
Parameterized Complexity

Maria Serna

Fall 2023

AiC FME Fall 2023 1 / 25

FPT

FPT

A is an FPT algorithm with respect to κ if there are
a computable function f and a polinomial function p such that
for each x ∈ Σ∗, A on input x requires time f (κ(x))p(|x |)

AiC FME Fall 2023 2 / 25

FPT FPT reductions

FPT-reductions

Let (L, κ) and (L′, κ′) be two parameterized problems (on the same
alphabet Σ)

A FPT-reduction from (L, κ) to (L′, κ′) is a mapping R : Σ∗ → Σ∗

where

∀x ∈ Σ∗ x ∈ L iff R(x) ∈ L′

There is an FPT-algorithm with respect to κ computing R (in
f (κ(x))p(|x |))
There is a computable function g : N → N such that
∀x ∈ Σ∗κ′(R(x)) ≤ g(κ(x))

We note (L, κ) ≤fpt (L′, κ′) when there is a FPT-reduction from
(L, κ) to (L′, κ′)

AiC FME Fall 2023 3 / 25

FPT FPT reductions

FPT-reductions

Let (L, κ) and (L′, κ′) be two parameterized problems (on the same
alphabet Σ)

A FPT-reduction from (L, κ) to (L′, κ′) is a mapping R : Σ∗ → Σ∗

where

∀x ∈ Σ∗ x ∈ L iff R(x) ∈ L′

There is an FPT-algorithm with respect to κ computing R (in
f (κ(x))p(|x |))
There is a computable function g : N → N such that
∀x ∈ Σ∗κ′(R(x)) ≤ g(κ(x))

We note (L, κ) ≤fpt (L′, κ′) when there is a FPT-reduction from
(L, κ) to (L′, κ′)

AiC FME Fall 2023 3 / 25

FPT FPT reductions

FPT-reductions

Let (L, κ) and (L′, κ′) be two parameterized problems (on the same
alphabet Σ)

A FPT-reduction from (L, κ) to (L′, κ′) is a mapping R : Σ∗ → Σ∗

where

∀x ∈ Σ∗ x ∈ L iff R(x) ∈ L′

There is an FPT-algorithm with respect to κ computing R (in
f (κ(x))p(|x |))
There is a computable function g : N → N such that
∀x ∈ Σ∗κ′(R(x)) ≤ g(κ(x))

We note (L, κ) ≤fpt (L′, κ′) when there is a FPT-reduction from
(L, κ) to (L′, κ′)

AiC FME Fall 2023 3 / 25

FPT FPT reductions

FPT-reductions

Let (L, κ) and (L′, κ′) be two parameterized problems (on the same
alphabet Σ)

A FPT-reduction from (L, κ) to (L′, κ′) is a mapping R : Σ∗ → Σ∗

where

∀x ∈ Σ∗ x ∈ L iff R(x) ∈ L′

There is an FPT-algorithm with respect to κ computing R (in
f (κ(x))p(|x |))
There is a computable function g : N → N such that
∀x ∈ Σ∗κ′(R(x)) ≤ g(κ(x))

We note (L, κ) ≤fpt (L′, κ′) when there is a FPT-reduction from
(L, κ) to (L′, κ′)

AiC FME Fall 2023 3 / 25

FPT FPT reductions

FPT-reductions

Let (L, κ) and (L′, κ′) be two parameterized problems (on the same
alphabet Σ)

A FPT-reduction from (L, κ) to (L′, κ′) is a mapping R : Σ∗ → Σ∗

where

∀x ∈ Σ∗ x ∈ L iff R(x) ∈ L′

There is an FPT-algorithm with respect to κ computing R (in
f (κ(x))p(|x |))
There is a computable function g : N → N such that
∀x ∈ Σ∗κ′(R(x)) ≤ g(κ(x))

We note (L, κ) ≤fpt (L′, κ′) when there is a FPT-reduction from
(L, κ) to (L′, κ′)

AiC FME Fall 2023 3 / 25

FPT FPT reductions

FPT-reductions

Lemma

FPT is closed under FPT-reductions

AiC FME Fall 2023 4 / 25

FPT FPT reductions

FPT-reductions and complexity classes

FPT-equivalence
(L, κ) ≡fpt (L′, κ′): (L, κ) ≤fpt (L′, κ′) and (L′, κ′) ≤fpt (L, κ)

p-Independent Set ≡fpt p-Clique

R(G , k) = (G , k)

Works for both directions

p-Hitting Set ≡fpt p-Dominating Set
Exercise

AiC FME Fall 2023 5 / 25

FPT FPT reductions

FPT-reductions and complexity classes

FPT-equivalence
(L, κ) ≡fpt (L′, κ′): (L, κ) ≤fpt (L′, κ′) and (L′, κ′) ≤fpt (L, κ)

p-Independent Set ≡fpt p-Clique

R(G , k) = (G , k)

Works for both directions

p-Hitting Set ≡fpt p-Dominating Set
Exercise

AiC FME Fall 2023 5 / 25

FPT FPT reductions

FPT-reductions and complexity classes

FPT-equivalence
(L, κ) ≡fpt (L′, κ′): (L, κ) ≤fpt (L′, κ′) and (L′, κ′) ≤fpt (L, κ)

p-Independent Set ≡fpt p-Clique

R(G , k) = (G , k)

