Some definitions:

12. Let $A[1 \ldots n]$ be an array with n different integers. Let $\operatorname{ran}(n)$ a randomized function that outputs an integer $i, 1 \leq i \leq n$ under the uniform distribution. Let us consider the following algorithms
```
Input: \(A[1 \ldots n]\)
from \(i=1\) to \(n\) do
    swap values \(A[i]\) and \(A[\operatorname{ran}(n)]\)
```

Input: $A[1 \ldots n]$
from $i=n$ downto 1 do
swap values $A[i]$ and $A[\operatorname{ran}(i)]$

Do these algorithms output a uniform random permutation? Justify your answer.
13. Consider the following algorithm to generate an integer $r \in\{1, \ldots, n\}$: We have n coins labelled m_{1}, \ldots, m_{n}, where the probability that $m_{i}=$ head is $1 / i$. Toss the in order the coins m_{n}, m_{n-1}, \ldots until getting the first head, if the fist head appears with coin m_{i}, the $r=i$. Prove that the previous algorithm yield an integer r with uniform distribution. i.e. the probability of getting any integer r is $1 / n$.)
14. Consider the set $S=\{1, \ldots, n\}$.
(a) We generate $X \subseteq S$ as follows: A fair coin is flipped independently for each element of S, if the coin lands H, the element is added to X, otherwise it is not. Prove that the resulting set X is equally likely to be any one of the 2^{n} possible subsets.
(b) Suppose $X, Y \subseteq S$ are chosen independently and u.a.r. from all 2^{n} subsets from S. Compute $\operatorname{Pr}[X \subseteq Y]$ and $\operatorname{Pr}[X \cup Y=S]$
15. Let $h(x)=x \bmod m$ be a hash function, where $m=2^{p}-1$ for some prime number p. Let w be a character string corresponding to the representation in radix 2^{p} of a natural number. Prove that, if w^{\prime} is a string obtained by permuting the symbols in $w, h\left(w^{\prime}\right)=h(w)$.
16. Consider the family \mathcal{H} of hash functions $h:\{1,2,3,4\} \rightarrow\{0,1\}$ containing the three following functions

- $h_{1}(1)=0, h_{1}(2)=1, h_{1}(3)=1, h_{1}(4)=0$
- $h_{2}(1)=1, h_{2}(2)=0, h_{2}(3)=1, h_{2}(4)=0$
- $h_{3}(1)=1, h_{3}(2)=1, h_{3}(3)=0, h_{3}(4)=0$

Is \mathcal{H} universal? Justify your answer.
17. There are different operations that we wish to implement on sets of integers. Take into account that in a set there are no repeated elements. Let $a[n]$ and $b[n]$ be arrays holding the elements in two sets A and B with n elements. Provide an exact and a randomized algorithm for each of the following problems.
(a) Given a and $x \in \mathbb{N}$, are there integers $y, z \in A$ such that $x=y+z$?
(b) Given a and b, is $A=B$?

Your algorithms should solve the problems in time $\Theta(n \log n)$ and in expected time $O(n)$, respectively.
18. Lucas' theorem says the following: If we have an integer a such that: $a^{n-1} \equiv 1(\bmod n)$, and, for every prime factor q of $n-1$, it is not the case that $a^{(n-1) / q} \equiv 1$ (modn), then n is prime. Can this result be used to show that Primality belongs to NP?
19. Consider the following problems:

- Modular factorial: Given N bits natural numbers x, y compute $x!\bmod y$.
- Smallest prime divisor: Given a N bit natural number x, compute the smallest prime divisor of x.
- Factoring: Given a N bit natural number x, compute the factorization of x as product of primes.
(a) Prove that y is prime if and only if, for each integer $x<y$, we have that $\operatorname{mcd}(x!, y)=1$.
(b) Show that if Modular factorial can be solved in polynomial time, then Smallest prime divisor and Factoring could be solved in polynomial time.

