Parameterized Complexity

Maria Serna

Fall 2023

イロト イボト イヨト イヨト

Fall 2023

э

1 / 25

AIC FME

 A is an FPT algorithm with respect to κ if there are a computable function f and a polynomial function p such that for each x ∈ Σ*, A on input x requires time f(κ(x))p(|x|)

(日)

<ロト <部ト <きト <きト = 目

• Let (L, κ) and (L', κ') be two parameterized problems (on the same alphabet Σ)

・ロト ・雪 ト ・ ヨ ト ・

- Let (L, κ) and (L', κ') be two parameterized problems (on the same alphabet Σ)
- A FPT-reduction from (L, κ) to (L', κ') is a mapping $R : \Sigma^* \to \Sigma^*$ where

3

- Let (L, κ) and (L', κ') be two parameterized problems (on the same alphabet Σ)
- A FPT-reduction from (L, κ) to (L', κ') is a mapping $R : \Sigma^* \to \Sigma^*$ where
 - $\forall x \in \Sigma^* \ x \in L \text{ iff } R(x) \in L'$
 - There is an FPT-algorithm with respect to κ computing R (in $f(\kappa(x))p(|x|)$)
 - There is a computable function $g:\mathbb{N}\to\mathbb{N}$ such that $\forall x\in\Sigma^*\kappa'(R(x))\leq g(\kappa(x))$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Let (L, κ) and (L', κ') be two parameterized problems (on the same alphabet Σ)
- A FPT-reduction from (L,κ) to (L',κ') is a mapping $R: \Sigma^* \to \Sigma^*$ where
 - $\forall x \in \Sigma^* \ x \in L \text{ iff } R(x) \in L'$
 - There is an FPT-algorithm with respect to κ computing R (in $f(\kappa(x))p(|x|)$)
 - There is a computable function $g:\mathbb{N}\to\mathbb{N}$ such that $\forall x\in\Sigma^*\kappa'(R(x))\leq g(\kappa(x))$
- We note $(L,\kappa) \leq^{fpt} (L',\kappa')$ when there is a FPT-reduction from (L,κ) to (L',κ')

イロト イポト イヨト イヨト 三日

Lemma

FPT is closed under FPT-reductions

イロト イボト イヨト イヨト

э

• FPT-equivalence

$$(L,\kappa) \equiv^{fpt} (L',\kappa')$$
: $(L,\kappa) \leq^{fpt} (L',\kappa')$ and $(L',\kappa') \leq^{fpt} (L,\kappa)$

- FPT-equivalence $(L,\kappa) \equiv^{fpt} (L',\kappa')$: $(L,\kappa) \leq^{fpt} (L',\kappa')$ and $(L',\kappa') \leq^{fpt} (L,\kappa)$
- P-INDEPENDENT SET \equiv^{fpt} P-CLIQUE

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- FPT-equivalence $(L,\kappa) \equiv^{fpt} (L',\kappa')$: $(L,\kappa) \leq^{fpt} (L',\kappa')$ and $(L',\kappa') \leq^{fpt} (L,\kappa)$
- P-INDEPENDENT SET \equiv^{fpt} P-CLIQUE

$$R(G,k) = (\overline{G},k)$$

Works for both directions

• P-HITTING SET \equiv^{fpt} P-DOMINATING SET

- FPT-equivalence $(L,\kappa) \equiv^{fpt} (L',\kappa')$: $(L,\kappa) \leq^{fpt} (L',\kappa')$ and $(L',\kappa') \leq^{fpt} (L,\kappa)$
- P-INDEPENDENT SET \equiv^{fpt} P-CLIQUE

$$R(G,k) = (\overline{G},k)$$

Works for both directions

 P-HITTING SET ≡^{fpt} P-DOMINATING SET Exercise

э

• Closure under FPT-reductions $[(L, \kappa)]^{fpt} = \{(L', \kappa') \mid (L', \kappa') \leq^{fpt} (L, \kappa)\}$

- Closure under FPT-reductions $[(L,\kappa)]^{fpt} = \{(L',\kappa') \mid (L',\kappa') \leq^{fpt} (L,\kappa)\}$
- $\bullet~\mbox{If}~\mathcal{C}~\mbox{is a class of parameterized problems}$
 - (L, κ) is *C*-hard if $C \subseteq [(L, \kappa)]^{fpt}$.
 - (L,κ) is *C*-complete if $(L,\kappa) \in C$ and (L,κ) is *C*-hard.

