
References Languages Turing Machines

Algorithms and Complexity

Fall 2025-2026

Algorithms and Complexity

References Languages Turing Machines

Algorithmics: Basic references

• Kleinberg, Tardos. Algorithm Design, Pearson Education,
2006.

• Cormen, Leisserson, Rivest and Stein. Introduction to
algorithms. Second edition, MIT Press and McGraw Hill 2001.

• Easley, Kleinberg. Networks, Crowds, and Markets: Reasoning
About a Highly Connected World, Cambridge University
Press, 2010

Algorithms and Complexity

References Languages Turing Machines

Computational Complexity: Basic references

• Sipser Introduction to the Theory of Computation 2013.
• Papadimitriou Computational Complexity 1994.
• Garey and Johnson Computers and Intractability: A Guide to

the Theory of NP-Completeness 1979

Algorithms and Complexity

References Languages Turing Machines

Alphabets and languages

• Alphabet: a non-empty finite set.
• Symbol: an element of an alphabet.
• Word: a finite sequence of symbols.

λ denotes the empty word, a sequence with 0 symbols.
• Language: set of words over an alphabet.

Algorithms and Complexity

References Languages Turing Machines

Alphabets and languages: concatenation
• For an alphabet Σ,
• Σ∗ denotes the set of words (finite sequence of symbols) over

Σ (finite sequence of symbols in Σ).
• The basic operation on words is the concatenation.

• For x , y ∈ Σ∗, x · y is the word obtained placing the symbols
in x followed by the symbols in y .

• For example, if Σ = {0, 1}, x = 001000 and y = 11101,
x · y = 00100011101.

• (Σ∗, ·) is a non-commutative monoid.
• For x ∈ Σ∗, the length of x (|x |) is the number of symbols in

x .
• |x · y | = |x | + |y |
• |λ| = 0

• A language L is a subset of Σ∗.
We can extend concatenation to languages in the usual form.

L1 · L2 = {x · y | x ∈ L1, y ∈ L2}

Claim
The set of languages over alphabet Σ is not enumerable.

Algorithms and Complexity

References Languages Turing Machines

Alphabets and languages: enumerability

• Let Σ be an alphabet, Σ∗ is enumerable.
• We cannot use alphabetical order a, aa, aaa, aaaa, . . .

• We use lexicographic order
• Order words by length.
• Among words with the same length order them according to

alphabetical order.
• For Σ = {0, 1} we can enumerate {0.1}∗ as

λ, 0, 1, 00, 01, 10, 11, 000, . . . , 111, 0000, . . .

Algorithms and Complexity

References Languages Turing Machines

Turing machines

• A Turing machine (TM) M is a tuple M = (Q, Σ, Γ, δ, q0, qF),
where

• Q is a finite set of states,
• Σ is the input alphabet.
• Γ is the tape alphabet, Γ = Σ ∪ {b,▶}, with b,▶/∈ Σ.
• δ : Q × Γ → Q × Γ × {l, r, n} is the transition function.
• q0 is the initial state.
• qF is the final or accepting state.

Algorithms and Complexity

References Languages Turing Machines

Turing machines: computation

• Let M = (Q, Σ, Γ, δ, q0, qF) be a TM and x ∈ Σ∗

• The computation of M with input x goes as follows:
• Initially: the state is q0; the tape has ▶ x and all remaining

cells in the tape hold a b; the head has access to the first
symbol of x .

• While there is a transition in δ for the combination state,
symbol accessed by the head, the transition is applied.

• Assuming that Q and Γ are disjoint, the word ▶ αqβ is a
configuration in which ▶ αβ are the tape contents (b
outside), q is a state and the head is accessing the tape cell
holding the first symbol in β.

• The computation of M on x is a sequence of configurations,

Algorithms and Complexity

References Languages Turing Machines

Turing machines: output

• The computation of a TM on input x is a sequence of
configurations, starting with ▶ q0x , and continuing so far as
there is a next configuration according to δ.

• If the sequence of configurations is finite, we say the M halts
on input x , we note this as M(x) ↓,
otherwise, the computation diverges or does not halt, denoted
as M(x) ↑.

• When M(x) ↓,
• the number of configurations in the computation is the

computation time.
• Let ▶ αqβ be the last configuration in the computation.

• M(x) = αβ is the output,
• we say that M halts on input x in state q.

Algorithms and Complexity

References Languages Turing Machines

Turing machines: Recognizing languages

• L(M) ⊆ Σ∗ is the set of words that M accepts, i.e, M on
input x halts in state qF.

• A language L ⊆ Σ∗ is recognizable (or recursively enumerable)
iff there is a TM M with L = L(M).

Algorithms and Complexity

References Languages Turing Machines

Turing machines: Computing functions

• The output M(x) of TM M, allows us to associate a partial
function fM(x) = M(x) to a TM.

• Note that DomfM = {x | M(x) ↓}.

• A function f : D ⊆ Σ∗ is computable iff there is a TM M with
f = fM .

Algorithms and Complexity

References Languages Turing Machines

Deciders

• A TM M stops always on accepted inputs, but it may stop or
not on rejected inputs.

• A TM M is a decider if it stops on any input x ∈ Σ∗.

• A language L ⊆ Σ∗ is decidable iff there is a decider M such
that L = L(M).

Algorithms and Complexity

References Languages Turing Machines

Questions

• All languages over alphabet Σ are recognizable?
• All languages over alphabet Σ are decidable?
• All functions from Σ∗ to Σ∗ are computable?

Algorithms and Complexity

	References
	Languages
	Turing Machines

