1. Give a TM deciding the language $\left\{|x|\right.$ is even $\left.\mid x \in\{0,1\}^{*}\right\}$.
2. Give a TM that having as input a natural number n in binary outputs $n+1$ (also in binary).
3. Show that \leq_{m} is a reflexive and transitive relation on $\mathcal{P}\left(\Sigma^{*}\right)$. Is it symmetric?
4. Show that the following problem is undecidable.

EQUIV: Given two TMs M and N, is $L(M)=L(N)$?
5. Given a language $L \subset \Sigma^{*}$, consider the following set

$$
M(L)=\{M \in T M \mid L(M)=L\}
$$

Prove that $M(L)$ is either empty or infinite.
6. The Post Correspondence Problem (PCP) [Emil Post,1946] is defined as follows:

PCP: Given two lists of words with the same length $A=\left(x_{1}, \ldots, x_{n}\right)$ and $B=\left(y_{1}, \ldots, y_{n}\right)$. Is there a finite sequence $\left(i_{1}, \ldots, i_{r}\right), r \geq 1$ such that $x_{i_{1}} \cdots x_{i_{r}}=y_{i_{1}} \cdots y_{i_{r}}$?

- Find a solution in the instance of PCP having $A=(a b, b, a b a, a a)$ and $B=(a b a b, a, b, a)$.
- Show that when $\Sigma=\{0\}$, the PCP problem is decidable.

7. The Modified Post Correspondence Problem (MPCP) is defined a s follows:

MPCP: Given two lists of words with the same length $A=\left(x_{1}, \ldots, x_{n}\right)$ and $B=\left(y_{1}, \ldots, y_{n}\right)$. Is there a finite sequence $\left(1, i_{2} \ldots, i_{r}\right), r \geq 1$ such that $x_{1} x_{i_{2}} \cdots x_{i_{r}}=y_{1} y_{i_{2}} \cdots y_{i_{r}}$?
Let (A, B) an instance of MPCP with $A=\left(x_{1}, \ldots, x_{n}\right)$ and $B=\left(y_{1}, \ldots, y_{n}\right)$ and consider the following construction:

- Assume $x_{i}=a_{i 1} \ldots a_{i k_{i}}$ and $y_{i}=b_{i 1} \ldots b_{i r_{i}}$.
- Let, \# and $\$$ be two new symbols, define
$-v_{0}=\# a_{11} \# \ldots \# a_{1 k_{1}} \#, w_{0}=\# b_{11} \# \ldots \# b_{1 r_{1}}, 1 \leq i \leq n$,
$-v_{i}=a_{i 1} \# \ldots \# a_{i k_{i}} \#, w_{i}=\# b_{i 1} \# \ldots \# b_{i r_{i}}, 1 \leq i \leq n$, $-v_{n+1}=\$$ and $w_{n+1}=\# \$$.
- Let $A^{\prime}=\left(v_{0}, \ldots, v_{n+1}\right)$ and $B^{\prime}=\left(w_{0}, \ldots, w_{n+1}\right)$.

Show that $(A, B) \in \operatorname{PCP} \operatorname{iff}\left(A^{\prime}, B^{\prime}\right) \in \operatorname{MPCP}$.
Does this construction allow us to show that $\mathrm{MPCP} \leq{ }_{m} \mathrm{PCP}$?

