Parameterized Complexity

Maria Serna

Fall 2023

FPT

- \mathcal{A} is an FPT algorithm with respect to κ if there are a computable function f and a polinomial function p such that for each $x \in \Sigma^{*}, \mathcal{A}$ on input x requires time $f(\kappa(x)) \boldsymbol{p}(|x|)$

FPT-reductions

FPT-reductions

- Let (L, κ) and ($\left.L^{\prime}, \kappa^{\prime}\right)$ be two parameterized problems (on the same alphabet Σ)

FPT-reductions

- Let (L, κ) and ($\left.L^{\prime}, \kappa^{\prime}\right)$ be two parameterized problems (on the same alphabet Σ)
- A FPT-reduction from (L, κ) to $\left(L^{\prime}, \kappa^{\prime}\right)$ is a mapping $R: \Sigma^{*} \rightarrow \Sigma^{*}$ where

FPT-reductions

- Let (L, κ) and ($\left.L^{\prime}, \kappa^{\prime}\right)$ be two parameterized problems (on the same alphabet Σ)
- A FPT-reduction from (L, κ) to $\left(L^{\prime}, \kappa^{\prime}\right)$ is a mapping $R: \Sigma^{*} \rightarrow \Sigma^{*}$ where
- $\forall x \in \Sigma^{*} x \in L$ iff $R(x) \in L^{\prime}$
- There is an FPT-algorithm with respect to κ computing R (in $f(\kappa(x)) p(|x|))$
- There is a computable function $g: \mathbb{N} \rightarrow \mathbb{N}$ such that $\forall x \in \Sigma^{*} \kappa^{\prime}(R(x)) \leq g(\kappa(x))$

FPT-reductions

- Let (L, κ) and ($\left.L^{\prime}, \kappa^{\prime}\right)$ be two parameterized problems (on the same alphabet Σ)
- A FPT-reduction from (L, κ) to $\left(L^{\prime}, \kappa^{\prime}\right)$ is a mapping $R: \Sigma^{*} \rightarrow \Sigma^{*}$ where
- $\forall x \in \Sigma^{*} x \in L$ iff $R(x) \in L^{\prime}$
- There is an FPT-algorithm with respect to κ computing R (in $f(\kappa(x)) p(|x|))$
- There is a computable function $g: \mathbb{N} \rightarrow \mathbb{N}$ such that $\forall x \in \Sigma^{*} \kappa^{\prime}(R(x)) \leq g(\kappa(x))$
- We note $(L, \kappa) \leq{ }^{f p t}\left(L^{\prime}, \kappa^{\prime}\right)$ when there is a FPT-reduction from (L, κ) to $\left(L^{\prime}, \kappa^{\prime}\right)$

FPT-reductions

Lemma
FPT is closed under FPT-reductions

FPT-reductions and complexity classes

FPT-reductions and complexity classes

- FPT-equivalence

$$
(L, \kappa) \equiv \equiv_{p p t}\left(L^{\prime}, \kappa^{\prime}\right):(L, \kappa) \leq^{f p t}\left(L^{\prime}, \kappa^{\prime}\right) \text { and }\left(L^{\prime}, \kappa^{\prime}\right) \leq^{f p t}(L, \kappa)
$$

FPT-reductions and complexity classes

- FPT-equivalence

$$
(L, \kappa) \equiv \equiv^{f p t}\left(L^{\prime}, \kappa^{\prime}\right):(L, \kappa) \leq^{f p t}\left(L^{\prime}, \kappa^{\prime}\right) \text { and }\left(L^{\prime}, \kappa^{\prime}\right) \leq^{f p t}(L, \kappa)
$$

- P-Independent SEt $\equiv^{f p t}$ p-Clique

FPT-reductions and complexity classes

- FPT-equivalence
$(L, \kappa) \equiv{ }^{f p t}\left(L^{\prime}, \kappa^{\prime}\right):(L, \kappa) \leq^{f p t}\left(L^{\prime}, \kappa^{\prime}\right)$ and $\left(L^{\prime}, \kappa^{\prime}\right) \leq^{f p t}(L, \kappa)$
- P-Independent SEt $\equiv^{f p t}$ p-Clique