Works for both directions

p-Hitting Set ≡fpt p-Dominating Set
Exercise

AiC FME Fall 2023 5 / 25

FPT FPT reductions

FPT-reductions and complexity classes

FPT-equivalence
(L, κ) ≡fpt (L′, κ′): (L, κ) ≤fpt (L′, κ′) and (L′, κ′) ≤fpt (L, κ)

p-Independent Set ≡fpt p-Clique

R(G , k) = (G , k)

Works for both directions

p-Hitting Set ≡fpt p-Dominating Set

Exercise

AiC FME Fall 2023 5 / 25

FPT FPT reductions

FPT-reductions and complexity classes

FPT-equivalence
(L, κ) ≡fpt (L′, κ′): (L, κ) ≤fpt (L′, κ′) and (L′, κ′) ≤fpt (L, κ)

p-Independent Set ≡fpt p-Clique

R(G , k) = (G , k)

Works for both directions

p-Hitting Set ≡fpt p-Dominating Set
Exercise

AiC FME Fall 2023 5 / 25

FPT FPT reductions

FPT-reductions and complexity classes

Closure under FPT-reductions
[(L, κ)]fpt = {(L′, κ′) | (L′, κ′) ≤fpt (L, κ)}
If C is a class of parameterized problems

(L, κ) is C-hard if C ⊆ [(L, κ)]fpt .
(L, κ) is C-complete if (L, κ) ∈ C and (L, κ) is C-hard.

[(L, κ)]fpt defines a class of parameterized problems for which (L, κ) is
complete

if (L, κ) is C-complete and C is closed under FPT reductions, then
C = [(L, κ)]fpt

AiC FME Fall 2023 6 / 25

FPT FPT reductions

FPT-reductions and complexity classes

Closure under FPT-reductions
[(L, κ)]fpt = {(L′, κ′) | (L′, κ′) ≤fpt (L, κ)}

If C is a class of parameterized problems

(L, κ) is C-hard if C ⊆ [(L, κ)]fpt .
(L, κ) is C-complete if (L, κ) ∈ C and (L, κ) is C-hard.

[(L, κ)]fpt defines a class of parameterized problems for which (L, κ) is
complete

if (L, κ) is C-complete and C is closed under FPT reductions, then
C = [(L, κ)]fpt

AiC FME Fall 2023 6 / 25

FPT FPT reductions

FPT-reductions and complexity classes

Closure under FPT-reductions
[(L, κ)]fpt = {(L′, κ′) | (L′, κ′) ≤fpt (L, κ)}
If C is a class of parameterized problems

(L, κ) is C-hard if C ⊆ [(L, κ)]fpt .
(L, κ) is C-complete if (L, κ) ∈ C and (L, κ) is C-hard.

[(L, κ)]fpt defines a class of parameterized problems for which (L, κ) is
complete

if (L, κ) is C-complete and C is closed under FPT reductions, then
C = [(L, κ)]fpt

AiC FME Fall 2023 6 / 25

FPT FPT reductions

FPT-reductions and complexity classes

Closure under FPT-reductions
[(L, κ)]fpt = {(L′, κ′) | (L′, κ′) ≤fpt (L, κ)}
If C is a class of parameterized problems

(L, κ) is C-hard if C ⊆ [(L, κ)]fpt .
(L, κ) is C-complete if (L, κ) ∈ C and (L, κ) is C-hard.

[(L, κ)]fpt defines a class of parameterized problems for which (L, κ) is
complete

if (L, κ) is C-complete and C is closed under FPT reductions, then
C = [(L, κ)]fpt

AiC FME Fall 2023 6 / 25

FPT FPT reductions

FPT-equivalent problems

AiC FME Fall 2023 7 / 25

FPT The class paraNP

The class paraNP

Let (L, κ) be a parameterized problem

(L, κ) belongs to paraNP if there is a non-deterministic algorithm A
that decides x ∈ L in time f (κ(x))p(|x |),
for some computable function f and polynomial function p.

If L ∈ NP, for each parameterization κ, (L, κ) ∈ paraNP
p-Clique, p-Vertex Cover, . . . belong to paraNP.

AiC FME Fall 2023 8 / 25

FPT The class paraNP

The class paraNP

Let (L, κ) be a parameterized problem

(L, κ) belongs to paraNP if there is a non-deterministic algorithm A
that decides x ∈ L in time f (κ(x))p(|x |),
for some computable function f and polynomial function p.

If L ∈ NP, for each parameterization κ, (L, κ) ∈ paraNP
p-Clique, p-Vertex Cover, . . . belong to paraNP.

AiC FME Fall 2023 8 / 25

FPT The class paraNP

paraNP-completeness

Let (L, κ) be a parameterized problem

(L, κ) is trivial if L = ∅ or L = Σ∗.

The i-th slice of (L, κ) is the decision problem
(L, κ)i = {x ∈ L | κ(x) = i}

Theorem

If (L, κ) ∈ paraNP is not trivial and has a NP-complete slice, then (L, κ) is
paraNP-complete under FPT reductions.

AiC FME Fall 2023 9 / 25

FPT The class paraNP

paraNP-completeness

Let (L, κ) be a parameterized problem

(L, κ) is trivial if L = ∅ or L = Σ∗.

The i-th slice of (L, κ) is the decision problem
(L, κ)i = {x ∈ L | κ(x) = i}

Theorem

If (L, κ) ∈ paraNP is not trivial and has a NP-complete slice, then (L, κ) is
paraNP-complete under FPT reductions.

