi · d(p, pi), (1)

on d(a, b) és la distància entre dos punts a i b. Considereu les dues següents situacions:

a) Versió 1d: Els n punts {p1, p2, . . . , pn} indiquen les localitzacions de possibles llocs
d’instal.lació al llarg d’un camı́ que travessa el poble; per tant ∀pi : pi ∈ Z+, i la
distància entre dos punts a i b és d(a, b) = |a− b|.

Podeu suposar que tot punt pi ≤ 1000 n.

b) Versió 2d: Els n punts {p1, p2, . . . , pn} indiquen les localitzacions de possibles llocs
d’instal.lació en un mapa amb coordenades; per tant ∀pi : pi = (xi, yi) ∈ Z+ × Z+, i la
distància entre dos punts pa = (xa, ya) i pb = (xb, yb) és la distància de Manhattan, és a
dir, d((xa, ya), (xb, yb)) = |xa − xb|+ |ya − yb|.

Aqúı també podeu suposar que tot punt pi = (xi, yi) té ambdues coordenades afitades
superiorment xi, yi ≤ 1000 n.

Es demana:

Doneu un algorisme eficient que, donats n punts i els seus n pesos, calculi el punt p on col.locar
la guixeta d’Azamon de manera que p minimitzi la suma esmentada. Resoleu el problema
per cadascuna de les dues versions (1d i 2d).

Exemples:

a) Sigui {1, 2, 3, 4, 5} el conjunt de punts i {0.6, 0.05, 0.15, 0.05, 0.15} el conjunt dels respec-
tius pesos. Considerant la distància entre punts a una recta numèrica (versió 1d). Llavors la
solució buscada és el punt p = p1 (en negre, a la figura de sobre), doncs aquesta elecció de pmi-
nimitza la suma S. Observeu que, en canvi, si el conjunt dels pesos fos {0.2, 0.2, 0.2, 0.2, 0.2},
aleshores tindŕıem que és el punt p = p3 (en gris, a la figura de sota) el que minimitza S.

w1 = 0.6 w2 = 0.05 w3 = 0.15 w4 = 0.05 w5 = 0.15

p1 = 1 p2 = 2 p3 = 3 p4 = 4 p5 = 5

w1 = 0.2 w2 = 0.2 w3 = 0.2 w4 = 0.2 w5 = 0.2

b) Suposem ara que els punts són p1 = (1, 4), p2 = (3, 3), p3 = (2, 2), p4 = (4, 5) i p5 = (5, 1),
i els pesos respectius {0.4, 0.15, 0.25, 0.05, 0.15}. Llavors la solució és el punt p = (2, 3) (en
negre, a la figura esquerra). A diferència del cas anterior, la solució no necessàriament és un
punt dels n punts donats.

Un altre exemple: si els pesos fossin {0.05, 0.15, 0.25, 0.5, 0.05} llavors la solució seria el punt
p = (4, 4) (en gris, a la figura dreta).

y

x

p4w4 = 0.05

p1w1 = 0.4

p2w2 = 0.15

p3w3 = 0.25

p5w5 = 0.15

y

x

p4w4 = 0.5

p1w1 = 0.05

p2w2 = 0.15

p3w3 = 0.25

p5w5 = 0.05

1.22. (Mı́nim nombre de canvis) Donat un vector A d’enters, dissenyeu un algorisme el més
eficient possible que trobi quin és el mı́nim nombre (total) d’increments o decrements que
s’han d’aplicar sobre els seus elements per tal que tots esdevinguin iguals.

Per exemple, si A = [3,−1, 4] llavors la resposta és 5 (per exemple, incrementant A[1] quatre
vegades i decrementant A[2] un cop). Si el vector A fos [3,−1, 5, 6] llavors la resposta seria 9
(per exemple, 2 increments d’A[0], més 6 increments d’A[1], més 1 decrement d’A[3]).

Justifica la correctesa del teu algorisme i calcula’n el cost.

1.23. (Examen II) El professor J.D. ha corregit els n exàmens de la seva assignatura i, de cara
a tenir una distribució maca de les notes finals, decideix formar k grups (on k = o(lg n)) i
donar la mateixa nota a tots els alumnes que són al mateix grup: la nota més alta dins del
grup. Hi han dos requeriments importants. El primer és que qualsevol alumne a un grup i
han de tenir nota d’examen superior o igual a qualsevol alumne d’un grup inferior (és a dir,
de qualsevol dels grups de 1 fins a i − 1). El segon requeriment és que la mida del grup k
(l’últim) ha de ser 2, que la del grup i− 1 ha de ser 2 vegades la del grup i, excepte el grup 1
que pot tenir qualsevol mida. L’ordre dintre de cadascun dels grups és irrellevant. Dissenyeu
i analitzeu un algorisme que, donades les notes de l’examen i el valor k resolgui el problema
plantejat. El vostre algorisme ha de tenir cost o(nk).