$$
R(G, k)=(\bar{G}, k)
$$

Works for both directions

- P-Hitting Set $\equiv^{f p t}$ P-Dominating Set

FPT-reductions and complexity classes

- FPT-equivalence
$(L, \kappa) \equiv{ }^{f p t}\left(L^{\prime}, \kappa^{\prime}\right):(L, \kappa) \leq^{f p t}\left(L^{\prime}, \kappa^{\prime}\right)$ and $\left(L^{\prime}, \kappa^{\prime}\right) \leq^{f p t}(L, \kappa)$
- P-Independent SEt $\equiv^{f p t}$ p-Clique

$$
R(G, k)=(\bar{G}, k)
$$

Works for both directions

- P-Hitting Set $\equiv^{\text {fpt }}$ P-Dominating Set

Exercise

FPT-reductions and complexity classes

FPT-reductions and complexity classes

- Closure under FPT-reductions

$$
[(L, \kappa)]^{f p t}=\left\{\left(L^{\prime}, \kappa^{\prime}\right) \mid\left(L^{\prime}, \kappa^{\prime}\right) \leq^{f p t}(L, \kappa)\right\}
$$

FPT-reductions and complexity classes

- Closure under FPT-reductions

$$
[(L, \kappa)]^{f p t}=\left\{\left(L^{\prime}, \kappa^{\prime}\right) \mid\left(L^{\prime}, \kappa^{\prime}\right) \leq^{f p t}(L, \kappa)\right\}
$$

- If \mathcal{C} is a class of parameterized problems
- (L, κ) is \mathcal{C}-hard if $\mathcal{C} \subseteq[(L, \kappa)]^{f p t}$.
- (L, κ) is \mathcal{C}-complete if $(L, \kappa) \in \mathcal{C}$ and (L, κ) is \mathcal{C}-hard.

FPT-reductions and complexity classes

- Closure under FPT-reductions

$$
[(L, \kappa)]^{f p t}=\left\{\left(L^{\prime}, \kappa^{\prime}\right) \mid\left(L^{\prime}, \kappa^{\prime}\right) \leq^{f p t}(L, \kappa)\right\}
$$

- If \mathcal{C} is a class of parameterized problems
- (L, κ) is \mathcal{C}-hard if $\mathcal{C} \subseteq[(L, \kappa)]^{f p t}$.
- (L, κ) is \mathcal{C}-complete if $(L, \kappa) \in \mathcal{C}$ and (L, κ) is \mathcal{C}-hard.
- $[(L, \kappa)]^{f p t}$ defines a class of parameterized problems for which (L, κ) is complete
- if (L, κ) is \mathcal{C}-complete and \mathcal{C} is closed under FPT reductions, then $\mathcal{C}=[(L, \kappa)]^{f p t}$

FPT-equivalent problems

The class paraNP

- Let (L, κ) be a parameterized problem
- (L, κ) belongs to paraNP if there is a non-deterministic algorithm \mathcal{A} that decides $x \in L$ in time $f(\kappa(x)) p(|x|)$, for some computable function f and polynomial function p.

The class paraNP

- Let (L, κ) be a parameterized problem
- (L, κ) belongs to paraNP if there is a non-deterministic algorithm \mathcal{A} that decides $x \in L$ in time $f(\kappa(x)) p(|x|)$, for some computable function f and polynomial function p.
- If $L \in N P$, for each parameterization $\kappa,(L, \kappa) \in$ paraNP p-Clique, p-Vertex Cover, ... belong to paraNP.

paraNP-completeness

paraNP-completeness

- Let (L, κ) be a parameterized problem

paraNP-completeness

- Let (L, κ) be a parameterized problem
- (L, κ) is trivial if $L=\emptyset$ or $L=\Sigma^{*}$.

paraNP-completeness

- Let (L, κ) be a parameterized problem
- (L, κ) is trivial if $L=\emptyset$ or $L=\Sigma^{*}$.
- The i-th slice of (L, κ) is the decision problem $(L, \kappa)_{i}=\{x \in L \mid \kappa(x)=i\}$

paraNP-completeness

- Let (L, κ) be a parameterized problem
- (L, κ) is trivial if $L=\emptyset$ or $L=\Sigma^{*}$.
- The i-th slice of (L, κ) is the decision problem $(L, \kappa)_{i}=\{x \in L \mid \kappa(x)=i\}$

Theorem

If $(L, \kappa) \in$ paraNP is not trivial and has a NP-complete slice, then (L, κ) is paraNP-complete under FPT reductions.

paraNP-completeness:problems

- p-Vertex Coloring

paraNP-completeness:problems

- p-Vertex Coloring is paraNP-complete.