- Closure under FPT-reductions $[(L,\kappa)]^{fpt} = \{(L',\kappa') \mid (L',\kappa') \leq^{fpt} (L,\kappa)\}$
- $\bullet~\mbox{If}~\mathcal{C}~\mbox{is a class of parameterized problems}$
 - (L, κ) is *C*-hard if $C \subseteq [(L, \kappa)]^{fpt}$.
 - (L,κ) is *C*-complete if $(L,\kappa) \in C$ and (L,κ) is *C*-hard.
- $[(L,\kappa)]^{fpt}$ defines a class of parameterized problems for which (L,κ) is complete
- if (L, κ) is C-complete and C is closed under FPT reductions, then $C = [(L, \kappa)]^{fpt}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

FPT-equivalent problems

æ

7 / 25

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

The class paraNP

- Let (L, κ) be a parameterized problem
- (L, κ) belongs to paraNP if there is a non-deterministic algorithm A that decides x ∈ L in time f(κ(x))p(|x|), for some computable function f and polynomial function p.

< ロ > < 同 > < 三 > < 三 >

The class paraNP

- Let (L, κ) be a parameterized problem
- (L, κ) belongs to paraNP if there is a non-deterministic algorithm A that decides x ∈ L in time f(κ(x))p(|x|), for some computable function f and polynomial function p.
- If L ∈ NP, for each parameterization κ, (L, κ) ∈ paraNP p-Clique, p-Vertex Cover, ... belong to paraNP.

< ロ > < 同 > < 三 > < 三 >

<ロ> < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Let (L, κ) be a parameterized problem

э

イロト イボト イヨト イヨト

- Let (L, κ) be a parameterized problem
- (L,κ) is trivial if $L = \emptyset$ or $L = \Sigma^*$.

э

・ロト ・雪 ト ・ ヨ ト ・

- Let (L, κ) be a parameterized problem
- (L,κ) is trivial if $L = \emptyset$ or $L = \Sigma^*$.
- The *i*-th slice of (L, κ) is the decision problem $(L, \kappa)_i = \{x \in L \mid \kappa(x) = i\}$

- Let (L, κ) be a parameterized problem
- (L,κ) is trivial if $L = \emptyset$ or $L = \Sigma^*$.
- The *i*-th slice of (L, κ) is the decision problem $(L, \kappa)_i = \{x \in L \mid \kappa(x) = i\}$

Theorem

If $(L, \kappa) \in \text{paraNP}$ is not trivial and has a NP-complete slice, then (L, κ) is paraNP-complete under FPT reductions.

• P-VERTEX COLORING

э

• P-VERTEX COLORING is paraNP-complete.

э

- P-VERTEX COLORING is paraNP-complete.
- P-CLIQUE

э

FPT

paraNP-completeness:problems

- P-VERTEX COLORING is paraNP-complete.
- P-CLIQUE is not paraNP-complete, unless P = NP.

< ロ > < 同 > < 回 > < 回 > < 回 > <

FPT

paraNP-completeness:problems

- P-VERTEX COLORING is paraNP-complete.
- P-CLIQUE is not paraNP-complete, unless P = NP.
- P#VAR-SAT

э

くロ と く 同 と く ヨ と 一

- P-VERTEX COLORING is paraNP-complete.
- P-CLIQUE is not paraNP-complete, unless P = NP.
- P # VAR-SAT is not paraNP-complete, unless P = NP.

FPT

< ロ > < 同 > < 回 > < 回 > < 回 > <

- P-VERTEX COLORING is paraNP-complete.
- P-CLIQUE is not paraNP-complete, unless P = NP.
- P # VAR-SAT is not paraNP-complete, unless P = NP.