AiC FME Fall 2023 9 / 25

FPT The class paraNP

paraNP-completeness

Let (L, κ) be a parameterized problem

(L, κ) is trivial if L = ∅ or L = Σ∗.

The i-th slice of (L, κ) is the decision problem
(L, κ)i = {x ∈ L | κ(x) = i}

Theorem

If (L, κ) ∈ paraNP is not trivial and has a NP-complete slice, then (L, κ) is
paraNP-complete under FPT reductions.

AiC FME Fall 2023 9 / 25

FPT The class paraNP

paraNP-completeness

Let (L, κ) be a parameterized problem

(L, κ) is trivial if L = ∅ or L = Σ∗.

The i-th slice of (L, κ) is the decision problem
(L, κ)i = {x ∈ L | κ(x) = i}

Theorem

If (L, κ) ∈ paraNP is not trivial and has a NP-complete slice, then (L, κ) is
paraNP-complete under FPT reductions.

AiC FME Fall 2023 9 / 25

FPT The class paraNP

paraNP-completeness

Let (L, κ) be a parameterized problem

(L, κ) is trivial if L = ∅ or L = Σ∗.

The i-th slice of (L, κ) is the decision problem
(L, κ)i = {x ∈ L | κ(x) = i}

Theorem

If (L, κ) ∈ paraNP is not trivial and has a NP-complete slice, then (L, κ) is
paraNP-complete under FPT reductions.

AiC FME Fall 2023 9 / 25

FPT The class paraNP

paraNP-completeness:problems

p-Vertex Coloring

is paraNP-complete.

p-Clique is not paraNP-complete, unless P = NP.

p#var-Sat is not paraNP-complete, unless P = NP.

pMax#Lit-Sat is paraNP-complete.

paraNP-completeness separates all slices in P from a slice is NP-hard.

AiC FME Fall 2023 10 / 25

FPT The class paraNP

paraNP-completeness:problems

p-Vertex Coloring is paraNP-complete.

p-Clique is not paraNP-complete, unless P = NP.

p#var-Sat is not paraNP-complete, unless P = NP.

pMax#Lit-Sat is paraNP-complete.

paraNP-completeness separates all slices in P from a slice is NP-hard.

AiC FME Fall 2023 10 / 25

FPT The class paraNP

paraNP-completeness:problems

p-Vertex Coloring is paraNP-complete.

p-Clique

is not paraNP-complete, unless P = NP.

p#var-Sat is not paraNP-complete, unless P = NP.

pMax#Lit-Sat is paraNP-complete.

paraNP-completeness separates all slices in P from a slice is NP-hard.

AiC FME Fall 2023 10 / 25

FPT The class paraNP

paraNP-completeness:problems

p-Vertex Coloring is paraNP-complete.

p-Clique is not paraNP-complete, unless P = NP.

p#var-Sat is not paraNP-complete, unless P = NP.

pMax#Lit-Sat is paraNP-complete.

paraNP-completeness separates all slices in P from a slice is NP-hard.

AiC FME Fall 2023 10 / 25

FPT The class paraNP

paraNP-completeness:problems

p-Vertex Coloring is paraNP-complete.

p-Clique is not paraNP-complete, unless P = NP.

p#var-Sat

is not paraNP-complete, unless P = NP.

pMax#Lit-Sat is paraNP-complete.

paraNP-completeness separates all slices in P from a slice is NP-hard.

AiC FME Fall 2023 10 / 25

FPT The class paraNP

paraNP-completeness:problems

p-Vertex Coloring is paraNP-complete.

p-Clique is not paraNP-complete, unless P = NP.

p#var-Sat is not paraNP-complete, unless P = NP.

pMax#Lit-Sat is paraNP-complete.

paraNP-completeness separates all slices in P from a slice is NP-hard.

AiC FME Fall 2023 10 / 25

FPT The class paraNP

paraNP-completeness:problems

p-Vertex Coloring is paraNP-complete.

p-Clique is not paraNP-complete, unless P = NP.

p#var-Sat is not paraNP-complete, unless P = NP.

pMax#Lit-Sat

is paraNP-complete.

paraNP-completeness separates all slices in P from a slice is NP-hard.

AiC FME Fall 2023 10 / 25

FPT The class paraNP

paraNP-completeness:problems

p-Vertex Coloring is paraNP-complete.

p-Clique is not paraNP-complete, unless P = NP.

p#var-Sat is not paraNP-complete, unless P = NP.

pMax#Lit-Sat is paraNP-complete.

paraNP-completeness separates all slices in P from a slice is NP-hard.

AiC FME Fall 2023 10 / 25

FPT The class paraNP

paraNP-completeness:problems

p-Vertex Coloring is paraNP-complete.

p-Clique is not paraNP-complete, unless P = NP.

p#var-Sat is not paraNP-complete, unless P = NP.

pMax#Lit-Sat is paraNP-complete.

paraNP-completeness separates all slices in P from a slice is NP-hard.

AiC FME Fall 2023 10 / 25

FPT The class XP

The class XP

Let (L, κ) be a parameterized problem.

(L, κ) belongs to (uniform) XP if there is an algorithm A that decides
L in time O(|x |f (κ(x)),
for some computable function f .

p-Clique, p-Vertex Cover, p-Hitting Set, p-Hitting Set,
p-Dominating Set belong to XP.