paraNP-completeness:problems

- p-Vertex Coloring is paraNP-complete.
- P -Clique

paraNP-completeness:problems

- P -Vertex Coloring is paraNP-complete.
- P -Clique is not paraNP-complete, unless $\mathrm{P}=\mathrm{NP}$.

paraNP-completeness:problems

- P -Vertex Coloring is paraNP-complete.
- P -Clique is not paraNP-complete, unless $\mathrm{P}=\mathrm{NP}$.
- P\#VAR-SAT

paraNP-completeness:problems

- p-Vertex Coloring is paraNP-complete.
- P -Clique is not paraNP-complete, unless $\mathrm{P}=\mathrm{NP}$.
- $\mathrm{P} \# \mathrm{VAR}$-Sat is not paraNP-complete, unless $\mathrm{P}=\mathrm{NP}$.

paraNP-completeness:problems

- P-Vertex Coloring is paraNP-complete.
- P-Clique is not paraNP-complete, unless $\mathrm{P}=\mathrm{NP}$.
- P\#var-Sat is not paraNP-complete, unless $\mathrm{P}=\mathrm{NP}$.
- PMAX\#Lit-Sat

paraNP-completeness:problems

- p-Vertex Coloring is paraNP-complete.
- P -Clique is not paraNP-complete, unless $\mathrm{P}=\mathrm{NP}$.
- P\#var-Sat is not paraNP-complete, unless $P=N P$.
- pMAx\#Lit-SAT is paraNP-complete.

paraNP-completeness:problems

- p-Vertex Coloring is paraNP-complete.
- P -Clique is not paraNP-complete, unless $\mathrm{P}=\mathrm{NP}$.
- P\#var-Sat is not paraNP-complete, unless $P=N P$.
- pMAx\#Lit-SAT is paraNP-complete.
- paraNP-completeness separates all slices in P from a slice is NP-hard.

The class XP

- Let (L, κ) be a parameterized problem.
- (L, κ) belongs to (uniform) XP if there is an algorithm \mathcal{A} that decides L in time $O\left(|x|^{f(\kappa(x))}\right.$, for some computable function f.

The class XP

- Let (L, κ) be a parameterized problem.
- (L, κ) belongs to (uniform) XP if there is an algorithm \mathcal{A} that decides L in time $O\left(|x|^{f(\kappa(x))}\right.$, for some computable function f.
- p-Clique, p-Vertex Cover, p-Hitting Set, p-Hitting Set, p-Dominating Set belong to XP.
- XP is the counterpart of EXP in classic complexity.

XP-complete problems

P-Exp-DTM-HALT

Input: A deterministic $\mathrm{TM} \mathbb{M}, x \in \Sigma^{*}$ and an integer k, Parameter: k
Question: Does \mathbb{M} on input x stop in no more than $|x|^{k}$ steps?

XP-complete problems

P-Exp-DTM-HaLT

Input: A deterministic $\mathrm{TM} \mathbb{M}, x \in \Sigma^{*}$ and an integer k,
Parameter: k
Question: Does \mathbb{M} on input x stop in no more than $|x|^{k}$ steps?
Theorem
P-EXP-DTM-HALT is XP-complete but does not belong to FPT unless $P=N P$.

Relationships among classes

Relationships among classes

The W-hierarchy

Circuits: Depth and Weft

Circuits: Depth and Weft

- Let C be a boolean circuit: AND OR NOT gates.

Circuits: Depth and Weft

- Let C be a boolean circuit: AND OR NOT gates.
- A gate is small if it has only two or one input otherwise the gate is big

Circuits: Depth and Weft

- Let C be a boolean circuit: AND OR NOT gates.
- A gate is small if it has only two or one input otherwise the gate is big
- The depth of C is the maximum distance from an input gate to an output gate.

Circuits: Depth and Weft

- Let C be a boolean circuit: AND OR NOT gates.
- A gate is small if it has only two or one input otherwise the gate is big
- The depth of C is the maximum distance from an input gate to an output gate.
- The weft of C the maximum number of big gates in a path from an input gate to an output gate.