FPT

• PMAX#LIT-SAT

・ロト ・聞 ト ・ ヨト ・ ヨトー

- P-VERTEX COLORING is paraNP-complete.
- P-CLIQUE is not paraNP-complete, unless P = NP.
- P # VAR-SAT is not paraNP-complete, unless P = NP.

FPT

• PMAX#LIT-SAT is paraNP-complete.

< ロ > < 同 > < 回 > < 回 > < 回 > <

FPT

paraNP-completeness:problems

- P-VERTEX COLORING is paraNP-complete.
- P-CLIQUE is not paraNP-complete, unless P = NP.
- P # VAR-SAT is not paraNP-complete, unless P = NP.
- PMAX#LIT-SAT is paraNP-complete.

• paraNP-completeness separates *all slices* in P from *a slice* is NP-hard.

The class XP

- Let (L, κ) be a parameterized problem.
- (L, κ) belongs to (uniform) XP if there is an algorithm A that decides L in time O(|x|^{f(κ(x))}, for some computable function f.

(日)

The class XP

- Let (L, κ) be a parameterized problem.
- (L, κ) belongs to (uniform) XP if there is an algorithm A that decides L in time O(|x|^{f(κ(x))}, for some computable function f.
- P-CLIQUE, P-VERTEX COVER, P-HITTING SET, P-HITTING SET, P-DOMINATING SET belong to XP.
- XP is the counterpart of EXP in classic complexity.
XP-complete problems

P-EXP-DTM-HALT

Input: A deterministic TM \mathbb{M} , $x \in \Sigma^*$ and an integer k, Parameter: k

Question: Does \mathbb{M} on input x stop in no more than $|x|^k$ steps?

< ロ > < 同 > < 回 > < 回 > < 回 > <

XP-complete problems

P-EXP-DTM-HALT

Input: A deterministic TM \mathbb{M} , $x \in \Sigma^*$ and an integer k, Parameter: kQuestion: Does \mathbb{M} on input x stop in no more than $|x|^k$ steps?

Theorem

P-EXP-DTM-HALT is XP-complete but does not belong to FPT unless P = NP.

The class XP

Relationships among classes

æ

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

The class XP

Relationships among classes

æ

The W-hierarchy

	-		
- AI	1.	VI	
			-

・ロト ・四ト ・ヨト ・ヨト

æ.

• Let C be a boolean circuit: AND OR NOT gates.

э

- Let *C* be a boolean circuit: AND OR NOT gates.
- A gate is small if it has only two or one input otherwise the gate is big

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Let C be a boolean circuit: AND OR NOT gates.
- A gate is small if it has only two or one input otherwise the gate is big
- The depth of *C* is the maximum distance from an input gate to an output gate.

イロト イポト イヨト

- Let C be a boolean circuit: AND OR NOT gates.
- A gate is small if it has only two or one input otherwise the gate is big
- The depth of *C* is the maximum distance from an input gate to an output gate.
- The weft of *C* the maximum number of big gates in a path from an input gate to an output gate.

- Let C be a boolean circuit: AND OR NOT gates.
- A gate is small if it has only two or one input otherwise the gate is big
- The depth of *C* is the maximum distance from an input gate to an output gate.
- The weft of *C* the maximum number of big gates in a path from an input gate to an output gate.
- Note that depth(C) ≥ weft(C)

Variations on SAT

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

€ 990

Circuit's weft

Variations on SAT

• The weight of an assignment $x = x_1 \dots x_n \in \{0, 1\}^n$ is $W(x) = \sum_{i=1}^n x_i$; i.e., the number of ones

イロト イポト イヨト イヨト 三日

Variations on SAT

- The weight of an assignment $x = x_1 \dots x_n \in \{0, 1\}^n$ is $W(x) = \sum_{i=1}^n x_i$; i.e., the number of ones
- A circuit C is k-satisfiable if there is a satisfying assignment with weight k.

