Algorithms and Complexity

- 1. Give a TM deciding the language $\{|x| \text{ is even } | x \in \{0,1\}^*\}$.
- 2. Give a TM that having as input a natural number n in binary outputs n + 1 (also in binary).
- 3. Show that \leq_m is a reflexive and transitive relation on $\mathcal{P}(\Sigma^*)$. Is it symmetric?
- 4. Show that the following problem is undecidable. EQUIV: Given two TMs M and N, is L(M) = L(N)?
- 5. Given a language $L \subset \Sigma^*$, consider the following set

$$M(L) = \{ M \in TM \mid L(M) = L \}.$$

Prove that M(L) is either empty or infinite.

6. The Post Correspondence Problem (PCP) [Emil Post, 1946] is defined as follows:

PCP: Given two lists of words with the same length $A = (x_1, \ldots, x_n)$ and $B = (y_1, \ldots, y_n)$. Is there a finite sequence $(i_1, \ldots, i_r), r \ge 1$ such that $x_{i_1} \cdots x_{i_r} = y_{i_1} \cdots y_{i_r}$?

- Find a solution in the instance of PCP having A = (ab, b, aba, aa) and B = (abab, a, b, a).
- Show that when $\Sigma = \{0\}$, the PCP problem is decidable.
- 7. The Modified Post Correspondence Problem (MPCP) is defined a s follows:

MPCP: Given two lists of words with the same length $A = (x_1, \ldots, x_n)$ and $B = (y_1, \ldots, y_n)$. Is there a finite sequence $(1, i_2, \ldots, i_r), r \ge 1$ such that $x_1 x_{i_2} \cdots x_{i_r} = y_1 y_{i_2} \cdots y_{i_r}$?

Let (A, B) an instance of MPCP with $A = (x_1, \ldots, x_n)$ and $B = (y_1, \ldots, y_n)$ and consider the following construction:

- Assume $x_i = a_{i1} \dots a_{ik_i}$ and $y_i = b_{i1} \dots b_{ir_i}$.
- Let, # and $\$ be two new symbols, define
 - $-v_0 = \#a_{11}\#\dots\#a_{1k_1}\#, w_0 = \#b_{11}\#\dots\#b_{1r_1}, 1 \le i \le n,$ $-v_i = a_{i1}\#\dots\#a_{ik_i}\#, w_i = \#b_{i1}\#\dots\#b_{ir_i}, 1 \le i \le n,$
 - $-v_{n+1} =$ \$ and $w_{n+1} =$ #\$.
- Let $A' = (v_0, \dots, v_{n+1})$ and $B' = (w_0, \dots, w_{n+1})$.

Show that $(A, B) \in PCP$ iff $(A', B') \in MPCP$.

Does this construction allow us to show that MPCP \leq_m PCP?