Circuits: Depth and Weft

- Let C be a boolean circuit: AND OR NOT gates.
- A gate is small if it has only two or one input otherwise the gate is big
- The depth of C is the maximum distance from an input gate to an output gate.
- The weft of C the maximum number of big gates in a path from an input gate to an output gate.
- Note that depth $(C) \geq$ weft (C)

Variations on SAT

Variations on SAT

- The weight of an assignment $x=x_{1} \ldots x_{n} \in\{0,1\}^{n}$ is $W(x)=\sum_{i=1}^{n} x_{i}$; i.e., the number of ones

Variations on SAT

- The weight of an assignment $x=x_{1} \ldots x_{n} \in\{0,1\}^{n}$ is $W(x)=\sum_{i=1}^{n} x_{i}$; i.e., the number of ones
- A circuit C is k-satisfiable if there is a satisfying assignment with weight k.

Variations on SAT

- The weight of an assignment $x=x_{1} \ldots x_{n} \in\{0,1\}^{n}$ is $W(x)=\sum_{i=1}^{n} x_{i}$; i.e., the number of ones
- A circuit C is k-satisfiable if there is a satisfying assignment with weight k.
- A formula F is k-satisfiable if there is a satisfying assignment with weight k.

Variations on SAT

- The weight of an assignment $x=x_{1} \ldots x_{n} \in\{0,1\}^{n}$ is $W(x)=\sum_{i=1}^{n} x_{i}$; i.e., the number of ones
- A circuit C is k-satisfiable if there is a satisfying assignment with weight k.
- A formula F is k-satisfiable if there is a satisfying assignment with weight k.

P-Wsat(FAM)
Input: A circuit/formula C / F in family FAM and an integer k, Parameter: k Question: Is C/F k-satisfiable?

W-classes

Families of circuits/formulas

W-classes

Families of circuits/formulas

- Circ all boolean circuits

W-classes

Families of circuits/formulas

- Circ all boolean circuits
- Prop all propositional formulas

W-classes

Families of circuits/formulas

- Circ all boolean circuits
- Prop all propositional formulas
- For $d \geq t \geq 0$, define

$$
\mathcal{C}_{t, d}=\{c \mid C \in \operatorname{Circ} \text { and } \operatorname{weft}(C) \leq t \text { and } \operatorname{depth}(C) \leq d\}
$$

W-classes

Families of circuits/formulas

- Circ all boolean circuits
- Prop all propositional formulas
- For $d \geq t \geq 0$, define

$$
\mathcal{C}_{t, d}=\{c \mid C \in \operatorname{Circ} \text { and } \operatorname{weft}(C) \leq t \text { and } \operatorname{depth}(C) \leq d\}
$$

We define the following classes:

W-classes

Families of circuits/formulas

- Circ all boolean circuits
- Prop all propositional formulas
- For $d \geq t \geq 0$, define

$$
\mathcal{C}_{t, d}=\{c \mid C \in \operatorname{Circ} \text { and } \operatorname{weft}(C) \leq t \text { and } \operatorname{depth}(C) \leq d\}
$$

We define the following classes:

- $W[P]=[\mathrm{P}-\mathrm{Wsat}(\mathrm{Circ})]^{f p t}$

W-classes

Families of circuits/formulas

- Circ all boolean circuits
- Prop all propositional formulas
- For $d \geq t \geq 0$, define

$$
\mathcal{C}_{t, d}=\{c \mid C \in \operatorname{Circ} \text { and } \operatorname{weft}(C) \leq t \text { and } \operatorname{depth}(C) \leq d\}
$$

We define the following classes:

- $W[P]=[\mathrm{P}-\mathrm{Wsat}(\mathrm{Circ})]^{f p t}$
- $W[S A T]=[\mathrm{P}-\mathrm{Wsat}(\mathrm{Prop})]^{f p t}$

W-classes

Families of circuits/formulas

- Circ all boolean circuits
- Prop all propositional formulas
- For $d \geq t \geq 0$, define

$$
\mathcal{C}_{t, d}=\{c \mid C \in \operatorname{Circ} \text { and } \operatorname{weft}(C) \leq t \text { and } \operatorname{depth}(C) \leq d\}
$$

We define the following classes:

- $W[P]=[\mathrm{P}-\mathrm{Wsat}(\mathrm{Circ})]^{f p t}$
- $W[S A T]=[\mathrm{P}-\mathrm{WsAt}(\mathrm{PROP})]^{\text {fpt }}$
- For $t \geq 1, W[t]=\left\{\left[\operatorname{P-Wsat}\left(C_{t, d}\right)\right]^{f p t} \mid d \geq 1\right\}$