XP is the counterpart of EXP in classic complexity.

AiC FME Fall 2023 11 / 25

FPT The class XP

The class XP

Let (L, κ) be a parameterized problem.

(L, κ) belongs to (uniform) XP if there is an algorithm A that decides
L in time O(|x |f (κ(x)),
for some computable function f .

p-Clique, p-Vertex Cover, p-Hitting Set, p-Hitting Set,
p-Dominating Set belong to XP.

XP is the counterpart of EXP in classic complexity.

AiC FME Fall 2023 11 / 25

FPT The class XP

XP-complete problems

p-Exp-DTM-Halt
Input: A deterministic TM M, x ∈ Σ∗ and an integer k ,
Parameter: k
Question: Does M on input x stop in no more than |x |k steps?

Theorem

p-Exp-DTM-Halt is XP-complete but does not belong to FPT unless
P = NP.

AiC FME Fall 2023 12 / 25

FPT The class XP

XP-complete problems

p-Exp-DTM-Halt
Input: A deterministic TM M, x ∈ Σ∗ and an integer k ,
Parameter: k
Question: Does M on input x stop in no more than |x |k steps?

Theorem

p-Exp-DTM-Halt is XP-complete but does not belong to FPT unless
P = NP.

AiC FME Fall 2023 12 / 25

FPT The class XP

Relationships among classes

FPT

paraNP XP

AiC FME Fall 2023 13 / 25

FPT The class XP

Relationships among classes

FPT

paraNP XP

AiC FME Fall 2023 13 / 25

The W-hierarchy

The W-hierarchy

FPT

paraNP XP

AiC FME Fall 2023 14 / 25

The W-hierarchy Circuit’s weft

Circuits: Depth and Weft

Let C be a boolean circuit: AND OR NOT gates.

A gate is small if it has only two or one input otherwise the gate is big

The depth of C is the maximum distance from an input gate to an
output gate.

The weft of C the maximum number of big gates in a path from an
input gate to an output gate.

Note that depth(C) ≥ weft(C)

AiC FME Fall 2023 15 / 25

The W-hierarchy Circuit’s weft

Circuits: Depth and Weft

Let C be a boolean circuit: AND OR NOT gates.

A gate is small if it has only two or one input otherwise the gate is big

The depth of C is the maximum distance from an input gate to an
output gate.

The weft of C the maximum number of big gates in a path from an
input gate to an output gate.

Note that depth(C) ≥ weft(C)

AiC FME Fall 2023 15 / 25

The W-hierarchy Circuit’s weft

Circuits: Depth and Weft

Let C be a boolean circuit: AND OR NOT gates.

A gate is small if it has only two or one input otherwise the gate is big

The depth of C is the maximum distance from an input gate to an
output gate.

The weft of C the maximum number of big gates in a path from an
input gate to an output gate.

Note that depth(C) ≥ weft(C)

AiC FME Fall 2023 15 / 25

The W-hierarchy Circuit’s weft

Circuits: Depth and Weft

Let C be a boolean circuit: AND OR NOT gates.

A gate is small if it has only two or one input otherwise the gate is big

The depth of C is the maximum distance from an input gate to an
output gate.

The weft of C the maximum number of big gates in a path from an
input gate to an output gate.

Note that depth(C) ≥ weft(C)

AiC FME Fall 2023 15 / 25

The W-hierarchy Circuit’s weft

Circuits: Depth and Weft

Let C be a boolean circuit: AND OR NOT gates.

A gate is small if it has only two or one input otherwise the gate is big

The depth of C is the maximum distance from an input gate to an
output gate.

The weft of C the maximum number of big gates in a path from an
input gate to an output gate.

Note that depth(C) ≥ weft(C)

AiC FME Fall 2023 15 / 25

The W-hierarchy Circuit’s weft

Circuits: Depth and Weft

Let C be a boolean circuit: AND OR NOT gates.

A gate is small if it has only two or one input otherwise the gate is big

The depth of C is the maximum distance from an input gate to an
output gate.

The weft of C the maximum number of big gates in a path from an
input gate to an output gate.

Note that depth(C) ≥ weft(C)

AiC FME Fall 2023 15 / 25

The W-hierarchy Circuit’s weft

Variations on SAT

The weight of an assignment x = x1 . . . xn ∈ {0, 1}n is
W (x) =

∑n
i=1 xi ; i.e., the number of ones

A circuit C is k-satisfiable if there is a satisfying assignment with
weight k .

A formula F is k-satisfiable if there is a satisfying assignment with
weight k .

p-Wsat(Fam)
Input: A circuit/formula C/F in family Fam and an integer k ,
Parameter: k
Question: Is C/F k-satisfiable?

AiC FME Fall 2023 16 / 25

The W-hierarchy Circuit’s weft

Variations on SAT

The weight of an assignment x = x1 . . . xn ∈ {0, 1}n is
W (x) =

∑n
i=1 xi ; i.e., the number of ones

A circuit C is k-satisfiable if there is a satisfying assignment with
weight k .

A formula F is k-satisfiable if there is a satisfying assignment with
weight k .

p-Wsat(Fam)
Input: A circuit/formula C/F in family Fam and an integer k ,
Parameter: k
Question: Is C/F k-satisfiable?

