Problems 3

Some definitions:

12. Let A[1...n] be an array with n different integers. Let ran(n) a randomized function that outputs an integer $i, 1 \le i \le n$ under the uniform distribution. Let us consider the following algorithms

Input: A[1...n]from i = 1 to n do swap values A[i] and A[ran(n)]

Input: A[1...n]from i = n downto 1 do swap values A[i] and A[ran(i)]

Do these algorithms output a uniform random permutation? Justify your answer.

- 13. Consider the following algorithm to generate an integer $r \in \{1, ..., n\}$: We have *n* coins labelled $m_1, ..., m_n$, where the probability that $m_i =$ head is 1/i. Toss the in order the coins $m_n, m_{n-1}, ...$ until getting the first head, if the fist head appears with coin m_i , the r = i. Prove that the previous algorithm yield an integer *r* with uniform distribution. i.e. the probability of getting any integer *r* is 1/n.)
- 14. Consider the set $S = \{1, ..., n\}$.
 - (a) We generate $X \subseteq S$ as follows: A fair coin is flipped independently for each element of S, if the coin lands H, the element is added to X, otherwise it is not. Prove that the resulting set X is equally likely to be any one of the 2^n possible subsets.
 - (b) Suppose $X, Y \subseteq S$ are chosen independently and u.a.r. from all 2^n subsets from S. Compute $\Pr[X \subseteq Y]$ and $\Pr[X \cup Y = S]$
- 15. Let $h(x) = x \mod m$ be a hash function, where $m = 2^p 1$ for some prime number p. Let w be a character string corresponding to the representation in radix 2^p of a natural number. Prove that, if w' is a string obtained by permuting the symbols in w, h(w') = h(w).
- 16. Consider the family \mathcal{H} of hash functions $h : \{1, 2, 3, 4\} \to \{0, 1\}$ containing the three following functions
 - $h_1(1) = 0, h_1(2) = 1, h_1(3) = 1, h_1(4) = 0$
 - $h_2(1) = 1, h_2(2) = 0, h_2(3) = 1, h_2(4) = 0$
 - $h_3(1) = 1, h_3(2) = 1, h_3(3) = 0, h_3(4) = 0$

Is \mathcal{H} universal? Justify your answer.

- 17. There are different operations that we wish to implement on sets of integers. Take into account that in a set there are no repeated elements. Let a[n] and b[n] be arrays holding the elements in two sets A and B with n elements. Provide an exact and a randomized algorithm for each of the following problems.
 - (a) Given a and $x \in \mathbb{N}$, are there integers $y, z \in A$ such that x = y + z?
 - (b) Given a and b, is A = B?

Your algorithms should solve the problems in time $\Theta(n \log n)$ and in expected time O(n), respectively.

- 18. Lucas' theorem says the following: If we have an integer a such that: $a^{n-1} \equiv 1(modn)$, and, for every prime factor q of n-1, it is not the case that $a^{(n-1)/q} \equiv 1(modn)$, then n is prime. Can this result be used to show that Primality belongs to NP?
- 19. Consider the following problems:
 - MODULAR FACTORIAL: Given N bits natural numbers x, y compute $x! \mod y$.
 - SMALLEST PRIME DIVISOR: Given a N bit natural number x, compute the smallest prime divisor of x.
 - FACTORING: Given a N bit natural number x, compute the factorization of x as product of primes.
 - (a) Prove that y is prime if and only if, for each integer x < y, we have that mcd(x!, y) = 1.
 - (b) Show that if MODULAR FACTORIAL can be solved in polynomial time, then SMALLEST PRIME DIVISOR and FACTORING could be solved in polynomial time.