- You can assume that we have fixed an effective enumeration of the set of TM, i.e., $TM = \{M_1, M_2, \dots\}$.
- We use a recursively enumerable language as synonym of a recognizable language.
- 1. Show that \leq_m is a reflexive and transitive relation on $\mathcal{P}(\Sigma^*)$. Is it symmetric?
- 2. Given a language $L \subset \Sigma^*$, consider the following set

$$M(L) = \{ x \in \mathbb{N} \mid L(M_r) = L \}.$$

Prove that M(L) is either empty or infinite. Is M(L) decidable?

- 3. Show that the language $K = \{x \in \mathbb{N} \mid M_x(x) \downarrow \}$ is recognizable but undecidable.
- 4. Consider the following problem:

EQUIV: Given two TMs M and N, is L(M) = L(N)?

- (a) Provide a definition of the language L_{EQUIV} formed by the inputs in which the answer is yes.
- (b) Show that L_{EQUIV} is undecidable.
- 5. Consider the following languages:
 - $A = \{x \mid \text{ the computation of } M_x \text{ on input } x \text{ repeat some configuration}\},$
 - $B = \{x \mid \text{ the computation of } M_x \text{ on input } x \text{ do no repeat any configuration, and it is infinite}\},$
 - $C = \{x \mid \text{ the computation of } M_x \text{ on input } x \text{ do no repeat any configuration, and it is finite.} \}$
 - (a) Prove that if i A, B and C are recursive enumerable then $K = \{x \mid M_x(x) \downarrow\}$ will be decidable.
 - (b) For A, B i C prove o disprove their membership in the class of recursively enumerable language.
- 6. The Post Correspondence Problem (PCP) [Emil Post,1946] is defined as follows:

PCP: Given two lists of words with the same length $A=(x_1,\ldots,x_n)$ and $B=(y_1,\ldots,y_n)$. Is there a finite sequence $(i_1,\ldots,i_r),\ r\geq 1$ such that $x_{i_1}\cdots x_{i_r}=y_{i_1}\cdots y_{i_r}$?

Show that when $\Sigma = \{0\}$, the PCP problem is decidable. For this it will be enough to provide a high level algorithm solution.

7. The Modified Post Correspondence Problem (MPCP) is defined a s follows:

MPCP: Given two lists of words with the same length $A=(x_1,\ldots,x_n)$ and $B=(y_1,\ldots,y_n)$. Is there a finite sequence $(1,i_2\ldots,i_r),\ r\geq 1$ such that $x_1x_{i_2}\cdots x_{i_r}=y_1y_{i_2}\cdots y_{i_r}$?

Let (A, B) an instance of MPCP with $A = (x_1, \ldots, x_n)$ and $B = (y_1, \ldots, y_n)$ and consider the following construction:

- Assume $x_i = a_{i1} \dots a_{ik_i}$ and $y_i = b_{i1} \dots b_{ir_i}$.
- Let, # and \$ be two new symbols, define
 - $-v_0 = \#a_{11}\# \dots \#a_{1k_1}\#, w_0 = \#b_{11}\# \dots \#b_{1r_1}, 1 \le i \le n,$
 - $-v_i = a_{i1} \# \dots \# a_{ik_i} \#, w_i = \# b_{i1} \# \dots \# b_{ir_i}, 1 \le i \le n,$
 - $-v_{n+1} =$ \$ and $w_{n+1} = #$ \$.
- Let $A' = (v_0, \dots, v_{n+1})$ and $B' = (w_0, \dots, w_{n+1})$.

Show that $(A, B) \in PCP$ iff $(A', B') \in MPCP$.

Does this construction allow us to show that MPCP \leq_m PCP?