・ロト ・四ト ・ヨト ・ヨト

Variations on SAT

- The weight of an assignment $x = x_1 \dots x_n \in \{0, 1\}^n$ is $W(x) = \sum_{i=1}^n x_i$; i.e., the number of ones
- A circuit C is k-satisfiable if there is a satisfying assignment with weight k.
- A formula *F* is *k*-satisfiable if there is a satisfying assignment with weight *k*.

Circuit's weft

Variations on SAT

- The weight of an assignment $x = x_1 \dots x_n \in \{0, 1\}^n$ is $W(x) = \sum_{i=1}^{n} x_i$; i.e., the number of ones
- A circuit C is k-satisfiable if there is a satisfying assignment with weight k.
- A formula F is k-satisfiable if there is a satisfying assignment with weight k.

P-WSAT(FAM)

Input: A circuit/formula C/F in family FAM and an integer k, Parameter: k Question: Is C/F k-satisfiable?

W-classes

Families of circuits/formulas

æ.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Families of circuits/formulas

• CIRC all boolean circuits

э

・ロト ・四ト ・ヨト ・ヨト

W-classes

Families of circuits/formulas

- CIRC all boolean circuits
- PROP all propositional formulas

イロト イボト イヨト イヨト

Families of circuits/formulas

- CIRC all boolean circuits
- PROP all propositional formulas
- For $d \ge t \ge 0$, define

 $\mathcal{C}_{t,d} = \{ c \mid C \in \text{CIRC} \text{ and weft}(C) \leq t \text{ and depth}(C) \leq d \}$

イロト 不得 トイヨト イヨト 二日

Families of circuits/formulas

- CIRC all boolean circuits
- PROP all propositional formulas
- For $d \ge t \ge 0$, define

 $C_{t,d} = \{ c \mid C \in CIRC \text{ and weft}(C) \leq t \text{ and depth}(C) \leq d \}$

We define the following classes:

イロト イポト イヨト イヨト 三日

Families of circuits/formulas

- CIRC all boolean circuits
- PROP all propositional formulas
- For $d \ge t \ge 0$, define

 $C_{t,d} = \{ c \mid C \in CIRC \text{ and weft}(C) \leq t \text{ and depth}(C) \leq d \}$

We define the following classes:

• $W[P] = [P-WSAT(CIRC)]^{fpt}$

イロト 不得 トイヨト イヨト 二日

Families of circuits/formulas

- CIRC all boolean circuits
- PROP all propositional formulas
- For $d \ge t \ge 0$, define

 $C_{t,d} = \{ c \mid C \in CIRC \text{ and weft}(C) \leq t \text{ and depth}(C) \leq d \}$

We define the following classes:

- $W[P] = [P-WSAT(CIRC)]^{fpt}$
- $W[SAT] = [P-WSAT(PROP)]^{fpt}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Families of circuits/formulas

- CIRC all boolean circuits
- PROP all propositional formulas
- For $d \ge t \ge 0$, define

 $C_{t,d} = \{ c \mid C \in CIRC \text{ and weft}(C) \leq t \text{ and depth}(C) \leq d \}$

We define the following classes:

- $W[P] = [P-WSAT(CIRC)]^{fpt}$
- $W[SAT] = [P-WSAT(PROP)]^{fpt}$
- For $t \ge 1$, $W[t] = \{ [P-WSAT(C_{t,d})]^{fpt} \mid d \ge 1 \}$

イロト 不得 トイヨト イヨト 二日

W-hierarchy

- $W[P] = [P-WSAT(CIRC)]^{fpt}$
- $W[SAT] = [P-WSAT(PROP)]^{fpt}$
- For $t \geq 1$, $W[t] = \{ [P-WSAT(\mathcal{C}_{t,d})]^{fpt} \mid d \geq 1 \}$

イロト 不得 トイヨト イヨト 二日

W-hierarchy

- $W[P] = [P-WSAT(CIRC)]^{fpt}$
- $W[SAT] = [P-WSAT(PROP)]^{fpt}$
- For $t \ge 1$, $W[t] = \{ [P-WSAT(C_{t,d})]^{fpt} \mid d > 1 \}$