AiC FME Fall 2023 16 / 25

The W-hierarchy Circuit’s weft

Variations on SAT

The weight of an assignment x = x1 . . . xn ∈ {0, 1}n is
W (x) =

∑n
i=1 xi ; i.e., the number of ones

A circuit C is k-satisfiable if there is a satisfying assignment with
weight k .

A formula F is k-satisfiable if there is a satisfying assignment with
weight k .

p-Wsat(Fam)
Input: A circuit/formula C/F in family Fam and an integer k ,
Parameter: k
Question: Is C/F k-satisfiable?

AiC FME Fall 2023 16 / 25

The W-hierarchy Circuit’s weft

Variations on SAT

The weight of an assignment x = x1 . . . xn ∈ {0, 1}n is
W (x) =

∑n
i=1 xi ; i.e., the number of ones

A circuit C is k-satisfiable if there is a satisfying assignment with
weight k .

A formula F is k-satisfiable if there is a satisfying assignment with
weight k .

p-Wsat(Fam)
Input: A circuit/formula C/F in family Fam and an integer k ,
Parameter: k
Question: Is C/F k-satisfiable?

AiC FME Fall 2023 16 / 25

The W-hierarchy Circuit’s weft

Variations on SAT

The weight of an assignment x = x1 . . . xn ∈ {0, 1}n is
W (x) =

∑n
i=1 xi ; i.e., the number of ones

A circuit C is k-satisfiable if there is a satisfying assignment with
weight k .

A formula F is k-satisfiable if there is a satisfying assignment with
weight k .

p-Wsat(Fam)
Input: A circuit/formula C/F in family Fam and an integer k ,
Parameter: k
Question: Is C/F k-satisfiable?

AiC FME Fall 2023 16 / 25

The W-hierarchy W-classes

W-classes

Families of circuits/formulas

Circ all boolean circuits

Prop all propositional formulas

For d ≥ t ≥ 0, define

Ct,d = {c | C ∈ Circ and weft(C) ≤ t and depth(C) ≤ d}

We define the following classes:

W [P] = [p-Wsat(Circ)]fpt

W [SAT] = [p-Wsat(Prop)]fpt

For t ≥ 1, W [t] = {[p-Wsat(Ct,d)]
fpt | d ≥ 1}

AiC FME Fall 2023 17 / 25

The W-hierarchy W-classes

W-classes

Families of circuits/formulas

Circ all boolean circuits

Prop all propositional formulas

For d ≥ t ≥ 0, define

Ct,d = {c | C ∈ Circ and weft(C) ≤ t and depth(C) ≤ d}

We define the following classes:

W [P] = [p-Wsat(Circ)]fpt

W [SAT] = [p-Wsat(Prop)]fpt

For t ≥ 1, W [t] = {[p-Wsat(Ct,d)]
fpt | d ≥ 1}

AiC FME Fall 2023 17 / 25

The W-hierarchy W-classes

W-classes

Families of circuits/formulas

Circ all boolean circuits

Prop all propositional formulas

For d ≥ t ≥ 0, define

Ct,d = {c | C ∈ Circ and weft(C) ≤ t and depth(C) ≤ d}

We define the following classes:

W [P] = [p-Wsat(Circ)]fpt

W [SAT] = [p-Wsat(Prop)]fpt

For t ≥ 1, W [t] = {[p-Wsat(Ct,d)]
fpt | d ≥ 1}

AiC FME Fall 2023 17 / 25

The W-hierarchy W-classes

W-classes

Families of circuits/formulas

Circ all boolean circuits

Prop all propositional formulas

For d ≥ t ≥ 0, define

Ct,d = {c | C ∈ Circ and weft(C) ≤ t and depth(C) ≤ d}

We define the following classes:

W [P] = [p-Wsat(Circ)]fpt

W [SAT] = [p-Wsat(Prop)]fpt

For t ≥ 1, W [t] = {[p-Wsat(Ct,d)]
fpt | d ≥ 1}

AiC FME Fall 2023 17 / 25

The W-hierarchy W-classes

W-classes

Families of circuits/formulas

Circ all boolean circuits

Prop all propositional formulas

For d ≥ t ≥ 0, define

Ct,d = {c | C ∈ Circ and weft(C) ≤ t and depth(C) ≤ d}

We define the following classes:

W [P] = [p-Wsat(Circ)]fpt

W [SAT] = [p-Wsat(Prop)]fpt

For t ≥ 1, W [t] = {[p-Wsat(Ct,d)]
fpt | d ≥ 1}

AiC FME Fall 2023 17 / 25

The W-hierarchy W-classes

W-classes

Families of circuits/formulas

Circ all boolean circuits

Prop all propositional formulas

For d ≥ t ≥ 0, define

Ct,d = {c | C ∈ Circ and weft(C) ≤ t and depth(C) ≤ d}

We define the following classes:

W [P] = [p-Wsat(Circ)]fpt

W [SAT] = [p-Wsat(Prop)]fpt

For t ≥ 1, W [t] = {[p-Wsat(Ct,d)]
fpt | d ≥ 1}

AiC FME Fall 2023 17 / 25

The W-hierarchy W-classes

W-classes

Families of circuits/formulas

Circ all boolean circuits

Prop all propositional formulas

For d ≥ t ≥ 0, define

Ct,d = {c | C ∈ Circ and weft(C) ≤ t and depth(C) ≤ d}

We define the following classes:

