Some definitions:

- A Boolean variable x can take values 0,1 .
- A Boolean formula is an expression constructed from Boolean variables and connectives, negation $(\neg$ or $\bar{\phi})$, disjunction (\vee) and conjunction (\wedge).
- A Boolean formula ϕ is satisfiable if there is a truth assignment $T: X \rightarrow\{0,1\}$ to the variables in ϕ such that $T(\phi)=1$.

For example, for $X=\left\{x_{1}, x_{2}, x_{3}\right\}$,

$$
\phi=\left(x_{1} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{2} \vee x_{3}\right)
$$

is satisfiable, take $T\left(x_{1}\right)=T\left(x_{2}\right)=0, T\left(x_{3}\right)=1$ then $T(\phi)=1$.

- A literal is a Boolean variable x or a negation of a Boolean variable \bar{x}.
- A clause is a disjunction (conjunction) of literals.
- A Boolean formula ϕ in Conjunctive Normal Form (CNF) is a conjunction of (disjunction) clauses, $\phi=\bigwedge_{i=1}^{m}\left(C_{i}\right)$, where each clause $C_{i}=\bigvee_{j=1}^{k_{i}}\left\{l_{j}\right\}$.

For example, for $X=\left\{x_{1}, x_{2}, x_{3}\right\}$, a CNF formula is

$$
\phi=\left(x_{1} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{2} \vee x_{3}\right)
$$

- A Boolean formula ϕ in Disjunctive Normal Form ($D N F$) is expressed as a disjunction of (conjunction) clauses, $\phi=\bigvee_{i=1}^{m}\left(C_{i}\right)$, where each clause $C_{i}=\bigwedge_{j=1}^{k_{i}}\left\{l_{j}\right\}$.

Some computational problems:

- SAT: Given a boolean formula ϕ in CNF, is ϕ satisfiable?
- k-SAT: Given a boolean formula in CNF where each clause has exactly k literals, is ϕ satisfiable?
- DNF-SAT: Given a boolean formula ϕ in DNF, is ϕ satisfiable?
- k-DNF-SAT: Given a boolean formula in DNF where each clause has exactly k literals, is ϕ satisfiable?

8. (DNF vs CNF)
(a) Show that DNF-SAT and CNF-SAT belong to NP, and that DNF-SAT has a polynomial time algorithm.
(b) Show that a CNF formula can be converted into an equivalent DNF formula on the same variables. How much time takes this computation?
9. Show that k-SAT belongs to NP, for each $k \in \mathbb{N}$.
10. Recall that the 3-SAT problem is a restricted version of SAT where each clause has exactly 3 literal. Let $\phi=\left\{C_{i}\right\}_{i=1}^{m}$ be a CNF formula on a set X of variables. let z_{i} be the literal x_{i} or \bar{x}_{i}. We construct a formula $\phi^{\prime}=f(\phi)$ on a set X^{\prime} of variables ($X \subseteq X^{\prime}$) having all clauses with 3 literals.
For each clause in ϕ, f determines a set of clauses to be included in ϕ^{\prime} replacing the clause in ϕ. We add variables when needed. The replacements depend on the size k of clause C_{j}.

- If $k=1, C_{j}=z$, we add variables $\left\{y_{j 1}, y_{j 2}\right\}$ and clauses

$$
C_{j}^{\prime}=\left\{\left(z \vee y_{j 1} \vee y_{j 2}\right),\left(z \vee \bar{y}_{j 1} \vee y_{j 2}\right),\left(z \vee y_{j 1} \vee \bar{y}_{j 2}\right),\left(z \vee \bar{y}_{j 1} \vee \bar{y}_{j 2}\right)\right\} .
$$

- If $k=2, C_{j}=z_{1} \vee z_{2}$, we add variable y_{j} and clauses

$$
C_{j}^{\prime}=\left\{\left(z_{1} \vee z_{2} \vee y\right),\left(z_{1} \vee z_{2} \vee \bar{y}\right)\right\} .
$$

- If $k=3$, we add $C_{j}=\left(z_{1} \vee z_{2} \vee z_{3}\right)$ to ϕ^{\prime}.
- If $k>3, C_{j}=\left(z_{1} \vee z_{2} \vee \cdots \vee z_{k}\right)$, add variables $\left\{y_{j 1}, y_{j 2}, \ldots, y_{j k-3}\right\}$ and the clauses

$$
C_{j}^{\prime}=\left\{\left(z_{1} \vee z_{2} \vee y_{j 1}\right),\left(\bar{y}_{j 1} \vee z_{3} \vee y_{j 2}\right), \ldots,\left(\bar{y}_{j k-3} \vee z_{k-1} \vee z_{k}\right)\right\}
$$

Does this construction provide a reduction from SAT to 3-SAT? Can f be computed in polynomial time?
11. Consider a 2-SAT instance ϕ. Define an associated directed graph G_{ϕ} having one vertex for each literal appearing in ϕ. For each clause $\left(\ell_{1} \vee \ell_{2}\right)$ in ϕ, add the edges ($\bar{\ell}_{1}, \ell_{2}$) and $\left(\bar{\ell}_{2}, \ell_{1}\right)$ to G_{ϕ}. Show that ϕ is satisfiable iff there is no strongly connectyed component containing both x and \bar{x} in G_{ϕ}.
Can you use this result to show that 2-SAT belongs to P?