W-hierarchy

- $W[P]=[\mathrm{P}-\mathrm{WsAT}(\mathrm{CIRC})]^{f p t}$
- $W[S A T]=[\mathrm{P}-\mathrm{Wsat}(\mathrm{Prop})]^{\text {fpt }}$
- For $t \geq 1, W[t]=\left\{\left[\mathrm{P}-\mathrm{Wsat}\left(C_{t, d}\right)\right]^{\text {fpt }} \mid d \geq 1\right\}$

W-hierarchy

- $W[P]=[\mathrm{P}-\mathrm{WsAT}(\mathrm{CIRC})]^{f p t}$
- $W[S A T]=[\mathrm{P}-\mathrm{WsAt}(\mathrm{Prop})]^{f p t}$
- For $t \geq 1, W[t]=\left\{\left[\mathrm{P}-\mathrm{Wsat}\left(C_{t, d}\right)\right]^{\text {fpt }} \mid d \geq 1\right\}$

Theorem

- $W[P] \subseteq$ para $N P \cap X P$
- $W[S A T] \subseteq W[P]$
- For $i \geq 1, W[i] \subseteq W[S A T]$ and $W[i] \subseteq W[i+1]$

W-hierarchy

W-hierarchy

Theorem
$F P T \subseteq W[1]$

W-hierarchy

Theorem
$F P T \subseteq W[1]$

Theorem

- If, for some $i \geq 1, F P T \neq W[i]$ then $P \neq N P$
- If $F P T \neq W[S A T]$ then $P \neq N P$
- If FPT $\neq W[P]$ then $P \neq N P$

W-hierarchy

Theorem
$F P T \subseteq W[1]$

Theorem

- If, for some $i \geq 1, F P T \neq W[i]$ then $P \neq N P$
- If FPT $\neq W[S A T]$ then $P \neq N P$
- If FPT $\neq W[P]$ then $P \neq N P$

Any of those conditions imply FPT \neq paraNP.

W-hierarchy

Theorem
$F P T \subseteq W[1]$

Theorem

- If, for some $i \geq 1, F P T \neq W[i]$ then $P \neq N P$
- If FPT $\neq W[S A T]$ then $P \neq N P$
- If FPT $\neq W[P]$ then $P \neq N P$

Any of those conditions imply FPT \neq paraNP.
Theorem
If FPT $=W[P]$ then CircuitSat for circuits with n inputs and m gates can be decided in $2^{o(n)} m^{O(1)}$ time.

W[P]-hard problems

Some problems in $W[P]$

W[P]-hard problems

Some problems in $W[P]$

- p-Clique, p-DominantSet, p-SetCover

W[P]-hard problems

Some problems in $W[P]$

- p-Clique, p-DominantSet, p-SetCover

But in which level of the W-hierarchy?

W[P]-hard problems

Some problems in $W[P]$

- p-Clique, p-DominantSet, p-SetCover

But in which level of the W-hierarchy?

- P-Clique $\in W[1]$

W[P]-hard problems

Some problems in $W[P]$

- p-Clique, p-DominantSet, p-SetCover

But in which level of the W-hierarchy?

- $\operatorname{p-Clique~} \in W[1]$

To prove this statement it is enough to show a circuit with weft 1 solving the problem (see blackboard)

W[P]-hard problems

Some problems in $W[P]$

- p-Clique, p-DominantSet, p-SetCover

But in which level of the W-hierarchy?

- $\operatorname{p-Clique~} \in W[1]$

To prove this statement it is enough to show a circuit with weft 1 solving the problem (see blackboard) In fact the problem is $W[1]$-complete

W[P]-hard problems

Some problems in $W[P]$

- p-Clique, p-DominantSet, p-SetCover

But in which level of the W-hierarchy?

- $\operatorname{p-Clique~} \in W[1]$

To prove this statement it is enough to show a circuit with weft 1 solving the problem (see blackboard)
In fact the problem is $W[1]$-complete

- P-Dominating $\operatorname{Set} \in W$ [2] and $\mathrm{P}-$ SetCover $\in W$ [2] (Exercise)

W[P]-hard problems

Some problems in $W[P]$

- p-Clique, p-DominantSet, p-SetCover

But in which level of the W-hierarchy?

- $\operatorname{p-Clique~} \in W[1]$

To prove this statement it is enough to show a circuit with weft 1 solving the problem (see blackboard) In fact the problem is $W[1]$-complete

- P-Dominating Set $\in W$ [2] and $\mathrm{P}-$ SetCover $\in W$ [2] (Exercise) In fact both problems are W [2]-complete

Exponential Time Hypothesis

Exponential Time Hypothesis

Exponential Time Hypothesis (ETH) n-variable 3-SAT cannot be solved in time $2^{\circ(n)}$.