W [P] = [p-Wsat(Circ)]fpt

W [SAT] = [p-Wsat(Prop)]fpt

For t ≥ 1, W [t] = {[p-Wsat(Ct,d)]
fpt | d ≥ 1}

AiC FME Fall 2023 17 / 25

The W-hierarchy W-classes

W-classes

Families of circuits/formulas

Circ all boolean circuits

Prop all propositional formulas

For d ≥ t ≥ 0, define

Ct,d = {c | C ∈ Circ and weft(C) ≤ t and depth(C) ≤ d}

We define the following classes:

W [P] = [p-Wsat(Circ)]fpt

W [SAT] = [p-Wsat(Prop)]fpt

For t ≥ 1, W [t] = {[p-Wsat(Ct,d)]
fpt | d ≥ 1}

AiC FME Fall 2023 17 / 25

The W-hierarchy W-classes

W-hierarchy

W [P] = [p-Wsat(Circ)]fpt

W [SAT] = [p-Wsat(Prop)]fpt

For t ≥ 1, W [t] = {[p-Wsat(Ct,d)]
fpt | d ≥ 1}

Theorem

W [P] ⊆ paraNP ∩ XP

W [SAT] ⊆ W [P]

For i ≥ 1, W [i] ⊆ W [SAT] and W [i] ⊆ W [i + 1]

AiC FME Fall 2023 18 / 25

The W-hierarchy W-classes

W-hierarchy

W [P] = [p-Wsat(Circ)]fpt

W [SAT] = [p-Wsat(Prop)]fpt

For t ≥ 1, W [t] = {[p-Wsat(Ct,d)]
fpt | d ≥ 1}

Theorem

W [P] ⊆ paraNP ∩ XP

W [SAT] ⊆ W [P]

For i ≥ 1, W [i] ⊆ W [SAT] and W [i] ⊆ W [i + 1]

AiC FME Fall 2023 18 / 25

The W-hierarchy W-classes

W-hierarchy

Theorem

FPT ⊆ W [1]

Theorem

If, for some i ≥ 1, FPT ̸= W [i] then P ̸= NP

If FPT ̸= W [SAT] then P ̸= NP

If FPT ̸= W [P] then P ̸= NP

Any of those conditions imply FPT ̸= paraNP.

Theorem

If FPT = W [P] then CircuitSat for circuits with n inputs and m gates
can be decided in 2o(n)mO(1) time.

AiC FME Fall 2023 19 / 25

The W-hierarchy W-classes

W-hierarchy

Theorem

FPT ⊆ W [1]

Theorem

If, for some i ≥ 1, FPT ̸= W [i] then P ̸= NP

If FPT ̸= W [SAT] then P ̸= NP

If FPT ̸= W [P] then P ̸= NP

Any of those conditions imply FPT ̸= paraNP.

Theorem

If FPT = W [P] then CircuitSat for circuits with n inputs and m gates
can be decided in 2o(n)mO(1) time.

AiC FME Fall 2023 19 / 25

The W-hierarchy W-classes

W-hierarchy

Theorem

FPT ⊆ W [1]

Theorem

If, for some i ≥ 1, FPT ̸= W [i] then P ̸= NP

If FPT ̸= W [SAT] then P ̸= NP

If FPT ̸= W [P] then P ̸= NP

Any of those conditions imply FPT ̸= paraNP.

Theorem

If FPT = W [P] then CircuitSat for circuits with n inputs and m gates
can be decided in 2o(n)mO(1) time.

AiC FME Fall 2023 19 / 25

The W-hierarchy W-classes

W-hierarchy

Theorem

FPT ⊆ W [1]

Theorem

If, for some i ≥ 1, FPT ̸= W [i] then P ̸= NP

If FPT ̸= W [SAT] then P ̸= NP

If FPT ̸= W [P] then P ̸= NP

Any of those conditions imply FPT ̸= paraNP.

Theorem

If FPT = W [P] then CircuitSat for circuits with n inputs and m gates
can be decided in 2o(n)mO(1) time.

AiC FME Fall 2023 19 / 25

The W-hierarchy W-classes

W-hierarchy

Theorem

FPT ⊆ W [1]

Theorem

If, for some i ≥ 1, FPT ̸= W [i] then P ̸= NP

If FPT ̸= W [SAT] then P ̸= NP

If FPT ̸= W [P] then P ̸= NP

Any of those conditions imply FPT ̸= paraNP.

Theorem

If FPT = W [P] then CircuitSat for circuits with n inputs and m gates
can be decided in 2o(n)mO(1) time.

AiC FME Fall 2023 19 / 25

The W-hierarchy W-hard problems

W[P]-hard problems

Some problems in W [P]

p-Clique, p-DominantSet, p-SetCover

But in which level of the W-hierarchy?

p-Clique ∈ W [1]
To prove this statement it is enough to show a circuit with weft 1
solving the problem (see blackboard)
In fact the problem is W [1]-complete

p-Dominating Set ∈ W [2] and p-SetCover ∈ W [2] (Exercise)
In fact both problems are W [2]-complete

AiC FME Fall 2023 20 / 25

The W-hierarchy W-hard problems

W[P]-hard problems

Some problems in W [P]

p-Clique, p-DominantSet, p-SetCover

But in which level of the W-hierarchy?

