Some definitions:

- A Boolean variable x can take values 0,1.
- A Boolean formula is an expression constructed from Boolean variables and connectives, negation $(\neg \text{ or } \overline{\phi})$, disjunction (\lor) and conjunction (\land) .
- A Boolean formula ϕ is satisfiable if there is a truth assignment $T : X \to \{0, 1\}$ to the variables in ϕ such that $T(\phi) = 1$.

For example, for $X = \{x_1, x_2, x_3\}$,

 $\phi = (x_1 \lor \bar{x}_3) \land (\bar{x}_1 \lor \bar{x}_2 \lor x_3) \land (\bar{x}_1 \lor \bar{x}_2 \lor \bar{x}_3) \land (x_2 \lor x_3)$

is satisfiable, take $T(x_1) = T(x_2) = 0$, $T(x_3) = 1$ then $T(\phi) = 1$.

- A *literal* is a Boolean variable x or a negation of a Boolean variable \bar{x} .
- A *clause* is a disjunction (conjunction) of literals.
- A Boolean formula ϕ in *Conjunctive Normal Form* (*CNF*) is a conjunction of (disjunction) clauses, $\phi = \bigwedge_{i=1}^{m} (C_i)$, where each clause $C_i = \bigvee_{j=1}^{k_i} \{l_j\}$.

For example, for $X = \{x_1, x_2, x_3\}$, a CNF formula is

 $\phi = (x_1 \lor \bar{x}_3) \land (\bar{x}_1 \lor \bar{x}_2 \lor x_3) \land (\bar{x}_1 \lor \bar{x}_2 \lor \bar{x}_3) \land (x_2 \lor x_3)$

• A Boolean formula ϕ in *Disjunctive Normal Form (DNF)* is expressed as a disjunction of (conjunction) clauses, $\phi = \bigvee_{i=1}^{m} (C_i)$, where each clause $C_i = \bigwedge_{j=1}^{k_i} \{l_j\}$.

Some computational problems:

- SAT: Given a boolean formula ϕ in CNF, is ϕ satisfiable?
- k-SAT: Given a boolean formula in CNF where each clause has exactly k literals, is ϕ satisfiable?
- DNF-SAT: Given a boolean formula ϕ in DNF, is ϕ satisfiable?
- k-DNF-SAT: Given a boolean formula in DNF where each clause has exactly k literals, is ϕ satisfiable?

- 8. (DNF vs CNF)
 - (a) Show that DNF-SAT and CNF-SAT belong to NP, and that DNF-SAT has a polynomial time algorithm.
 - (b) Show that a CNF formula can be converted into an equivalent DNF formula on the same variables. How much time takes this computation?
- 9. Show that k-SAT belongs to NP, for each $k \in \mathbb{N}$.
- 10. Recall that the 3-SAT problem is a restricted version of SAT where each clause has exactly 3 literal. Let $\phi = \{C_i\}_{i=1}^m$ be a CNF formula on a set X of variables. let z_i be the literal x_i or \bar{x}_i . We construct a formula $\phi' = f(\phi)$ on a set X' of variables $(X \subseteq X')$ having all clauses with 3 literals.

For each clause in ϕ , f determines a set of clauses to be included in ϕ' replacing the clause in ϕ . We add variables when needed. The replacements depend on the size k of clause C_j .

• If $k = 1, C_j = z$, we add variables $\{y_{j1}, y_{j2}\}$ and clauses

$$C'_{j} = \{ (z \lor y_{j1} \lor y_{j2}), (z \lor \bar{y}_{j1} \lor y_{j2}), (z \lor y_{j1} \lor \bar{y}_{j2}), (z \lor \bar{y}_{j1} \lor \bar{y}_{j2}) \}.$$

• If $k = 2, C_j = z_1 \vee z_2$, we add variable y_j and clauses

$$C'_{i} = \{(z_{1} \lor z_{2} \lor y), (z_{1} \lor z_{2} \lor \bar{y})\}.$$

- If k = 3, we add $C_j = (z_1 \lor z_2 \lor z_3)$ to ϕ' .
- If k > 3, $C_j = (z_1 \lor z_2 \lor \cdots \lor z_k)$, add variables $\{y_{j1}, y_{j2}, \ldots, y_{jk-3}\}$ and the clauses

$$C'_{j} = \{(z_{1} \lor z_{2} \lor y_{j1}), (\bar{y}_{j1} \lor z_{3} \lor y_{j2}), \dots, (\bar{y}_{jk-3} \lor z_{k-1} \lor z_{k})\}$$

Does this construction provide a reduction from SAT to 3-SAT? Can f be computed in polynomial time?

11. Consider a 2-SAT instance ϕ . Define an associated directed graph G_{ϕ} having one vertex for each literal appearing in ϕ . For each clause $(\ell_1 \vee \ell_2)$ in ϕ , add the edges $(\bar{\ell}_1, \ell_2)$ and $(\bar{\ell}_2, \ell_1)$ to G_{ϕ} . Show that ϕ is satisfiable iff there is no strongly connected component containing both x and \bar{x} in G_{ϕ} .

Can you use this result to show that 2-SAT belongs to P?