- We wish to get results like:

Exponential Time Hypothesis

Exponential Time Hypothesis (ETH) n-variable 3 -SAT cannot be solved in time $2^{\circ(n)}$.

- We wish to get results like:

If there is an $f(k) n^{o(k)}$ time algorithm for problem XXX, then ETH fails.

Lower bounds for FPT algorithms

- We know that VERTEX COVER can be solved in time $O^{*}\left(c^{k}\right)$.

Lower bounds for FPT algorithms

- We know that VERTEX COVER can be solved in time $O^{*}\left(c^{k}\right)$.
- Can we do it much faster, for example in time $O^{*}\left(c^{\sqrt{k}}\right)$ or $O^{*}\left(c^{k / \log k}\right)$?

Lemma
If VERTEX COVER can be solved in time $2^{o(k)} n^{O(1)}$, then ETH fails.

Lower bounds for FPT algorithms

- We know that VERTEX COVER can be solved in time $O^{*}\left(c^{k}\right)$.
- Can we do it much faster, for example in time $O^{*}\left(c^{\sqrt{k}}\right)$ or $O^{*}\left(c^{k / \log k}\right)$?

Lemma

If VERTEX COVER can be solved in time $2^{o(k)} n^{O(1)}$, then ETH fails.

Proof.
There is a polynomial-time reduction from m-clause 3SAT to m-vertex VERTEX COVER. The assumed algorithm would solve the latter problem in time $2^{o(m)} n^{O(1)}$, violating ETH.

Efficient approximation schemes

- Polynomial-time approximation scheme (PTAS): Input: Instance $x, \epsilon>0$
Output: $(1+\epsilon)$-approximate solution Running time: polynomial in $|x|$ for every fixed ϵ

Efficient approximation schemes

- Polynomial-time approximation scheme (PTAS): Input: Instance $x, \epsilon>0$
Output: $(1+\epsilon)$-approximate solution Running time: polynomial in $|x|$ for every fixed ϵ
- PTAS: running time is $|x|^{f(1 / \epsilon)}$

Efficient approximation schemes

- Polynomial-time approximation scheme (PTAS): Input: Instance $x, \epsilon>0$
Output: $(1+\epsilon)$-approximate solution Running time: polynomial in $|x|$ for every fixed ϵ
- PTAS: running time is $|x|^{f(1 / \epsilon)}$
- Efficient PTAS (EPTAS)

Efficient approximation schemes

- Polynomial-time approximation scheme (PTAS):

Input: Instance $x, \epsilon>0$
Output: $(1+\epsilon)$-approximate solution Running time: polynomial in $|x|$ for every fixed ϵ

- PTAS: running time is $|x|^{f(1 / \epsilon)}$
- Efficient PTAS (EPTAS) running time is $f(1 / \epsilon)|x|^{O(1)}$

Efficient approximation schemes

- Polynomial-time approximation scheme (PTAS):

Input: Instance $x, \epsilon>0$
Output: $(1+\epsilon)$-approximate solution
Running time: polynomial in $|x|$ for every fixed ϵ

- PTAS: running time is $|x|^{f(1 / \epsilon)}$
- Efficient PTAS (EPTAS) running time is $f(1 / \epsilon)|x|^{O(1)}$
- For some problems, there is a PTAS, but no EPTAS is known. Can we show that no EPTAS is possible?

No EPTAS?

No EPTAS?

Lemma

If the standard parameterization of an optimization problem is W [1]-hard, then there is no EPTAS for the optimization problem, unless FPT $=W[1]$.

No EPTAS?

Lemma

If the standard parameterization of an optimization problem is W [1]-hard, then there is no EPTAS for the optimization problem, unless FPT $=W[1]$.

Proof.

Suppose an $f(1 / \epsilon) n^{O(1)}$ time EPTAS exists. Running this EPTAS with $\epsilon=1 /(k+1)$ decides if the optimum is at most/at least k.

Parameterized complexity

- Possibility to give evidence that certain problems are not FPT.
- Parameterized reduction.
- The W-hierarchy.
- ETH gives much stronger and tighter lower bounds.
- PTAS vs. EPTAS
- Kernel size lower bounds