p-Clique ∈ W [1]
To prove this statement it is enough to show a circuit with weft 1
solving the problem (see blackboard)
In fact the problem is W [1]-complete

p-Dominating Set ∈ W [2] and p-SetCover ∈ W [2] (Exercise)
In fact both problems are W [2]-complete

AiC FME Fall 2023 20 / 25

The W-hierarchy W-hard problems

W[P]-hard problems

Some problems in W [P]

p-Clique, p-DominantSet, p-SetCover

But in which level of the W-hierarchy?

p-Clique ∈ W [1]
To prove this statement it is enough to show a circuit with weft 1
solving the problem (see blackboard)
In fact the problem is W [1]-complete

p-Dominating Set ∈ W [2] and p-SetCover ∈ W [2] (Exercise)
In fact both problems are W [2]-complete

AiC FME Fall 2023 20 / 25

The W-hierarchy W-hard problems

W[P]-hard problems

Some problems in W [P]

p-Clique, p-DominantSet, p-SetCover

But in which level of the W-hierarchy?

p-Clique ∈ W [1]

To prove this statement it is enough to show a circuit with weft 1
solving the problem (see blackboard)
In fact the problem is W [1]-complete

p-Dominating Set ∈ W [2] and p-SetCover ∈ W [2] (Exercise)
In fact both problems are W [2]-complete

AiC FME Fall 2023 20 / 25

The W-hierarchy W-hard problems

W[P]-hard problems

Some problems in W [P]

p-Clique, p-DominantSet, p-SetCover

But in which level of the W-hierarchy?

p-Clique ∈ W [1]
To prove this statement it is enough to show a circuit with weft 1
solving the problem (see blackboard)

In fact the problem is W [1]-complete

p-Dominating Set ∈ W [2] and p-SetCover ∈ W [2] (Exercise)
In fact both problems are W [2]-complete

AiC FME Fall 2023 20 / 25

The W-hierarchy W-hard problems

W[P]-hard problems

Some problems in W [P]

p-Clique, p-DominantSet, p-SetCover

But in which level of the W-hierarchy?

p-Clique ∈ W [1]
To prove this statement it is enough to show a circuit with weft 1
solving the problem (see blackboard)
In fact the problem is W [1]-complete

p-Dominating Set ∈ W [2] and p-SetCover ∈ W [2] (Exercise)
In fact both problems are W [2]-complete

AiC FME Fall 2023 20 / 25

The W-hierarchy W-hard problems

W[P]-hard problems

Some problems in W [P]

p-Clique, p-DominantSet, p-SetCover

But in which level of the W-hierarchy?

p-Clique ∈ W [1]
To prove this statement it is enough to show a circuit with weft 1
solving the problem (see blackboard)
In fact the problem is W [1]-complete

p-Dominating Set ∈ W [2] and p-SetCover ∈ W [2] (Exercise)

In fact both problems are W [2]-complete

AiC FME Fall 2023 20 / 25

The W-hierarchy W-hard problems

W[P]-hard problems

Some problems in W [P]

p-Clique, p-DominantSet, p-SetCover

But in which level of the W-hierarchy?

p-Clique ∈ W [1]
To prove this statement it is enough to show a circuit with weft 1
solving the problem (see blackboard)
In fact the problem is W [1]-complete

p-Dominating Set ∈ W [2] and p-SetCover ∈ W [2] (Exercise)
In fact both problems are W [2]-complete

AiC FME Fall 2023 20 / 25

The W-hierarchy Exponential time hypothesis

Exponential Time Hypothesis

Exponential Time Hypothesis (ETH)

n-variable 3-SAT cannot be solved in time 2o(n).

We wish to get results like:
If there is an f (k) no(k) time algorithm for problem XXX, then ETH
fails.

AiC FME Fall 2023 21 / 25

The W-hierarchy Exponential time hypothesis

Exponential Time Hypothesis

Exponential Time Hypothesis (ETH)

n-variable 3-SAT cannot be solved in time 2o(n).

We wish to get results like:

If there is an f (k) no(k) time algorithm for problem XXX, then ETH
fails.

AiC FME Fall 2023 21 / 25

The W-hierarchy Exponential time hypothesis

Exponential Time Hypothesis

Exponential Time Hypothesis (ETH)

n-variable 3-SAT cannot be solved in time 2o(n).

We wish to get results like:
If there is an f (k) no(k) time algorithm for problem XXX, then ETH
fails.

AiC FME Fall 2023 21 / 25

The W-hierarchy Exponential time hypothesis

Lower bounds for FPT algorithms

We know that VERTEX COVER can be solved in time O∗(ck).

Can we do it much faster, for example in time O∗(c
√
k) or

O∗(ck/logk)?

Lemma

If VERTEX COVER can be solved in time 2o(k) nO(1), then ETH fails.

Proof.

There is a polynomial-time reduction from m-clause 3SAT to m-vertex
VERTEX COVER. The assumed algorithm would solve the latter problem
in time 2o(m) nO(1), violating ETH.

AiC FME Fall 2023 22 / 25

The W-hierarchy Exponential time hypothesis

Lower bounds for FPT algorithms

We know that VERTEX COVER can be solved in time O∗(ck).

Can we do it much faster, for example in time O∗(c
√
k) or

O∗(ck/logk)?

Lemma

If VERTEX COVER can be solved in time 2o(k) nO(1), then ETH fails.

Proof.

There is a polynomial-time reduction from m-clause 3SAT to m-vertex
VERTEX COVER. The assumed algorithm would solve the latter problem
in time 2o(m) nO(1), violating ETH.