Theorem

- $W[P] \subseteq paraNP \cap XP$
- $W[SAT] \subset W[P]$
- For $i \geq 1$, $W[i] \subseteq W[SAT]$ and $W[i] \subseteq W[i+1]$

W-hierarchy

▲日 > ▲圖 > ▲ 画 > ▲ 画 > 三面 >

W-hierarchy

Theorem $FPT \subseteq W[1]$

・ロト ・四ト ・ヨト ・ヨト

W-hierarchy

Theorem $FPT \subseteq W[1]$

Theorem

- If, for some $i \ge 1$, $FPT \ne W[i]$ then $P \ne NP$
- If $FPT \neq W[SAT]$ then $P \neq NP$
- If $FPT \neq W[P]$ then $P \neq NP$

W-hierarchy

Theorem $FPT \subseteq W[1]$

Theorem

- If, for some $i \ge 1$, $FPT \ne W[i]$ then $P \ne NP$
- If $FPT \neq W[SAT]$ then $P \neq NP$
- If $FPT \neq W[P]$ then $P \neq NP$

Any of those conditions imply $FPT \neq paraNP$.

イロト イボト イヨト イヨト

W-hierarchy

Theorem $FPT \subseteq W[1]$

Theorem

- If, for some $i \ge 1$, $FPT \ne W[i]$ then $P \ne NP$
- If $FPT \neq W[SAT]$ then $P \neq NP$
- If $FPT \neq W[P]$ then $P \neq NP$

Any of those conditions imply $FPT \neq paraNP$.

Theorem

If FPT = W[P] then CIRCUITSAT for circuits with n inputs and m gates can be decided in $2^{o(n)}m^{O(1)}$ time.

Fall 2023 19 / 25

・ロト ・四ト ・ヨト ・ヨト

W[P]-hard problems

Some problems in W[P]

э.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Some problems in W[P]

• P-CLIQUE, P-DOMINANTSET, P-SETCOVER

3

Some problems in W[P]

• P-CLIQUE, P-DOMINANTSET, P-SETCOVER

But in which level of the W-hierarchy?

Some problems in W[P]

• P-CLIQUE, P-DOMINANTSET, P-SETCOVER

But in which level of the W-hierarchy?

• P-CLIQUE $\in W[1]$

3

イロト イヨト イヨト

Some problems in W[P]

• P-CLIQUE, P-DOMINANTSET, P-SETCOVER

But in which level of the W-hierarchy?

• P-CLIQUE $\in W[1]$

To prove this statement it is enough to show a circuit with weft 1 solving the problem (see blackboard)

イロト イポト イヨト イヨト
W[P]-hard problems

Some problems in W[P]

• P-CLIQUE, P-DOMINANTSET, P-SETCOVER

But in which level of the W-hierarchy?

• P-CLIQUE $\in W[1]$

To prove this statement it is enough to show a circuit with weft 1 solving the problem (see blackboard) In fact the problem is W[1]-complete

くロ と く 同 と く ヨ と 一

W[P]-hard problems

Some problems in W[P]

• P-CLIQUE, P-DOMINANTSET, P-SETCOVER

But in which level of the W-hierarchy?

• P-CLIQUE $\in W[1]$

To prove this statement it is enough to show a circuit with weft 1 solving the problem (see blackboard) In fact the problem is W[1]-complete

• P-DOMINATING SET $\in W[2]$ and P-SETCOVER $\in W[2]$ (Exercise)

W[P]-hard problems

Some problems in W[P]

• P-CLIQUE, P-DOMINANTSET, P-SETCOVER

But in which level of the W-hierarchy?

• P-CLIQUE $\in W[1]$

To prove this statement it is enough to show a circuit with weft 1 solving the problem (see blackboard) In fact the problem is W[1]-complete

 P-DOMINATING SET ∈ W[2] and P-SETCOVER ∈ W[2] (Exercise) In fact both problems are W[2]-complete

Exponential Time Hypothesis

æ.

Exponential Time Hypothesis

Exponential Time Hypothesis (ETH)

n-variable 3-SAT cannot be solved in time $2^{o(n)}$.

