Algorithms and Complexity

Fall 2025-2026

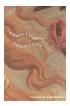
Algorithmics: Basic references

- Kleinberg, Tardos. Algorithm Design, Pearson Education, 2006.
- Cormen, Leisserson, Rivest and Stein. Introduction to algorithms. Second edition, MIT Press and McGraw Hill 2001.
- Easley, Kleinberg. Networks, Crowds, and Markets: Reasoning About a Highly Connected World, Cambridge University Press, 2010



Computational Complexity: Basic references

- Sipser Introduction to the Theory of Computation 2013.
- Papadimitriou Computational Complexity 1994.
- Garey and Johnson Computers and Intractability: A Guide to the Theory of NP-Completeness 1979



Alphabets and languages

- Alphabet: a non-empty finite set.
- Symbol: an element of an alphabet.
- Word: a finite sequence of symbols. λ denotes the empty word, a sequence with 0 symbols.
- Language: set of words over an alphabet.

Alphabets and languages: concatenation

- For an alphabet Σ,
- Σ* denotes the set of words (finite sequence of symbols) over
 Σ (finite sequence of symbols in Σ).
- The basic operation on words is the concatenation.
 - For $x, y \in \Sigma^*$, $x \cdot y$ is the word obtained placing the symbols in x followed by the symbols in y.
 - For example, if $\Sigma = \{0, 1\}$, x = 001000 and y = 11101, $x \cdot y = 00100011101$.
 - (Σ*, ·) is a non-commutative monoid.
- For $x \in \Sigma^*$, the length of x(|x|) is the number of symbols in x.
 - $\bullet |x \cdot y| = |x| + |y|$
 - $|\lambda| = 0$
- A language L is a subset of Σ*.
 We can extend concatenation to languages in the usual form.

$$L_1 \cdot L_2 = \{x \cdot y \mid x \in L_1, y \in L_2\}$$

Alphabets and languages: enumerability

- Let Σ be an alphabet, Σ^* is enumerable.
- We cannot use alphabetical order a, aa, aaa, aaaa, . . .
- We use lexicographic order
 - Order words by length.
 - Among words with the same length order them according to alphabetical order.
- For $\Sigma = \{0,1\}$ we can enumerate $\{0.1\}^*$ as

$$\lambda$$
, 0, 1, 00, 01, 10, 11, 000, ..., 111, 0000, ...

Turing machines

- A Turing machine (TM) M is a tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, q_F)$, where
 - Q is a finite set of states,
 - Σ is the input alphabet.
 - Γ is the tape alphabet, $\Gamma = \Sigma \cup \{b, \blacktriangleright\}$, with $b, \blacktriangleright \notin \Sigma$.
 - $\delta: Q \times \Gamma \to Q \times \Gamma \times \{1, r, n\}$ is the transition function.
 - q₀ is the initial state.
 - q_F is the final or accepting state.

Turing machines: computation

- Let $M = (Q, \Sigma, \Gamma, \delta, q_0, q_F)$ be a TM and $x \in \Sigma^*$
- The computation of *M* with input *x* goes as follows:
 - Initially: the state is q₀; the tape has ► x and all remaining cells in the tape hold a b; the head has access to the first symbol of x.
 - While there is a transition in δ for the combination state, symbol accessed by the head, the transition is applied.
- Assuming that Q and Γ are disjoint, the word $\blacktriangleright \alpha q \beta$ is a configuration in which $\blacktriangleright \alpha \beta$ are the tape contents (b outside), q is a state and the head is accessing the tape cell holding the first symbol in β .
- The computation of M on x is a sequence of configurations,

Turing machines: output

- The computation of a TM on input x is a sequence of configurations, starting with ► q₀x, and continuing so far as there is a next configuration according to δ.
- If the sequence of configurations is finite, we say the M halts on input x, we note this as $M(x) \downarrow$, otherwise, the computation diverges or does not halt, denoted as $M(x) \uparrow$.
- When $M(x) \downarrow$,
 - the number of configurations in the computation is the computation time.
 - Let $ightharpoonup \alpha q \beta$ be the last configuration in the computation.
 - $M(x) = \alpha \beta$ is the output,
 - we say that M halts on input x in state q.

Turing machines: Recognizing languages

- L(M) ⊆ Σ* is the set of words that M accepts, i.e, M on input x halts in state q_F.
- A language $L \subseteq \Sigma^*$ is recognizable (or recursively enumerable) iff there is a TM M with L = L(M).

Turing machines: Computing functions

- The output M(x) of TM M, allows us to associate a partial function $f_M(x) = M(x)$ to a TM.
- Note that $Dom f_M = \{x \mid M(x) \downarrow \}.$
- A function $f:D\subseteq \Sigma^*$ is computable iff there is a TM M with $f=f_M$.

Deciders

- A TM M stops always on accepted inputs, but it may stop or not on rejected inputs.
- A TM M is a decider if it stops on any input $x \in \Sigma^*$.
- A language $L \subseteq \Sigma^*$ is decidable iff there is a decider M such that L = L(M).

Questions

- All languages over alphabet Σ are recognizable?
- All languages over alphabet Σ are decidable?
- All functions from Σ^* to Σ^* are computable?