AiC FME Fall 2023 22 / 25

The W-hierarchy Exponential time hypothesis

Lower bounds for FPT algorithms

We know that VERTEX COVER can be solved in time O∗(ck).

Can we do it much faster, for example in time O∗(c
√
k) or

O∗(ck/logk)?

Lemma

If VERTEX COVER can be solved in time 2o(k) nO(1), then ETH fails.

Proof.

There is a polynomial-time reduction from m-clause 3SAT to m-vertex
VERTEX COVER. The assumed algorithm would solve the latter problem
in time 2o(m) nO(1), violating ETH.

AiC FME Fall 2023 22 / 25

The W-hierarchy Parameterization and approximation

Efficient approximation schemes

Polynomial-time approximation scheme (PTAS):
Input: Instance x , ϵ > 0
Output: (1 + ϵ)-approximate solution
Running time: polynomial in |x | for every fixed ϵ

PTAS: running time is |x |f (1/ϵ)

Efficient PTAS (EPTAS) running time is f (1/ϵ)|x |O(1)

For some problems, there is a PTAS, but no EPTAS is known.

Can we show that no EPTAS is possible?

AiC FME Fall 2023 23 / 25

The W-hierarchy Parameterization and approximation

Efficient approximation schemes

Polynomial-time approximation scheme (PTAS):
Input: Instance x , ϵ > 0
Output: (1 + ϵ)-approximate solution
Running time: polynomial in |x | for every fixed ϵ

PTAS: running time is |x |f (1/ϵ)

Efficient PTAS (EPTAS) running time is f (1/ϵ)|x |O(1)

For some problems, there is a PTAS, but no EPTAS is known.

Can we show that no EPTAS is possible?

AiC FME Fall 2023 23 / 25

The W-hierarchy Parameterization and approximation

Efficient approximation schemes

Polynomial-time approximation scheme (PTAS):
Input: Instance x , ϵ > 0
Output: (1 + ϵ)-approximate solution
Running time: polynomial in |x | for every fixed ϵ

PTAS: running time is |x |f (1/ϵ)

Efficient PTAS (EPTAS)

running time is f (1/ϵ)|x |O(1)

For some problems, there is a PTAS, but no EPTAS is known.

Can we show that no EPTAS is possible?

AiC FME Fall 2023 23 / 25

The W-hierarchy Parameterization and approximation

Efficient approximation schemes

Polynomial-time approximation scheme (PTAS):
Input: Instance x , ϵ > 0
Output: (1 + ϵ)-approximate solution
Running time: polynomial in |x | for every fixed ϵ

PTAS: running time is |x |f (1/ϵ)

Efficient PTAS (EPTAS) running time is f (1/ϵ)|x |O(1)

For some problems, there is a PTAS, but no EPTAS is known.

Can we show that no EPTAS is possible?

AiC FME Fall 2023 23 / 25

The W-hierarchy Parameterization and approximation

Efficient approximation schemes

Polynomial-time approximation scheme (PTAS):
Input: Instance x , ϵ > 0
Output: (1 + ϵ)-approximate solution
Running time: polynomial in |x | for every fixed ϵ

PTAS: running time is |x |f (1/ϵ)

Efficient PTAS (EPTAS) running time is f (1/ϵ)|x |O(1)

For some problems, there is a PTAS, but no EPTAS is known.

Can we show that no EPTAS is possible?

AiC FME Fall 2023 23 / 25

The W-hierarchy Parameterization and approximation

No EPTAS?

Lemma

If the standard parameterization of an optimization problem is W [1]-hard,
then there is no EPTAS for the optimization problem, unless FPT = W [1].

Proof.

Suppose an f (1/ϵ) nO(1) time EPTAS exists.
Running this EPTAS with ϵ = 1/(k + 1) decides if the optimum is at
most/at least k.

AiC FME Fall 2023 24 / 25

The W-hierarchy Parameterization and approximation

No EPTAS?

Lemma

If the standard parameterization of an optimization problem is W [1]-hard,
then there is no EPTAS for the optimization problem, unless FPT = W [1].

Proof.

Suppose an f (1/ϵ) nO(1) time EPTAS exists.
Running this EPTAS with ϵ = 1/(k + 1) decides if the optimum is at
most/at least k.

AiC FME Fall 2023 24 / 25

The W-hierarchy Parameterization and approximation

No EPTAS?

Lemma

If the standard parameterization of an optimization problem is W [1]-hard,
then there is no EPTAS for the optimization problem, unless FPT = W [1].

Proof.

Suppose an f (1/ϵ) nO(1) time EPTAS exists.
Running this EPTAS with ϵ = 1/(k + 1) decides if the optimum is at
most/at least k.

AiC FME Fall 2023 24 / 25

The W-hierarchy Parameterization and approximation

Parameterized complexity

Possibility to give evidence that certain problems are not FPT.

Parameterized reduction.

The W-hierarchy.

ETH gives much stronger and tighter lower bounds.

PTAS vs. EPTAS

Kernel size lower bounds

AiC FME Fall 2023 25 / 25

	Parameterized complexity
	FPT
	FPT reductions
	The class paraNP
	The class XP

	The W-hierarchy
	Circuit's weft
	W-classes
	W-hard problems
	Exponential time hypothesis
	Parameterization and approximation