• We wish to get results like:

< ロ > < 同 > < 回 > < 回 > < 回 > <

Exponential Time Hypothesis

Exponential Time Hypothesis (ETH)

n-variable 3-SAT cannot be solved in time $2^{o(n)}$.

• We wish to get results like: If there is an f(k) $n^{o(k)}$ time algorithm for problem XXX, then ETH fails.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Lower bounds for FPT algorithms

• We know that VERTEX COVER can be solved in time $O^*(c^k)$.

э

Lower bounds for FPT algorithms

- We know that VERTEX COVER can be solved in time $O^*(c^k)$.
- Can we do it much faster, for example in time $O^*(c^{\sqrt{k}})$ or $O^*(c^{k/\log k})$?

Lemma

If VERTEX COVER can be solved in time $2^{o(k)} n^{O(1)}$, then ETH fails.

Lower bounds for FPT algorithms

- We know that VERTEX COVER can be solved in time $O^*(c^k)$.
- Can we do it much faster, for example in time $O^*(c^{\sqrt{k}})$ or $O^*(c^{k/\log k})$?

Lemma

If VERTEX COVER can be solved in time $2^{o(k)} n^{O(1)}$, then ETH fails.

Proof.

There is a polynomial-time reduction from *m*-clause 3SAT to *m*-vertex VERTEX COVER. The assumed algorithm would solve the latter problem in time $2^{o(m)} n^{O(1)}$, violating ETH.

Fall 2023

22 / 25

 Polynomial-time approximation scheme (PTAS): Input: Instance x, ε > 0 Output: (1 + ε)-approximate solution Running time: polynomial in |x| for every fixed ε

 Polynomial-time approximation scheme (PTAS): Input: Instance x, ε > 0 Output: (1 + ε)-approximate solution Running time: polynomial in |x| for every fixed ε
PTAS: running time is |x|^{f(1/ε)}

イロト イボト イヨト イヨト

- Polynomial-time approximation scheme (PTAS): Input: Instance x, ε > 0 Output: (1 + ε)-approximate solution Running time: polynomial in |x| for every fixed ε
- PTAS: running time is $|x|^{f(1/\epsilon)}$
- Efficient PTAS (EPTAS)

- Polynomial-time approximation scheme (PTAS): Input: Instance x, ε > 0 Output: (1 + ε)-approximate solution Running time: polynomial in |x| for every fixed ε
- PTAS: running time is $|x|^{f(1/\epsilon)}$
- Efficient PTAS (EPTAS) running time is $f(1/\epsilon)|x|^{O(1)}$

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Polynomial-time approximation scheme (PTAS): Input: Instance x, ε > 0 Output: (1 + ε)-approximate solution Running time: polynomial in |x| for every fixed ε
- PTAS: running time is $|x|^{f(1/\epsilon)}$
- Efficient PTAS (EPTAS) running time is $f(1/\epsilon)|x|^{O(1)}$
- For some problems, there is a PTAS, but no EPTAS is known. Can we show that no EPTAS is possible?

・ロト ・雪 ト ・ヨ ト ・

No EPTAS?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

No EPTAS?

Lemma

If the standard parameterization of an optimization problem is W[1]-hard, then there is no EPTAS for the optimization problem, unless FPT = W[1].

・ 同 ト ・ ヨ ト ・ ヨ ト

No EPTAS?

Lemma

If the standard parameterization of an optimization problem is W[1]-hard, then there is no EPTAS for the optimization problem, unless FPT = W[1].

Proof.

Suppose an $f(1/\epsilon) n^{O(1)}$ time EPTAS exists. Running this EPTAS with $\epsilon = 1/(k+1)$ decides if the optimum is at most/at least k.

Parameterized complexity

- Possibility to give evidence that certain problems are not FPT.
- Parameterized reduction.
- The W-hierarchy.
- ETH gives much stronger and tighter lower bounds.
- PTAS vs. EPTAS
- Kernel size lower bounds

- 4 同 ト 4 目 ト